
Dijkstra’s Algorithm

procedure dijkstra(G,W,s)

for each vertex v ∈ V[G] do

d[v] ← ∞
π[v] ← NIL

end for

outside ← V[G]

d[s] ← 0
while outside 6= φ do

u ← Extract Min(outside with respect to distance d)

for each v adjacent to u do

if v ∈ outside and d[u] + W[u,v] < d[v] then

d[v] ← d[u] + W[u,v]

π[v] ← u

end if

end for

end while

end procedure

1



Dijkstra’s Algorithm, Dense Graphs

procedure dijkstra(G,W)

for i = 1 to n do

d[i] ← ∞
outside[i] ← true

π[i] ← NIL

end for

d[0] ← ∞

d[1] ← 0
for i = 1 to n do

k ← 0

for j = 1 to n do if outside[j] and d[j] ≤ d[k] then k ← j

outside[k] := false

for j = 1 to n do if outside[j] and d[k] + W[k,j] < d[j] then

d[j] ← d[k] + W[k,j]

π[j] ← k

end for

end for

end procedure

2



Dijkstra’s Algorithm, Sparse Graphs

{The priority queue for the distances of each vertex from the source is stored
as a min heap. The actual item in the heap is the name of the vertex. Its
value (for heap operations) is in the array d[1,..,n]}

procedure dijkstra(G,W)

for i = 1 to n do

MinHeap[i] ← i

WhereInHeap[i] ← i

d[i] ← ∞
outside[i] ← true

π[i] ← NIL

end for

d[1] ← 0

for i = n downto 1 do

u ← MinHeap[1]

MinHeap[1] ← MinHeap[i]

WhereInHeap[MinHeap[1]] ← 1

SiftDown(1,i-1) {Keeping track of WhereInHeap}
for each v ∈ adj[u] do

if v ∈ outside and d[u] + W[u,v] < d[v] then

d[v] ← d[u] + W[u,v]

π[v] ← u

SiftUp(WhereInHeap[v]) {Keeping track of WhereInHeap}
end if

end for

end for

end procedure

3


