
CMSC 420: Spring 2021

CMSC 420: Short Reference Guide

This document contains a short summary of information about algorithm analysis and data structures,
which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal “c and n0” definitions and an equivalent limit
definition for the standard asymptotic forms. Assume that f and g are nonnegative functions.

Asymptotic Form Relationship Limit Form Formal Definition

f(n) ∈ Θ(g(n)) f(n) ≡ g(n) 0 < lim
n→∞

f(n)

g(n)
< ∞ ∃c1, c2, n0, ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n).

f(n) ∈ O(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
< ∞ ∃c, n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ Ω(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
> 0 ∃c, n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

f(n) ∈ o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0 ∀c, ∃n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞ ∀c, ∃n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

loga n ≺ nb ≺ cn.

Common Summations: Let c be any constant, c 6= 1, and n ≥ 0.

Name of Series Formula Closed-Form Solution Asymptotic

Constant Series
∑

b

i=a
1 = max(b− a+ 1, 0) Θ(b− a)

Arithmetic Series
∑

n

i=0 i = 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
Θ(n2)

Geometric Series
∑

n

i=0 c
i = 1 + c+ c2 + · · ·+ cn =

cn+1
− 1

c− 1

{

Θ(cn) (c > 1)
Θ(1) (c < 1)

Quadratic Series
∑

n

i=0 i
2 = 12 + 22 + · · ·+ n2 =

2n3 + 3n2 + n

6
Θ(n3)

Linear-geom. Series
∑

n−1
i=0 ici = c+ 2c2 + 3c3 · · ·+ ncn =

(n− 1)c(n+1)
− ncn + c

(c− 1)2
Θ(ncn)

Harmonic Series

n
∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+

1

n
≈ lnn Θ(log n)

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be analyzed
using the so-called Master Theorem, which states that given constants a > 0, b > 1, and d ≥ 0, the
function T (n) = aT (n/b) +O(nd), has the following asymptotic form:

T (n) =

O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlog

b
a) if d < logb a.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote the
set {0, . . . ,m}, and let [m]k denote the set of ordered k-tuples, where each element is taken from [m].

A sorting algorithm is stable if it preserves the relative order of equal elements. A sorting algorithm is
in-place if it uses no additional array storage other than the input array (although O(log n) additional
space is allowed for the recursion stack). The comparison-based algorithms (Insertion-, Merge-, Heap-,
and QuickSort) operate under the general assumption that there is a comparator function f(x, y) that
takes two elements x and y and determines whether x < y, x = y, or x > y.

Algorithm Domain Time Space Stable In-place

CountingSort Integers [m] O(n+m) O(n+m) Yes No
RadixSort Integers [m]k

or [mk]
O(k(n+m)) O(kn+m) Yes No

InsertionSort Total order O(n2) O(n) Yes Yes
MergeSort

Total order O(n log n) O(n)
Yes No

HeapSort No Yes
QuickSort Yes/No∗ No/Yes

∗There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place
but not stable.

Order statistics: For any k, 1 ≤ k ≤ n, the kth smallest element of a set of size n (over a totally ordered
domain) can be computed in O(n) time.

Useful Data Structures: All these data structures use O(n) space to store n objects.

Unordered Dictionary: (by randomized hashing) Insert, delete, and find in O(1) expected time
each. (Note that you can find an element exactly, but you cannot quickly find its predecessor or
successor.)

Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predecessor, succes-
sor, merge, split in O(log n) time each. (Merge means combining the contents of two dictionaries,
where the elements of one dictionary are all smaller than the elements of the other. Split means
splitting a dictionary into two about a given value x, where one dictionary contains all the items
less than or equal to x and the other contains the items greater than x.) Given the location of an
item x in the data structure, it is possible to locate a given element y in time O(log k), where k
is the number of elements between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease-key, increase-key in
O(log n) time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Any sequence of n insert, extract-min, union, decrease-key
can be done in O(1) amortized time each. (That is, the sequence takes O(n) total time.) Extract-
min and delete take O(log n) amortized time. Make-heap from n keys in O(n) time.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint sets and
find the set containing an element in O(log n) time each. A sequence of m operations can be done
in O(α(m,n)) amortized time. That is, the entire sequence can be done in O(m · α(m,n)) time.
(α is the extremely slow growing inverse-Ackerman function.)

CMSC 420: Spring 2021

Programming Assignment 0: Tour and Locator

Handed out: Tue, Feb 2. Due: Sun, Feb 14 (11:00pm). (Fair warning: Don’t wait until too late,
since TA support will be limited over the weekends.) See the course syllabus for the late policy.
Will be discussed in class on Tue, Feb 2.

Overview: Our programming project this semester will involve implementing algorithms for ef-
ficiently computing transportation tours for a set of points in 2-dimensional space. A tour

is a cycle that visits all the points of some set. Computing efficient tours is fundamental to
many transportation applications. This assignment will be a short warm-up exercise, which
is designed to (re)familiarize yourself with Java programming, and to gain practice with the
submission and grading process. You will not need to implement any fancy data structures.

Tours: Let P = {p1, . . . , pn} be a set of n points in two-dimensional space R
2 (see Fig. 1(a)). A

tour is defined to be a cycle that visits each point of P exactly once (see Fig. 1(b)). The most
famous example is the travelling salesperson problem (TSP), a famous NP-hard problem that
involves computing the tour of minimum length (see Fig. 1(c)).

(a) (b) (c)

p2
p4

p1

p8

p7

p6
p5

p3

p2 p4

p1

p8
p6

p5

p3

p4

p5

p3

p2

p1

p8 p7

p6

P = {p1, . . . , pn} T1 = 〈p1, p3, p5, p8, p7, p6, p2, p4〉 T2 = 〈p8, p2, p1, p4, p3, p5, p6, p7〉

p7

Figure 1: (a) A point set P , (b) a tour of P starting at p1, and (c) another tour starting at p8.

Representing a tour: Given a set of points P , we can represent a tour simply as a list (or more
conveniently in Java as an ArrayList) of points. The associated tour is defined to be the
cycle defined by visiting each point of the list in order, returning finally from the last point
to the first.

Modifying through reversals: One way to modify any tour is by reversing an arbitrary sublist.
For example, consider the tour shown in Fig. 2(a). Let us assume that the points of the tour
are indexed from 0 to n− 1, and let i and j be any two indices, where 0 ≤ i < j ≤ n− 1. We
can form a new tour by reversing the sublist running from indices i through j (see Fig. 2(b)).
This has the effect of replacing two edges (i− 1, i) and (j, j +1) with the edges (i− 1, j) and
(i, j + 1), and reversing all the edges in between.

Tour Object: In this assignment, you will implement a simple data structure, called Tour, that
will maintain a tour for a set of points. Among other things, it will support sublist reversals
as shown in Fig. 2. It will support other operations, such as the ability to add new points to
tour, and various methods for listing out the points in the current tour.

1

(a) (b)

0

1
2 . . . i− 1 i i + 1

n− 1

n− 2 . . .
j + 1 j j − 1

0

1
2 . . . i− 1 i i + 1

n− 1

n− 2 . . .
j + 1 j j − 1

〈0, 1, . . . , i− 1, i, . . . , j, j + 1, . . . , n− 1〉 〈0, 1, . . . , i− 1, j, . . . , i, j + 1, . . . , n− 1〉

Figure 2: (a) A tour and (b) result of reversing the subtour from i to j.

Labeled Points: In order to refer to points in our data structure, we will associate each one with
a string label. For example, if the points are airports, it will be convenient to identify each by
its 3-letter IATA code. For example, Los Angeles International airport is given by the code
“LAX” and Dulles International Aiport by “IAD”. Its coordinates are given by its longitude
and latitude. Each airport will also be associated with other information (its name, city,
country, latitude and longitude), but we will not be using these for this assignment.

