Integer Multiplication

We would like to multiply two large integers:

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{n}-1} \mathrm{Y}_{\mathrm{n}-2} \mathrm{y}_{\mathrm{n}-3} \cdots \mathrm{Y}_{3} \mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0} \\
\times \quad \mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3} \cdots \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0} \\
\hline
\end{array}
$$

COMMENT: We will IGNORE carries throughout.

"Standard" Multiplication Algorithm

Elementary school algorithm with no additions until after all of the multiplies.
EXAMPLE:

4352
$\times \quad \frac{3748}{16}$
40
24
32
08
20
12
16
14
35
21
28
06
15
09
12

Concatenate the "even" and "odd" indexed values within each group then sum by column.
4352
$\times \underline{3748}$
2416
3240
1208
1620
2114
2835
0906
1215
16311296

Atomic multiplies: n^{2}.
Every digit on bottom is multiplied with every digit on top.
Atomic additions: $2 n(n-1)$.
By column, right-to-left: $0+2+4+6+8+\ldots+2(n-1)+2(n-1)+\ldots+8+6+4+2+0=2 \sum_{i=0}^{n-1} 2 i$.

Recursive Multiplication Algorithm.

Use divide-and-conquer. Take two n digit numbers x, y and cut each in half to form:

$$
\begin{aligned}
& \underbrace{y_{n-1} \cdots y_{n / 2}}_{c} \underbrace{y_{n / 2-1} \cdots y_{0}}_{d} \\
\times & \underbrace{x_{n-1} \cdots x_{n / 2}}_{a} \underbrace{x_{n / 2-1} \cdots x_{0}}_{b} \\
x= & a \circ b, \quad y=c \circ d
\end{aligned}
$$

Now,

$$
x y=a c 10^{n}+(a d+b c) 10^{n / 2}+b d
$$

Multiplying by a power of 10 can be accomplished by shifts (this holds for any base).

EXAMPLE:

$$
\begin{gathered}
\begin{array}{r}
4352 \\
\times \underline{3748}
\end{array} \\
a=37, \quad b=48, \quad c=43, \quad d=52 \\
a c=37 \cdot 43=1591, \quad a d=37 \cdot 52=1924, \quad b c=48 \cdot 43=2064, \quad b d=48 \cdot 52=2496 \\
a d+b c=1924+2064=3988 \\
+\frac{15912496}{16311296}
\end{gathered}
$$

So we need the four products $a c, a d$, $b c$, and $b d$, which can be attained by calling the algorithm recursively four times (on $n / 2$ digit numbers). The two values $a c$ and $b d$ can be concatenated, and $a d$ can be added to $b c$ in time αn. The final result is the sum of $a c \circ b d$ and $a d+b c$. Ignoring the rightmost $n / 2$ digits of $a c \circ b d$, this sum can digit attained with and additional αn time plus the cost of potentially $n / 2$ carries (which for simplicity we ignore). So the total time for the additions is $\alpha 2 n$. The recursion ends when $n=1$ and it multiplies two one digit numbers.

The recurrence for the time to multiply:

$$
M(n)=4 M\left(\frac{n}{2}\right)+2 \alpha n
$$

and $M(1)=\mu$. Using the tree method we find that

$$
M(n)=\mu n^{2}+2 \alpha n(n-1)
$$

This is still quadratic and matches the standard algorithm.

NOTE: In "real life" you would not recurse down to one digit, but down to the word size where the computer can do an atomic multiplication. (This comment holds for additions as well.) You can think of this as doing arithmetic in base 2^{w}, where w is the word size.

Multiplying two two-digit numbers.

Standard Algorithm. EXAMPLE:

$$
\begin{array}{r}
52 \\
\times \quad \underline{36} \\
12 \\
30 \\
06 \\
15 \\
\hline 1872
\end{array}
$$

Four atomic multiplications and four atomic additions.

Clever Algorithm.

Two two-digit numbers can be multiplied using only three atomic multiplications!!!

$$
\begin{array}{r}
c d \\
\times \quad \underline{a b} \\
\hline
\end{array}
$$

Form

$$
\begin{aligned}
w & =(a+b)(c+d) \\
u & =a c \\
v & =b d
\end{aligned}
$$

Note that

$$
w=(a+b)(c+d)=a c+a d+b c+b d=a c+(a d+b c)+b d
$$

So

$$
w-(u+v)=[a c+(a d+b c)+b d]-[a c+b d]=a d+b c
$$

Just what we want!!!
The full product is

$$
x y=u 10^{2}+(w-(u+v)) 10+v
$$

EXAMPLE:

$$
\begin{gathered}
w=(a+b)(c+d)=(3+6)(5+2)=9 \cdot 7=63 \\
u=a c=3 \cdot 5=15 \\
v=b d=6 \cdot 2=12 \\
x y=u 10^{2}+(w-(u+v)) 10+v=15 \cdot 100+(63-(15+12)) 10+12=15 \cdot 100+36 \cdot 10+12=1872 \\
52 \\
\times \frac{36}{12} \\
36 \\
15
\end{gathered}
$$

We have reduced the number of atomic multiplies from four to three, at the cost of increasing the number of atomic additions from four to eight.

Putting it all together

Recall

$$
\begin{aligned}
w & =(a+b)(c+d) \\
u & =a c \\
v & =b d
\end{aligned}
$$

Then the product is

$$
x y=u 10^{n}+(w-(u+v)) 10^{n / 2}+v
$$

EXAMPLE for four digit numbers.

\[

\]

Now it is the same as the previous example.
We can estimate the addition time as $\alpha n / 2$ to form $a+b, \alpha n / 2$ to form $c+d, \alpha n$ to form $u+v, \alpha n$ to subtract that sum from w, and αn to add that to $u \circ v$. The total is $4 \alpha n$. The recurrence for the time to multiply:

$$
M(n)=3 M\left(\frac{n}{2}\right)+4 \alpha n
$$

and $M(1)=\mu$. Using the tree method we find that

$$
M(n)=(\mu+8 \alpha) n^{\lg 3}-8 \alpha n
$$

