
Integer Multiplication

We would like to multiply two large integers:

yn−1yn−2yn−3 · · · y3y2y1y0
× xn−1xn−2xn−3 · · · x3x2x1x0

COMMENT: We will IGNORE carries throughout.



“Standard” Multiplication Algorithm

Elementary school algorithm with no additions until after all of the multiplies.

EXAMPLE:
4352

× 3748

16

40

24

32

08

20

12

16

14

35

21

28

06

15

09

12

Concatenate the “even” and “odd” indexed values within each group then sum by column.
4352

× 3748

2416

3240

1208

1620

2114

2835

0906

1215

16311296

Atomic multiplies: n2.
Every digit on bottom is multiplied with every digit on top.

Atomic additions: 2n(n− 1).
By column, right-to-left: 0 + 2 + 4 + 6 + 8 + . . .+ 2(n− 1) + 2(n− 1) + . . .+ 8 + 6 + 4 + 2 + 0 = 2

∑n−1
i=0 2i.

2



Recursive Multiplication Algorithm.

Use divide-and-conquer. Take two n digit numbers x, y and cut each in half to form:

yn−1 · · · yn/2︸ ︷︷ ︸
c

yn/2−1 · · · y0︸ ︷︷ ︸
d

× xn−1 · · ·xn/2︸ ︷︷ ︸
a

xn/2−1 · · ·x0︸ ︷︷ ︸
b

x = a ◦ b, y = c ◦ d

Now,
xy = ac10n + (ad+ bc)10n/2 + bd

Multiplying by a power of 10 can be accomplished by shifts (this holds for any base).

EXAMPLE:
4352

× 3748

a = 37, b = 48, c = 43, d = 52

ac = 37 · 43 = 1591, ad = 37 · 52 = 1924, bc = 48 · 43 = 2064, bd = 48 · 52 = 2496

ad+ bc = 1924 + 2064 = 3988

15912496

+ 3988

16311296

So we need the four products ac, ad, bc, and bd, which can be attained by calling the algorithm
recursively four times (on n/2 digit numbers). The two values ac and bd can be concatenated, and ad can
be added to bc in time αn. The final result is the sum of ac ◦ bd and ad+ bc. Ignoring the rightmost n/2
digits of ac ◦ bd, this sum can digit attained with and additional αn time plus the cost of potentially n/2
carries (which for simplicity we ignore). So the total time for the additions is α2n. The recursion ends
when n = 1 and it multiplies two one digit numbers.

The recurrence for the time to multiply:

M(n) = 4M

(
n

2

)
+ 2αn

and M(1) = µ. Using the tree method we find that

M(n) = µn2 + 2αn(n− 1)

This is still quadratic and matches the standard algorithm.

NOTE: In “real life” you would not recurse down to one digit, but down to the word size where the
computer can do an atomic multiplication. (This comment holds for additions as well.) You can think of
this as doing arithmetic in base 2w, where w is the word size.

3



Multiplying two two-digit numbers.

Standard Algorithm. EXAMPLE:

52

× 36

12

30

06

15

1872

Four atomic multiplications and four atomic additions.

Clever Algorithm.

Two two-digit numbers can be multiplied using only three atomic multiplications!!!
cd

× ab

Form

w = (a+ b)(c+ d)

u = ac

v = bd

Note that

w = (a+ b)(c+ d) = ac+ ad+ bc+ bd = ac+ (ad+ bc) + bd

So

w − (u+ v) = [ac+ (ad+ bc) + bd] − [ac+ bd] = ad+ bc

Just what we want!!!

The full product is
xy = u102 + (w − (u+ v))10 + v

EXAMPLE:

w = (a+ b)(c+ d) = (3 + 6)(5 + 2) = 9 · 7 = 63

u = ac = 3 · 5 = 15

v = bd = 6 · 2 = 12

xy = u102 + (w− (u+ v))10 + v = 15 · 100 + (63 − (15 + 12))10 + 12 = 15 · 100 + 36 · 10 + 12 = 1872

52

× 36

12

36

15

We have reduced the number of atomic multiplies from four to three, at the cost of increasing the
number of atomic additions from four to eight.

4



Putting it all together

Recall

w = (a+ b)(c+ d)

u = ac

v = bd

Then the product is
xy = u10n + (w − (u+ v))10n/2 + v

EXAMPLE for four digit numbers.

4352

× 3748

w = (a+ b)(c+ d) = (37 + 48)(43 + 52) = 85 · 95 = 8075

u = ac = 37 · 43 = 1591,

v = bd = 48 · 52 = 2496,

u+ v = ac+ bd = 1591 + 2496 = 4087

w − (u+ v)) = ad+ bc = 8075 − 4087 = 3988

Now it is the same as the previous example.

We can estimate the addition time as αn/2 to form a+ b, αn/2 to form c+ d, αn to form u+ v, αn to
subtract that sum from w, and αn to add that to u ◦ v. The total is 4αn. The recurrence for the time to
multiply:

M(n) = 3M

(
n

2

)
+ 4αn

and M(1) = µ. Using the tree method we find that

M(n) = (µ+ 8α)nlg 3 − 8αn

5