Of course, it would be too restrictive to build a data structure that works only on airport
objects. The Tour class will be designed so that it can be applied to any generic type, called
a labeled point. Such an object is defined by its (x, y) coordinates (of type float) and its
label (of type String). A labeled point is any Java class that implements the following Java
interface:

public interface LabeledPoint2D {

public float getX(); // get point’s x-coordinate

public float getY(); // get point’s y-coordinate

public String getLabel(); // get the label

// ... (and a few other methods, which we won’t worry about now)

}

The Tour class (which you will implement) will be a generic Java object based on a type
Point. This type can be any Java object that implements the LabeledPoint2D interface. In
particular, our Airport class (which we will provide you) does this.

Airport.java: (We will provide this)

public class Airport implements LabeledPoint2D { // An Aiport is a labeled point

// ...

}

Tour.java: (You will fill in the details here)

public class Tour<Point extends LabeledPoint2D> { // A Tour stores labeled points

// ... (You will fill in the rest of this)

}

SomeApplication.java: (We will also provide this)

...

Tour<Airport> theTour; // This stores a tour of Airports

2

I’m really confused! This is a lot to take in, so don’t worry too much if this is a bit confusing.
The program you need to write is actually pretty short. We will provide you with a skeleton
implementation containing all of the above. All that you will need to do is fill in one file,
Tour.java, which implements all the operations we ask of you. We will even provide the
function declarations, and you just need to fill in their contents.

Public Interface: Here is a formal definition of the public interface of the Tour<Point> class:

Tour(): This constructor performs whatever initializations are needed to create an empty
tour. For our purposes, a tour can be represented as an expandable array, say a Java
array-list, containing objects of type Point, that is, ArrayList<Point>. Thus, your
constructor might create a new (empty) array-list object.

String append(Point pt): This appends a labeled point pt to the end of the current tour
(e.g., by appending it to the aforementioned array-list).

It returns a string that summarizes the result of the operation. This string starts with
the prefix "append(XXX): ", where “XXX” is the label associated with the point and “ ”
denotes a single space. If the tour already contains a point with this same label, this is
followed by the string "Error - Label exists (operation ignored)". Otherwise, it
adds this point to the end of the current tour. Letting i denote the index where the new
point is placed, the prefix is followed by the string "Added to tour at index i". (In
standard Java style, we assume that indexing starts at zero.) An example is shown in
Table 1. (Input lines have been shortened.)

Table 1: Example of commands and output strings.

Input: Output:
append:IAD: ... append(IAD): Added to tour at index 0

append:BWI: ... append(BWI): Added to tour at index 1

append:LAX: ... append(LAX): Added to tour at index 2

append:IAD: ... append(IAD): Error - Label exists (operation ignored)

list-tour list-tour: 0:IAD 1:BWI 2:LAX

list-labels list-labels: BWI:1 IAD:0 LAX:2

index-of:LAX index-of(LAX): 2

String listTour(): This operation returns a string containing all the labels of the points in
tour order. Each label is preceded with the index of this point in the tour. The output
string starts with the prefix "list-tour: ", and it followed with a blank-separated
sequence of the form “i:XXX”, where i is the index (ranging from 0 up to n − 1), and
“XXX” is the label associated with this point. An example is given above.

String listLabels(): This operation returns a string containing all the labels of the points
in the tour in alphabetical order of the labels. Each label is succeeded with the index of
this point in the tour. The output string starts with the prefix "list-labels: ", and it
followed with a blank-separated sequence of the form “XXX:i”, where “XXX” is the label
associated with this point, and i is its index in the tour. An example is given above.

String indexOf(String label): This operation finds the point with the given label and re-
turns its index in the tour. The output string starts with the prefix "index-of(XXX): ",

3

where “XXX” is the given label. If no point with the given label appears in the tour, this
is followed with the string "Not-found". Otherwise, it is followed with the index of the
point in the tour.

String reverse(String label1, String label2): This operation reverses the subtour
between the two given labels. The output starts with the prefix "reverse(XXX,YYY): ",
where “XXX” is the first label and “YYY” is the second label. Assuming that there are
two distinct points in the tour with these labels, let i and j denote their indices in the
tour. Swap i and j if needed so that i < j. Then reverse the order of points in the
sublist from i to j, as shown in Fig. 2. Following the prefix, output "Successfully

reversed subtour of length k", where k is the number of points in the sublist that
was reversed. Some examples are shown in Table 2.

There are a few error cases to consider, which are processed in the following order:

❼ If no point of the tour has label XXX, then the prefix is followed by "Error - Label

XXX does not exist (operation ignored)"

❼ If no point of the tour has label YYY, then the prefix is followed by "Error - Label

YYY does not exist (operation ignored)"

❼ If XXX and YYY are the same, then the prefix is followed by "Error - Labels are

equal (operation ignored)"

Table 2: Example of reverse operations.

Input: Output:
list-tour list-tour: 0:IAD 1:BWI 2:LAX 3:DCA 4:JFK 5:ATL 6:SFO

reverse:BWI:ATL reverse(BWI,ATL): Successfully reversed subtour of length 5

list-tour list-tour: 0:IAD 1:ATL 2:JFK 3:DCA 4:LAX 5:BWI 6:SFO

reverse:IAD:IAD reverse(IAD,IAD): Error - Labels are equal (operation ignored)

reverse:LAX:CDG reverse(LAX,CDG): Error - Label CDG does not exist (operation ignored)

reverse:DFW:CDG reverse(DFW,CDG): Error - Label DFW does not exist (operation ignored)

reverse:DFW:DFW reverse(DFW,DFW): Error - Label DFW does not exist (operation ignored)

Locators: This completes the description of the input/output behavior of the program. There
is, however, an issue related to the program’s efficiency. Consider the operation indexOf

described above. Based on our description so far, this operation would take worst-case time
O(n) to implement on a tour of length n, since it would involve searching through the entire
tour to find the point with the given label. We would like to do better.

A common issue arising in data structure design is that we insert an object in the data struc-
ture at one time and later we wish to locate where this object appears our the data structure.
We would like the indexOf operator to run in at most O(log n) time. Our suggestion on how
to achieve this is to employ a Java TreeMap to store a collection of key-value pairs, where
the key is the point’s label and the value is the point’s index in the tour. For example, given
the tour from Table 1, this map would store the pairs {(BWI, 1), (IAD, 0)(LAX, 2)}. Now, to
perform the operation indexOf, we can search the TreeMap for the given label to retrieve the
associated index in O(log n) time.

4

Note that whenever the index of a point changes, as can happen during a reverse operation,
you will need to look up the point in the TreeMap, and modify its associated value based on
the point’s new index.

Running-time Requirements: Our grading of your program will involve an inspection of your
code for the manner in which you implement the above operations. Assuming that the current
tour contains n points, we require that the above operations run in the following worst-case
asymptotic times:

append: O(log n) (amortized) time, assuming you can add an item to Java’s ArrayList.add()
in O(1) amortized time and can add an entry to a tree map in O(log n) time.

listTour: O(n) time.

listLabels: O(n) time, assuming Java’s TreeMap.entrySet() function returns the entries
sorted by key value in this time.

indexOf: O(log n) time, assuming this is the search time of Java’s TreeMap.

reverse: O(k log n) time, where k is the length of the tour being reversed. It should take
only O(k) time to perform the reversal, but k locator values in the TreeMap need to be
updated.

If you prefer, you can use a HashMap instead of a TreeMap. Note that the run time of
listLabels will go up to O(n log n), since the strings will need to be sorted. This is acceptable
for full credit.

Program structure: We will provide a driver program that will input a set of commands. You
need only implement the Tour class and the functions listed above. Here is the public interface:

package cmsc420_s21;

public class Tour<Point extends LabeledPoint2D> {

public Tour() { } // Constructor

public String append(Point pt) { ... } // Append point to tour

public String listTour() { ... } // List in tour order

public String listLabels() { ... } // List in alpha order

public String indexOf(String label) { ... } // Index of label

public String reverse(String label1, String label2) { ... } // Reverse

}

Skeleton Code: We will provide you with some skeleton code to start with. This consists of the
following:

Tour.java: This is the only file you need modify. A skeletal version of the main class
for the extended binary search tree.

