Prim's Algorithm

```
procedure prim(G,W,s)
    for each vertex v \in V [G] do
        d[v] }\leftarrow
        \pi[v]}\leftarrowNI
    end for
    outside \leftarrow V[G]
    d[s]}\leftarrow
    while outside }\not=\phi\mathrm{ do
        u \leftarrow Extract_Min(outside with respect to distance d)
        for each v adjacent to u do
            if v \in outside and W[u,v] < d[v] then
                d[v] \leftarrowW[u,v]
                [v]}\leftarrow\textrm{u
            end if
        end for
    end while
end procedure
```


Prim's Algorithm, Dense Graphs

```
procedure prim(G,W)
    for \(\mathrm{i}=1\) to n do
    \(\mathrm{d}[\mathrm{i}] \leftarrow \infty\)
    outside[i] \(\leftarrow\) true
    \(\pi[\mathrm{i}] \leftarrow \mathrm{NIL}\)
    end for
    \(\mathrm{d}[0] \leftarrow \infty\)
    \(\mathrm{d}[1] \leftarrow 0\)
    for \(\mathrm{i}=1\) to n do
    \(\mathrm{k} \leftarrow 0\)
    for \(\mathrm{j}=1\) to n do if outside[j] and \(\mathrm{d}[\mathrm{j}] \leq \mathrm{d}[\mathrm{k}]\) then \(\mathrm{k} \leftarrow \mathrm{j}\)
    outside[k] := false
    for \(j=1\) to \(n\) do if outside[j] and \(W[j, k]<d[j]\) then
        \(\mathrm{d}[\mathrm{j}] \leftarrow \mathrm{W}[\mathrm{j}, \mathrm{k}]\)
        \(\pi[j] \leftarrow \mathrm{k}\)
    end for
end for
end procedure
```


Prim's Algorithm, Sparse Graphs

\{The priority queue for the distances of each vertex from the tree is stored as a min heap. The actual item in the heap is the name of the vertex. Its value (for heap operations) is in the array $\mathrm{d}[1, . ., \mathrm{n}]\}$

```
procedure prim(G,W)
    for i = 1 to n do
        MinHeap[i] }\leftarrow 
        WhereInHeap[i] }\leftarrow 
        d[i] }\leftarrow
        outside[i] }\leftarrow tru
        \pi[i]}\leftarrowNI
    end for
    d[1] }\leftarrow
    for i = n downto 1 do
        u}\leftarrow\mathrm{ MinHeap [1]
        MinHeap[1] }\leftarrow MinHeap[i]
        WhereInHeap[MinHeap[1]] \leftarrow 
        SiftDown(1,i-1) {Keeping track of WhereInHeap}
        for each v G adj[u] do
            if v \in outside and W[u,v] < d[v] then
            d[v] }\leftarrow\textrm{W}[\textrm{u},\textrm{v}
            \pi[v]}\leftarrow\textrm{u
            SiftUp(WhereInHeap[v]) {Keeping track of WhereInHeap}
            end if
    end for
    end for
end procedure
```