Airport.java: A class that stores information about airports.

LabeledPoint2D.java: The interface for the labeled point type.

Point2D.java: A small utility class for storing (x, y) coordinates.

5

Tester.java: Main program for testing your implementation. It inputs commands either
from a file or standard input and sends output to another file or standard output. (You
may modify this file to select different input/output files.)

CommandHandler.java: A class that processes commands that are read from the input file
and produces the appropriate function calls to the member functions of your Tour class.

You may submit additional files as well, but it is not necessary. Other than Tour.java avoid
modifying or reusing any of the above files, since we will overwrite them with our own when
testing your program. Use the package “cmsc420 s21” for all your source files.

Testing/Grading: We will be using Gradescope’s autograder and JUnit for testing and grading
your submissions. All the tests and the expected results are visible. We will provide a link
to the final test data on the class Projects page. We will check style and efficiency manually,
and this will constitute 20% of the final score.

Submission Instructions:

Submissions will be made through Gradescope. There is no limit to the number of submissions
you can make. The last submission will be graded. Here is what to do:

❼ Log into the CMSC420 page on Gradescope, select this assignment, and select “Submit”.
A window will pop up (see Fig. 3). Drag your file Tour.java into the window. If
you generated other files, zip them up and submit them all. (You do not need to
include the files from the skeleton code, included Airport.java, LabeledPoint2D.java,
Point2D.java, Tester.java, and CommandHandler.java.) Select “Upload”.

Figure 3: Gradescope submission.

After a few minutes, Gradescope will display the results (see Fig. 4). In this case, 20
out of 25 points are determined by the autograder, and we will assign the final 5 points
based on inspecting the source code of your program for style and efficiency.

On the top-right of the page, it shows the scores of the individual tests as generated by
the autograder. (If there are compilation errors, these will be displayed on this page.)
The center of the window shows a line-by-line summary, with the output generated by
your program on the left and the expected output on the right. If there are mismatches,

6

http://www.cs.umd.edu/class/spring2021/cmsc420-0101/project.html

Figure 4: Gradescope autograder results (correct).

these will be highlighted (see Fig. 5). The final score is based on the number of commands
for which your program’s output differs from ours. Note that the comparison program is
very primitive. It compares line by line (without considering the possibility of inserted
or deleted lines) and is sensitive to changes in case and the addition of white-space.

Figure 5: Gradescope autograder results (incorrect).

7

CMSC 420: Spring 2021

Programming Assignment 1: Extended AA Trees

Handed out: Tue, Mar 2. Part-1a due: Wed, Mar 10, 11pm and Part-1b due: Mon, Mar 29,
11pm.

Overview: In this assignment you will implement an extended variant of the AA Tree. Recall that
an extended binary tree there are two different node types, internal nodes and external nodes.
Extended trees are used in many applications. By separating node types, we can better tailor
each node to its particular function. Data (that is, the key-value pairs) are stored only in the
external nodes, which internal nodes only store keys, called splitters. Together, the internal
nodes serve as an index, directing the search to the appropriate external node where the data
is stored.

Our extended AA tree, or AAXTree, will be templated by two types Key and Value. Our
only assumption regarding these types is that the Key type implements the Java Comparable

interface, meaning that it defines a function compareTo() for comparing keys. In our test
data, keys will be of type String and values of type Airport.

Extended AA Tree: Recall that a traditional AA tree is a binary variant of the 2-3 tree and is
a close relative of red-black trees. Specifications on how to implement an extended version of
this tree are given in the Supplemental Lecture on Extended AA Trees, which will be posted
on the class’s Projects Page. An example of such a tree is shown in Fig. 1(a).

4

2 5

13

14 20 25

Extended AA tree (one of many possible)

17
7

27
21

10
8

Level:

3

2

1 28

0

root:

x

< x ≥ x
(a) (b)

1
b

3
f

4
d

5
t

7
u

9
h

12
l
13
w

14
o

18
c

20
x

22
k

25
m

27
d

29
s

key
value

Figure 1: (a) An extended AA Tree storing the 15 key-value pairs {(1, b), (3, f), (4, d), . . .}, (b)
ordering convention. See the Projects Page for further information.

Part 1a Requirements: (Due Mon, Mar 8, 11pm - 30%) This first part involves the basic func-
tionality to find, insert, list the dictionary’s contents, and clearing the dictionary. Because
our autograding program will check that your tree matches ours exactly, it is important that
you follow the implementation described in the Supplemental Lecture on extended AA Trees.

Value find(Key x): Determines whether there is a key-value pair (x, v), and if so returns
a reference to v. Otherwise, it returns null.

1

http://www.cs.umd.edu/class/spring2021/cmsc420-0101/project.html
http://www.cs.umd.edu/class/spring2021/cmsc420-0101/project.html
http://www.cs.umd.edu/class/spring2021/cmsc420-0101/project.html

void insert(Key x, Value v) throws Exception: Inserts key value (x, v), throwing an
Exception with the message "Insertion of duplicate key" if there is a key-value
pair in the dictionary with key x.

ArrayList<String> getPreorderList(): This operation generates a preorder enumeration
of the nodes in the tree. This is represented as a Java ArrayList of type String, with
one entry per node. The key and value refer to the key and value stored in the node.
We assume that both provide a toString method. The level value refers to the node’s
level in the AA tree.

❼ Internal nodes: "(" + key + ") " + level (where “ ” is a space character)

❼ External node: "[" + key + " " + value + "]"

Our autograder program is sensitive to both case and whitespace. For example, given
the tree of Fig. 1, a partial list of the ArrayList contents are shown in Fig. 2.

Index Contents Index Contents Index Contents

0 (7) 3 5 (5) 1 10 (8) 1

1 (4) 2 6 [4 d] 11 [7 u]

2 (2) 1 7 [5 t] 12 (10) 1

3 [1 b] 8 (17) 3 13 [9 h]

4 [3 f] 9 (13) 2 14 ...

Figure 2: Partial result from getPreorderList for the tree shown in Fig. 1(a).

void clear(): This removes all the entries of the tree (e.g., by setting the root pointer to
null).

Part 1b Requirements: (Due Wed, Mar 24, 11pm - 70%) In this part you will implement the
remaining operations.

int size(): Returns the number of key-value pairs in the dictionary. For example, for the
tree of Fig. 1(a), this would return 15.

void delete(Key x) throws Exception: Deletes the entry with key x. If there is no such
entry, it throws an Exception with the error message "Deletion of nonexistent key"

if there is no key-value pair in the dictionary with key x.

Value getMin(): This returns the value associated with the smallest key of the dictionary.
For example, on the tree of Fig. 1(a), this returns “b”. If the dictionary is empty, these
both return null.

Value getMax(): Same as getMin, but for the largest key of the dictionary.

Value findSmaller(Key x): This returns the value associated with the entry having the
largest key that is strictly smaller than x. (Note that x may or may not be in the
dictionary.) If the dictionary is empty or if there is no key smaller than x, this returns
null.

For example, on the tree of Fig. 1(a), findSmaller(18) would return “o”, the value
associated with the next smaller key 14. More generally, findSmaller(x) for 14 < x ≤
18 returns “o”. Finally, findSmaller(1) or generally findSmaller(x) for any x ≤ 1
would return null.

2

Value findLarger(Key x): Same as findSmaller, but for the next strictly larger key of
the dictionary.

Value removeMin(): Deletes the entry from the dictionary associated with the smallest key,
and returns its associated value. If the dictionary is empty, this returns null, and the
dictionary is unchanged. As with any deletion operation, the tree should be rebalanced
after the deletion. For example, on the tree of Fig. 1(a), removeMin() would delete the
entry (1, b) and return the value “b”.

Value removeMax(): Same as removeMin, but for the largest key of the dictionary.

Skeleton Code: As in the first assignment, we will provide skeleton code on the class Projects
Page. The only file that you should expect to modify is AAXTree.java. Use must use
the package “cmsc420 s21” for all your source files. (This is required for the autgrader to
work.) We will provide a driver program that will input a set of commands. You need only
implement the data structure and the functions listed above. Here is a portion of the class’s
public interface (and of course, you will add all the private data and helper functions).

package cmsc420_s21;

public class AAXTree<Key extends Comparable<Key>, Value> {

public AAXTree() { ... } // you fill these in

public Value find(Key x) { ... }

public void insert(Key x, Value v) throws Exception { ... }

public void delete(Key x) throws Exception { ... }

// ... and so on

}

Efficiency requirements: Except for getPreorderList, all operations should run in O(log n)
time, where n is the number of entries in the data structure. The operation getPreorderList

should run in time O(n). We will check this by a manual inspection of your code.

Testing/Grading: Submissions will be made through Gradescope (you need only upload your
modified AAXTree.java file). We will be using Gradescope’s autograder and JUnit for testing
and grading your submissions. We will provide some testing data and expected results along
with the skeleton code. We will be checking the following items:

❼ You should use Java’s class inheritance to implement your internal and external nodes.

❼ All operations (except getPreorderList) should be implemented so they run in O(log n)
time.

❼ We will not check in detail for adherence to coding standards, but we may deduct points
if your code is unusually complex of messy.

3

http://www.cs.umd.edu/class/spring2021/cmsc420-0201/project.html
http://www.cs.umd.edu/class/spring2021/cmsc420-0201/project.html

CMSC 420: Spring 2021

Programming Assignment 2: Wrapped k-d Trees

Handed out: Tue, Apr 6. Due: Wed, Apr 21, 11pm. (Submission via Gradescope.)

Overview: In this assignment you will implement a variant of the kd-tree data structure, called
a wrapped kd-tree (or WKDTree) to store a set of points in 2-dimensional space. This data
structure will support insertion, deletion, and a number of geometric queries, some of which
will be used later in Part 3 of the programming assignment.

The data structure will be templated with the point type, which is any class that implements
the Java interface LabeledPoint2D, as described in the file LabeledPoint2D.java from the
provided skeleton code. A labeled point is a 2-dimensional point (Point2D from the skeleton
code) that supports an additional function getLabel(). This returns a string associated with
the point.

In our case, the points will be the airports from our earlier projects, and the labels will be
the 3-letter airport codes. The associated point (represented as a Point2D) can be extracted
using the function getPoint2D(). The individual coordinates (which are floats) can be
extracted directly using the functions getX() and getY(), or get(i), where i = 0 for x and
i = 1 for y.

Your wrapped kd-tree will be templated with one type, which we will call LPoint (for “labeled
point”). For example, your file WKDTree will contain the following public class:

public class WKDTree<LPoint extends LabeledPoint2D> { ... }

Wrapped kd-Tree: Recall that a kd-tree is a data structure based on a hierarchical decomposition
of space, using axis-orthogonal splits. A wrapped kd-tree involves two modifications to the
standard kd-tree (see Fig. 1).

Extension: As with the previous assignment, our tree will be an extended binary tree in-
volving internal nodes and external nodes. Each external node stores a single point.

Each internal node stores the splitting information, consisting of a cutting dimension

and a cutting value. The cutting dimension (or cutDim) indicates which axis (0 for x

and 1 for y) is to be split, and the cutting value (or cutVal) indicates where the cut
occurs along this axis (see Fig. 1). For example, if the cutting dimension is 0 (for x) and
the cutting value is z, then a point p = (px, py) will be put in the left subtree if px < z

and in the right subtree if px ≥ z. Note that the cutting value does not need to be the
coordinate of any point in the tree.1

Wrapping: In normal kd-trees, each node is associated with an axis-aligned rectangular cell,
which is based on the splits that have been made by this node and its ancestors. In a
wrapped kd-tree each internal node explicitly stores a wrapper, which is defined to be a

1In general, this is a useful feature because we can select splitting lines to optimize query processing. Although we

will not take advantage of this fact in this project, this can be important in applications in high dimensional spaces

as occurs in machine-learning applications.

1

y = 6
[(8,4),(9,8)]

IAD

x = 5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

[(2,2),(9,8)]

[(2,2),(4,6)]
DCA

JFK

[(6,4),(9,8)]
y = 4 x = 7

wrapper

cutDim = 0
cutVal = 5

IAD
(2,6)

LAX
(4,2)

DCA
(6,7)

JFK
(9,4)

BWI
(8,8)

Figure 1: A wrapped kd-tree and the associated spatial subdivision.

minimum axis-aligned bounding box for the points in the subtree associated with this
node. (In Fig. 1, the wrapper for the internal node “x = 7” is highlighted. A wrapper
can be represented as any axis-parallel rectangle, say its lower-left and upper-right corner
points.) We will provide a class Rectangle2D in the skeleton code, and a node’s wrapper
is of this type.

The use of wrappers modestly increases the storage requirements of the data structure,
but query processing can be much faster because a wrapper can be significantly smaller
than the associated cell. This means that query processing can do a better job of
filtering out subtrees that cannot contribute to the search result. This feature becomes
more significant as the dimension of the space increases. As points are inserted and
deleted from the tree, the wrappers associated with nodes of the tree need to be updated
accordingly.

Wrappers are only computed for internal nodes. (Each external node has an “implicit”
wrapper consisting of the trivial rectangle that contains the associated point.) We can
define a node’s wrapper recursively as the smallest axis-aligned rectangle that contains
the wrappers of the node’s left and right children. (The class Rectangle2D provides a
function union to perform this operation.)

Specifications on how to implement will be given in the Supplemental Lecture on Wrapped
kd-Trees, which will be posted on the class’s Projects Page.

Requirements: Your program will implement the following functions for the WKDTree. While
you can implement the data structure internally however you like (subject to the style and
efficiency requirements given below), the following function signatures should not be altered.
Recall that Point2D is a 2-dimensional point, and an LPoint is any object that implements
LabeledPoint2D.

In addition to the wrapped kd-tree, you will also need to provide a working version of the
AAXTree from the previous assignment. We will use the AAXTree data structure as a locator.
Whenever we insert a labeled point (e.g., airport “DCA” at coordinates (6, 7)), we will insert the
key-value pair 〈DCA, (6, 7)〉 in the AAXTree. This way, if we need to determine the coordinates
of any airport, we can look it up using its three-letter code. You do not need to do anything

2

http://www.cs.umd.edu/class/spring2021/cmsc420-0101/project.html

other than provide the file, however. Our command handler will automatically insert each
airport into both data structures.

LPoint find(Point2D pt): Determines whether a point coordinates pt occurs within the
tree, and if so, it returns the associated LPoint. Otherwise, it returns null.

void insert(LPoint pt) throws Exception: Inserts point pt in the tree. It throws an
Exception with the message "Insertion of point with duplicate coordinates"

if there is a point in the dictionary with the same coordinates. The insertion process is
described in the supplementary lecture. (If there is a tie for the choice of the cutting
dimension, x is preferred over y.)

void delete(Point2D pt) throws Exception: Deletes the entry whose coordinates match
those of pt. If there is no such point, it throws an Exception with the error message
"Deletion of nonexistent point". The deletion process is described in the supple-
mentary lecture.

Note that the above exception will usually not appear in your output. The reason is
that the default deletion command is given an airport code (e.g., “delete:DCA”), and
our command handler checks first whether this code exists within your AAXTree. If so,
it invokes the appropriate deletion command (e.g., “delete(Point2D(6,7))”). There is
a variant form of the delete command (delete-point) which calls your WKDTree delete
function directly, but we use it sparingly since it causes the AAXTree and WKDTree to go
out of sync with each other.

ArrayList<String> getPreorderList(): This operation generates a preorder enumeration
of the nodes in the tree. This is represented as a Java ArrayList of type String, with
one entry per node. The output for internal and external nodes has the following form
(which must be matched exactly):

❼ Internal nodes: Depending on whether the cutting dimension is x or y, this generates
either:

"(x=" + cutVal + "): " + wrapper.toString()

"(y=" + cutVal + "): " + wrapper.toString()

where “ ” is a space character. The function wrapper.toString() is defined in
Rectangle2D.java, which is part of the skeleton code. It outputs the lower-left and
upper-right corners of the rectangle.

❼ External node: Letting point denote the labeled point stored in this node, this
generates "[" + point.toString() + "]". The function point.toString() is
defined in Airport.java.

For example, here is the result for the tree of Fig. 1.

(x=5.0): [(2.0,2.0),(9.0,8.0)]

(y=4.0): [(2.0,2.0),(4.0,6.0)]

[LAX: (4.0,2.0)]

[IAD: (2.0,6.0)]

(x=7.0): [(6.0,4.0),(9.0,8.0)]

[DCA: (6.0,7.0)]

(y=6.0): [(8.0,4.0),(9.0,8.0)]

[JFK: (9.0,4.0)]

[BWI: (8.0,8.0)]

3

Note that our autograder is sensitive to both case and whitespace.

void clear(): This removes all the entries of the tree.

int size(): Returns the number of points in the tree. For example, for the tree of Fig. 1(a),
this would return 5.

LPoint getMinX(): This returns a reference to the labeled point that is associated with
the smallest x-coordinate in the tree. If two or more points have the same minimum
x-coordinate, then the one with the smallest y-coordinate is returned. If the dictionary
is empty, this returns null.

Analogously, there are functions getMaxX(), getMinY(), and getMaxY(), which per-
form the analogous operations. For the max versions, if there are ties for the principal
coordinate, return the point with the largest “other” coordinate.

For example for the tree shown in Fig. 2(a), the calls getMinX() getMaxX(), getMinY(),
and getMaxY() would return the labeled points “SEA”, “JFK”, “LAX”, and “SFO” (respec-
tively).

IAD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

DCA

ATL

SFO

JFK

SEA

IAD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

DCA

ATL

32 + 32 = 18

JFK

SEA

SFO

(4, 6)

(a) (b)

Figure 2: Queries on a wrapped kd-tree.

LPoint findSmallerX(float x): Among all the points whose x-coordinates are strictly

smaller than x, this returns a reference to the labeled point having the largest x-
coordinate. (Note that there need not be a point having the coordinate x.) If the
tree is empty or if there is no point whose x-coordinate is smaller than x, this returns
null. If there are ties for the largest x-coordinate, return the point with the largest
y-coordinate.

Analogously, there are functions findLargerX(), findSmallerY(), and findLargerY().
For the larger versions, if there are ties for the point with the smallest principal coordi-
nate, return the point with the smallest “other” coordinate.

For example, for the tree of Fig. 2(a), findSmallerX(6) would return the labeled point
“ATL”, and findLargerY(5) would return the labeled point “IAD”.

ArrayList<LPoint> circularRange(Point2D center, float sqRadius): This function is
given a circular disk, expressed as a center point center and a squared radius of

4

sqRadius. (So, to represent a disk of radius 5, we would set sqRadius to 52 = 25.)
This function returns an array-list containing all the points whose squared distance
from the center point is at most sqRadius. (Thus if a point lies on the boundary of the
disk, it will be included.) If there are no points in the disk, it should return an empty
array-list (not null). The order of elements in the list does not matter (because we will
sort it before outputting), but there should be no duplicates in the list.

To assist you, the Point2D and Rectangle2D classes both provide a utility function
distanceSq(Point2D pt), which computes the squared distance from the current object
to point pt.

For example, in the tree of Fig. 2(b), circularRange(Point2D(4,6), 18) would return
an ArrayList with the labeled points “ATL”, “DCA”, “IAD”, “LAX”, and “SFO” (in any
order).

Why squared radius? The advantage of using squared distances over standard Eu-
clidean distances is that we can avoid invoking the square-root function required by the
standard distance (from the Pythagorean Theorem). Since our input points have inte-
ger coordinates, squared distances can be computed exactly as integers, which avoids
floating-point round-off errors due to limited precision. (For example, the squared dis-
tance between (4, 6) and (1, 9) in Fig. 2(b) is 18, whereas the Euclidean distance is
4.242640687119285)

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You should
replace the AAXTree.java file with your own, and you should add the implementation of the
above functions to WKDTree.java. You should not modify any of the other files, but you can
add new files of your own. For example, if you wanted to add additional functions to any
of the classes, such as Point2D or Rectangle2D, it would be preferable to create an entirely
new class (e.g., MyRect2D), which you will upload with your submission.

You must use the package “cmsc420 s21” for all your source files. (This is required for
the autgrader to work.) As usual, we will provide a driver program (Tester.java and
CommandHandler.java) that will input a set of commands. Here is a portion of the class’s
public interface (and of course, you will add all the private data and helper functions). You
should not modify the signature of the public functions, but you are free to set up the internal
structure however you like.

package cmsc420_s21;

public class WKDTree<LPoint extends LabeledPoint2D> {

public WKDTree() { ... } // you fill these in

public LPoint find(Point2D pt) { ... }

public void insert(LPoint pt) throws Exception { ... }

public void delete(Point2D pt) throws Exception { ... }

// ... and so on

}

Efficiency requirements: Unlike the AA-Tree, there are no worse-case guarantees on the running
times of the above functions. Nonetheless, you should make a reasonable effort to implement

5

http://www.cs.umd.edu/class/spring2021/cmsc420-0201/project.html

your functions in an efficient manner. (See the supplemental lecture notes for suggestions.) In
particular, if it can be inferred (e.g., from the wrapper) that a node’s subtree cannot possibly
contribute to the query result, then the processing should immediately return, without visiting
its children. Also, if there is one subtree that is obviously better to visit first than the other,
your code should take advantage of this. Up to 10% of the final score will be based on this
manual inspection of your code.

Testing/Grading: As before, we will be using Gradescope’s autograder and JUnit for testing and
grading your submissions. Because you will be submitting multiple files for this part, you
should produce a zip file with the two principal files (AAXTree.java and WKDTree.java). You
may include other files, but note that the files given in the skeleton code (e.g., Point2D.java,
Rectangle2D.java, and so on) will be overwritten by the autograder. So, there is nothing
to be gained by modifying these files.

As always, we will provide some sample test data and expected results along with the skeleton
code. Note that some portion (up to 20%) of the final grade will be based on hidden tests.

6

CMSC 420: Spring 2021

Programming Assignment 3: Efficient TSP Heuristics

Handed out: Tue, Mar 27. Due: Tue, May 11, 11pm. (Submission via Gradescope.)

Overview: In this assignment we will combine our extended AA tree and wrapped kd-tree data
structures to implement a data structure for maintaining traveling salesperson (TSP) tours.
We are given a discrete set of points P in R

2. Recall from Programming Assignment 0 that
a tour of P is a cycle that visits all the points of P exactly once.

Squared Measure: The (standard) Euclidean TSP problem involves computing the tour over P
of the minimum total Euclidean length. Euclidean distances involve square roots, and this
results in rather unpredictable round-off errors. We will instead consider a variant of this
problem, for the sake of easier testing.

Let T be a tour of P , and let 〈p0, p1, . . . , pn−1〉 denote the sequence of points along the tour.
Define the squared measure of the tour, denotedD[2](T) to be the sum of the squared distances
of the edges of the tour, that is,

D[2](T) =

n−1
∑

i=0

dist2(pi, pi+1).

Throughout, indices are taken modulo n, so pn = p0. (Note that this is different from taking
the square of the standard TSP length.) The squared measure has the advantage that if the
coordinates P ’s points are all integers, then D[2](T) is an integer. This is not generally true
for the standard TSP measure.

Modifying Tours: Recall from Programming Assignment 0 that we can represent any tour as a
list of points, and we can modify a tour by reversing a sublist. Given any two indices i and
j, where 0 ≤ i < j ≤ n− 1. We can modify a tour by reversing the sublist from indices i+ 1
through j. (Note: We have changed the indexing slightly from Programming Assignment 0.
This is a bit cleaner and more consist with established practice .) Let’s call this operation
reverse(i, j). This has the effect of replacing two edges (i, i+ 1) and (j, j + 1) with the edges
(i, j) and (i+ 1, j + 1), and reversing the path from i+ 1 through j (see Fig. 1).

(a) (b)

0

1
2 . . . i i + 1

n− 1

n− 2 . . .
j + 1 j

0

1
2 . . . i i + 1

n− 1

n− 2 . . .
j + 1 j j − 1

〈0, 1, . . . , i, i + 1, . . . , j, j + 1, . . . , n− 1〉 〈0, 1, . . . , i, j, . . . , i + 1, j + 1, . . . , n− 1〉

Figure 1: The operation reverse(i, j).

1

Note that this operation is not defined when i = j, but we can generalize it to any pair i 6= j

by performing reverse(min(i, j),max(i, j)).

Because the reversal only changes two edges, the change in cost is the difference between the
squared lengths of the two new edges minus the square lengths of the original edges. Define
the change in the measure to be:

∆(i, j) = (dist2(pi, pj) + dist2(pi+1, pj+1))− (dist2(pi, pi+1) + dist2(pj , pj+1))

Using this, we define a few other heuristics for modifying a tour:

2-Opt: Some reversals reduce the overall cost and some do not. Given a pair 0 ≤ i, j ≤ n−1,
where i 6= j, the operation 2-Opt(i, j) that conditionally performs a reversal if the
squared measure decreases strictly. In particular, it first checks whether ∆(i, j) < 0, and
if so, it performs reverse(i, j). Otherwise, the tour is unchanged.

2-Opt-NN: There are clearly O(n2) possible 2-Opts that could be attempted on a tour. If
the tour is close to optimum, the vast majority of these operations will not have any
effect on the tour. How can we focus attention to 2-Opts that are most likely to reduce
the tour’s cost? There many different heuristics that could be applied. One idea for
identifying 2-Opts that are likely to be effective is to let pj be the closest point to pi,
assuming that it is closer than the neighbor pi+1 it replaces.

This gives rise to an important geometric query called a fixed-radius nearest neighbor.
We will define this operation in the strict sense. Given a point set P and a query point
q and a radius r, the problem is to compute the closest point of pj ∈ P to q, assuming
that dist(q, pj) < r (see Fig. 2(a)). If there is no point of P within this distance bound,
the query returns null (see Fig. 2(b)).

q
q

r

r

p1

p2

p3

p4

p5

p6

p7

p8p1

p2

p3

p4

p5

p6p7

p8

Ans: null
Ans: p3

(a) (b)

q

r

Ans: null

Figure 2: Fixed-radius nearest-neighbor queries.

In a 2-Opt-NN operation, we perform the operation 2-Opt(i, j), where pj is the closest
point to pi. However, we only want to do this if the point pj is closer than pi’s current
successor pi+1 (indices taken modulo n). To find pj we perform a fixed-radius nearest
neighbor query for the query point q = pi and search radius.1 r = dist(pi, pi+1). If we

1You might wonder why we need the radius constraint as part of the query. Why not just compute q’s nearest

neighbor, and then check afterwards whether the distance is smaller than r? The reason is that r is typically quite

small, and there may be very few points lying within the query range. Thus, the radius constraint can significantly

improve the query’s efficiency.

2

receive a non-null result, pj , we then perform 2-Opt(i, j). If the result is null, the tour
is unchanged.

pi

2-Opt-NN(i) = 2-Opt(i, j)

pi+1

pj

pj+1

pi

pi+1

pj

pj+1

Figure 3: 2-Opt-NN operation.

We need to make one modification to the fixed-radius NN query. Clearly, the closest
point pi is pi itself (not very useful!). So, the operation 2-Opt-NN(i) is defined formally
as follows. First, apply a fixed-radius NN query with q = pi, maximum distance r =
dist(pi, pi+1), and ignoring pi itself (or equivalently, any points at distance 0). Then
perform 2-Opt(i, j).

What if there are multiple candidates for the nearest neighbor? For the sake of consis-
tency, let’s agree that the point to be selected is the one that is lexicographically smallest
with respect to its coordinates.2 That is, among all nearest neighbors, its x-coordinate
should be the smallest, and among all that have the same x-coordinate, the y-coordinate
should be the smallest.

All 2-Opt: In contrast to 2-Opt-NN, which performs 2-Opt on a judiciously chosen pair,
this operation is pure brute force. It iterates through all indices i from 0 to n− 1, and
for all j from i+ 1 to n− 1, and performs 2-Opt(i, j) for each pair. Thus, in total there
are

(

n
2

)

= O(n2) instances of 2-Opt being performed.

Tour Object: In this assignment, you will implement a data structure, called Tour, that will
maintain a tour for a set of points. It supports a number of operations, as described below.
The data structure will be templated with the point type, which is any class that implements
the Java interface LabeledPoint2D, as described in the file LabeledPoint2D.java from the
provided skeleton code. A labeled point is a 2-dimensional point (Point2D from the skeleton
code) that supports an additional function getLabel(). This returns a string associated with
the point.

Each tour object will store three principal data elements:

Tour: This is a tour itself, that is, a list (e.g., Java ArrayList) containing the points (LPoint)
of the tour.

Locator: This structure is used for locating the index of an airport in the tour from its code
(e.g., “LAX”). It is a dictionary (implemented as an AAXTree) storing key-value pairs,
where the keys are strings and the values are indices (represented as a Java Integer).

2We do not expect many test cases to check for this condition, so in your first pass, you might ignore this issue.

The input file test05-input.txt has an instance where there are multiple candidates for the nearest neighbor.

3

The index for a given string gives the index of the corresponding labeled point in the
tour. As with Programming Assignment 0, whenever we insert a new point into our
tour, we need to record its location, and whenever we move a point to a new index (e.g.,
through reversal), we need to update its location.

At a minimum, the locator will need to support the operations of insert, find, clear,
and a new operation called replace (which was not required in Programming Assign-
ment 1). The replace operation has the following signature:

void replace(Key x, Value v) throws Exception

It is given a key x (that is, an airport code) and an associated value v (that is, an index
in the tour). It searches for x. If it is not found, it throws an exception with the error
message "Replacement of nonexistent key". Otherwise, the value associated with
this entry is changed to v.

Spatial Index: This is a 2-dimensional spatial index (implemented as a WKDTree) storing
the points (LPoint). At a minimum, it must support the operations insert, find,
clear, and a new operation called fixedRadNN (which was not required in Programming
Assignment 2). The fixedRadNN operation has the following signature:

LPoint fixedRadNN(Point2D q, double sqRadius)

It returns a reference to the fixed-radius nearest-neighbor query to q, where the squared
radius of the disk is sqRadius. Among the points whose squared distance to q is strictly
more than zero and strictly less than sqRadius, it returns the closest to q. If there
is no such point in the disk, it returns null. If there are multiple points at the same
distance, your function should return that is lexicographically smallest in terms of its x
and y coordinates. (That is, if two points are at each distance to q, prefer the one with
the smaller x-coordinate. If both have the same x-coordinate, prefer the one with the
smaller y-coordinate.)

Tour Operations: The Tour object should support the following public functions.

Tour(): Initializes an empty tour, creating the tour, locator, and spatial index (all empty).

void append(LPoint pt) throws Exception: Appends the labeled point pt to the end of
the tour. If there exists a point with this label, an exception with the error message
“Duplicate label” is thrown. If there already exists a point with the same coordinates,
an exception with the error message “Duplicate coordinates” is thrown. Otherwise,
the point is added to the tour, its index is added to the locator, and the point is added
to the spatial index.

ArrayList<LPoint> list(): This returns a Java ArrayList containing all the points of the
tour in order.

void clear(): The clears everything: the tour, the locator, and the spatial index.

double cost(): The returns the current squared measure of the tour. For the sake of consis-
tency and accuracy, you should perform all arithmetic operations using double variables,
and use the Point2D function distanceSq to compute distances between points.

void reverse(String label1, String label2) throws Exception: This begins by lo-
cating the indices i and j for the tour points with labels label1 and label2, respectively.

4

If either label is not found in the locator, an exception with the error message “Label
not found” is thrown. If i == j (or equivalently, if the labels are equal), an excep-
tion with the error message “Duplicate label” is thrown. Otherwise, the operation
reverse(i, j) is performed on the tour. (It may be that i < j or j < i. Your function
should work correctly in either case.)

boolean twoOpt(String label1, String label2) throws Exception: This is the same
as reverse above, but after checking the validity of the arguments, instead of reverse,
the operation 2-Opt(i, j) is performed on the tour. That is, we check whether ∆(i, j) < 0
(note that the inequality is strict), and if so, we perform reverse(i, j). If the reversal is
performed, the operation is said to be effective. If the operation is effective, we return
true, and otherwise we return false.

LPoint twoOptNN(String label) throws Exception: This first locates the index i for the
tour point with label label. If this label is not found in the locator, an exception with
the error message “Label not found” is thrown. Otherwise, the operation 2-Opt-NN(i)
is performed on the tour. That is, we invoke fixedRadiusNN(q,rsq) where q = pi and
rsq = dist2(pi, pi+1) (where pi+1 is the point immediately following pi in the tour). If
it returns null, then we return null. Otherwise, let pj denote the result. We invoke
2-Opt(i, j). If it is effective, then we return a reference to the point pj . Otherwise, we
return null.

int allTwoOpt(): This performs the operation all-2-Opt() on the tour. (For consistency in
testing, this should be done exactly as described for all i from 0 to n− 1 and all j from
i + 1 to n − 1, performing 2-Opt(i, j).) Among the

(

n
2

)

2-Opts performed, return the
number that were effective.

Hint on Helpers: In order to implement the above functions, you may define whatever local
helper functions you like. The functions above take labels as inputs, but it is more natural to
work with tour indices. We would recommend that for each of the above label-based functions,
you have a local index-based function to perform the actual operation. For example, the
helper for reverse might be called void reverseHelper(int index1, int index2), where
index1 and index2 are the indices in the tour for the respective labels. The advantage of
doing this is that your other helper functions can easily invoke one another.

Doubles not Floats: For some of the larger test cases we are planning to use, the number of digits
in the tour costs will be too large to store in a single float variable. For the sake of testing,
we have converted all the instances of float in the supporting classes (e.g. Airport.java,
Point2D.java, Rectangle2D.java) to be of type double. You may need to make a similar
change in your WKDTree.java to keep the compiler from complaining.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. We will also
provide canonical versions of our AAXTree and WKDTree implementations. (Note that you will
still need to add the new functions replace and fixedRadiusNN.)

package cmsc420_s21;

public class Tour<LPoint extends LabeledPoint2D> {

public Tour() { /* you fill these in */ }

5

http://www.cs.umd.edu/class/spring2021/cmsc420-0201/project.html

public void append(LPoint pt) throws Exception { /* ... */ }

public ArrayList<LPoint> list() { /* ... */ }

// ... and so on

}

Efficiency requirements: The new AAXTree operation replace should run in O(log n) time. The
new WKDTree operation fixedRadNN should be reasonably efficient, in the sense that the code
should check each node’s wrapper. If the wrapper for some node does not overlap the query
disk or is farther away than the closest point seen so far, it should not recursively visit a
node’s children.

Testing/Grading: As before, we will be using Gradescope’s autograder and JUnit for testing and
grading your submissions. You can just drag your files AAXTree.java, WKDTree.java, and
Tour.java into the Gradescope upload window. You may include other files, but note that
the files given in the skeleton code (e.g., Point2D.java, Rectangle2D.java, and so on) will
be overwritten by the autograder. So, there is nothing to be gained by modifying these files.

As always, we will provide some sample test data and expected results along with the skeleton
code. Note that some portion (up to 20%) of the final grade will be based on hidden tests.

6

CMSC 420: Spring 2021

Homework 1: Basic Data Structures and Trees

Handed out Fri, Feb 12. Due at 11:00pm, Mon, Feb 22. Indicated point values are approximate.
Before writing your answers, please see the notes at the end about submission instructions.

Problem 1. (8 points)

(1.1) (4 points) Consider the rooted tree of Fig. 1(a). Draw a figure showing its representation
in the “first-child/next-sibling” form.

(1.2) (4 points) Consider the rooted tree of Fig. 1(b) represented in the “first-child/next-
sibling” form. Draw a figure showing the equivalent rooted tree.

(a) (b)

i j

a

b c

e fd g

h

T aroot

b

e f

i

c

g h

j

d

Figure 1: Rooted tree to first-child/next-sibling form and vice versa.

Problem 2. (3 points) Draw the binary tree of Fig. 2(a) with inorder threads added.

a

b c

d e f

g h

j

i

k

(a) Problem 2 f

b e

i a h g

c

dj

k

(b) Problem 3

Figure 2: (a) Adding inorder threads to a binary tree and (b) a full binary tree.

1

Problem 3. (15 points) You have a full binary tree, where each node is labeled with a distinct
letter. (Recall that a binary tree is full if each non-leaf node has exactly two children.)
Throughout this problem, we restrict attention to full binary trees.

(3.1) (3 points) Someone has performed a postorder traversal, and gave you a list of the node
labels. (For example, in the tree shown in Fig. 2(b), this is 〈i, c, j, d, k, a, b, h, g, e, f〉.) Is
it generally possible to uniquely recover a full binary tree from its postorder sequence?
If yes, explain how by presenting an algorithm for doing so. If no, draw two different
labeled full binary trees where the postorder lists are the same.

(3.2) (3 points) Repeat question (3.1), but this time list has been modified so that each
leaf node has been “flagged” to distinguish leaves from internal nodes. (For exam-
ple, in the tree shown in Fig. 2(b), if we use “∗” to indicate a leaf, this would be
〈i∗, c∗, j∗, d∗, k, a, b, h∗, g∗, e, f〉.)

(3.3) (3 points) Repeat (3.1), but this time for an inorder traversal of a full binary tree. (For
example, in the tree shown in Fig. 2(b), this would be 〈i, b, c, a, j, k, d, f, h, e, g〉.)

(3.4) (3 points) Repeat (3.2), but this time for an inorder traversal of a full binary tree. (For
example, in the tree shown in Fig. 2(b), this would be 〈i∗, b, c∗, a, j∗, k, d∗, f, h∗, e, g∗〉.)

(3.5) (3 points) We won’t ask you to solve the remaining case (of a preorder traversal), but you
suppose you discuss the unflagged case (3.1) with your best friend. (You both suspect
that the evil Prof. Mount may put this question on a future exam.) This friend announces
that the answer is “no” and tells you that there is a simple 6-node counterexample.
Without even seeing the counterexample, you tell your friend this is wrong! How is this
possible? (Assume for the sake of this problem that you are not a psychic.)

Problem 4. (8 points) You are given two n × n matrices A and B, where (following Java’s con-
vention) the rows and columns are indexed from 0 to n− 1. Their product A ·B is an n× n
matrix C where for 0 ≤ i, j ≤ n− 1, C[i, j] =

∑
n−1

k=0
A[i, k] ·B[k, j].

(4.1) (5 points) Assume that A and B are represented sparse matrices (see Lecture 2 and
Fig. 3). Present an efficient algorithm for computing the product A ·B.

To simplify things, you may assume that the output matrix C is represented as a standard
n × n 2-dimensional array, which has been initialized to zero. To make it possible to
generalize your solution to the sparse case, you should fill in the nonzero entries of C in
sequential order (e.g., top to bottom and left to right).

(4.2) (3 points) Derive the running time of your algorithm in terms of the following quantities:
n, NA and NB, where NA and NB are the numbers of nonzero entries in the matrices
A and B, respectively. (That is, state what the asymptotic running time is and present
a proof or convincing explanation of you bound. Hint: In the special case when the
matrices are dense, that is NA = NB = n2, the running time should be O(n3).)

Note: At the end of the handout, I present a sample solution for matrix addition, to give
you some idea of the amount of detail I expect.

Problem 5. (10 points) This problem involves the AVL tree shown in Fig. 4.

2

2

0

3

0

0

1

0

0

0

0

4

0

−111

303 113

200 120

432

0

1

2

3

0 1 2 3

1 0

-1

0

A.row

A.col

-211

213

422

−133

0

1

2

3

0 1 2 3

B.row

B.col

0

1

0

0

2

0

0

4

0

0

0

3 0

-2

0 -1

102

320

1

0

0

8

-2

0

0 0

09

10 0

2

0

-4
· =

A B C

You can represent C

in standard matrix form
0

Figure 3: Sparse matrix multiplication.

15

8 18

5 11

12

20

2 10

Figure 4: AVL Trees.

3

(5.1) (2 points) Redraw the tree, but label each node with the height of its subtree and its
balance factor. Suggestion: For uniformity, use the convention from the Lecture 5 slides,
where the height is written on the left of each node and the balance factor is written on
the right.

(5.2) (4 points) Show the result of inserting the key 1 into this tree. First, show the result
of inserting the new key into the tree (without any rebalancing) and show the updated
balance factors working up from the inserted node to the first node where a rotation
is needed. Second, show the final tree after rebalancing is done. Also show the final
balance factors.

(5.3) (4 points) Repeat (5.2), but this time insert the key 13. (Do the insertion on the original
tree from Fig. 4.)

Problem 6. (6 points) In our implementation of AVL search trees, we assumed that, in addition
to the key and value, each node stored a pointer to its left and right child as well as the height
of its subtree. Suppose that, in addition, we add a pointer to the node’s parent in the tree.
(The root node’s parent pointer is set to null.) The new node structure is as follows, and
the node constructor takes an additional argument specifying the parent:

class AVLNode {

Key key;

Value value;

int height;

AVLNode left, right, parent;

AVLNode(Key x, Value val, int hgt, AVLNode lft, AVLNode rgt, AVLNode par) {

// constructor - details omitted

}

}

Present pseudocode for an insert function that inserts a new key, applies the appropriate
rebalancing, and updates the parent pointers appropriately. As with standard AVL insertion,
your function should run in time O(log n).

Hint: This can be messy if you don’t approach it carefully. I believe that the cleanest solution
is to find all places where a left or right child is changed (e.g., p.left = q) and fix the parent
link right away. This works for almost all the cases where parent links need to be updated.
Beware that q may be null, and you must never dereference null.

Note: Challenge problems are for fun. We grade them, but the grade is not used when grade
cutoffs are determined. After final grades have been computed, I may “bump-up” a grade that is
slightly below a cutoff threshold based on these extra points. (But there is no formal rule for this.)

Challenge Problem: You are given an array A[1..n] of real numbers (negative, positive, and
zero). Design an efficient data structure to perform any sequence of the following two opera-
tions:

void add(int i, float x): Given 1 ≤ i ≤ n, and a strictly positive number x, this adds
the value x to A[i].

4

http://www.cs.umd.edu/class/spring2021/cmsc420-0101/Slides/lect05-avl-slides.pdf

float max(int m): Given 1 ≤ m ≤ n, this returns the maximum value of the first m
elements of A.

Notice that the number of elements remains fixed throughout (there are no insertions or
deletions). Only the values may change. Each operation should take O(log n) time. (Hint:
For full credit, as working storage, you can use an additional array B[1..n] of floats. If you
don’t see how to do this with just a single array B, for partial credit you can use any data
structure of total space is O(n). You shouldn’t need any data structures beyond modifications
of the ones we have seen so far in class.)

General note regarding coding in homeworks: When asked to present an algorithm or
data structure, do not give complete Java code. Instead give a short, clean pseudocode description
containing only the functionally important elements, along with an English description and a short
example. (For example, I would prefer to see “⌈n/2⌉” over “(int) Math.ceil((double) n /

2.0)”.)

Submission Instructions: Please submit your assignment as a pdf file through Gradescope.
Here are a few instructions/suggestions:

❼ You can typeset, hand-write, or use a tablet or any combination. We just need a readable pdf
file with all the answers. Be generous with figures and examples. It is much easier to get an
idea quickly from a figure than a segment of pseudo-code. I use Latex for text in conjunction
with a figure editor called IPE for drawing figures.

❼ When you submit, Gradescope will ask you to indicate which page each solution appears on.
Please be careful in doing this! It greatly simplifies the grading process. This takes a few
minutes, so give yourself enough time if you are working close to the deadline.

❼ Try to keep the answer to each subproblem (e.g. 5.2) on a single page. You can have multiple
subproblems on the same page, but Gradescope displays one one page at a time, and it is
easiest to grade when everything needed is visible on the same page. If your answer spans
multiple pages, it is a good idea to indicate this to alert the grader. (E.g., write “Continued”
or “PTO” at the bottom of the page.)

❼ Most scanners (including your phone) do not take very good pictures of handwritten text.
For this reason, write with dark ink on white paper. Use a scan enhancing app such as
CamScanner or Genius Scan to improve the contrast.

❼ Writing can bleed through to the other side. To be safe, write on just one side of the paper.

Algorithm Solutions: Students often ask me how much detail am I expecting for questions that
involve giving an algorithm. Whenever you are asked to present an “algorithm” your should
present the following (even if I don’t explicitly ask for all of this):

❼ A short English explanation

❼ Present the algorithm itself, typically in pseudocode

❼ If it is not obvious, briefly justify the algorithm’s correctness

❼ Give a brief analysis of the running time

5

https://www.gradescope.com
http://ipe.otfried.org/
https://www.camscanner.com/
https://www.thegrizzlylabs.com/genius-scan

Below, I present a sample solution for the problem of matrix addition with the sparse-matrix
representation. Let’s assume that we are given two sparse matrices A and B (see Lecture 2),
and our objective is to compute their matrix sum C. For simplicity, we will assume that C is
given as a standard n× n matrix, which is initialized to zero, and all we need to do is to fill
its the nonzero entries. Following Java’s conventions, we assume that rows and columns are
indexed from 0 to n − 1. Recall that in the sparse-matrix representation, we are given two
n-element arrays, call them row[] and col[], where row[i] is the head of a linked list of the
entries on row i, and col[j] is the head of a linked list of nodes in column j. These linked
lists are sorted by increasing order of indices. Each nonzero matrix entry is represented by a
node containing the following information:

class Node {

int row // this entry’ row index

int col // this entry’s column index

float value // the value of this matrix entry

Node rowNext // the next entry (from left to right) in this row

Node colNext // the next entry (from top to bottom) in this column

}

Sparse Matrix Addition: The algorithm iterates through each row 0 ≤ i ≤ n − 1, and then
iterates in a coordinated manner through the two linked lists A.row[i] and B.row[i]. If
both entries are in the same column, we compute their sum and store it in C. Otherwise, we
copy the value that lies in the smaller column index. After processing an entry, we advance
to the next element in the linked list. When we reach the end of either list, we simply copy
the remaining entries of the other list to the appropriate entries in C.

Here is the pseudo-code. We’ll omit braces and type specifications as much as possible.

void sparseAddition(SparseMatrix A, SparseMatrix B, float C[][])

for (i = 0 to n-1) // iterate through all the rows

ap = A.row[i] // head of A’s ith row

bp = B.row[i] // head of B’s ith row

while (ap != null && bp != null) // while entries remain in both rows

if (ap.col < bp.col) // A’s entry comes next?

C[i][ap.col] = ap.value //copy to C and advance

ap = ap.rowNext

else if (bp.col < ap.col) // B’s entry comes next?

C[i][bp.col] = bp.value // copy to C and advance

bp = bp.rowNext

else // (ap.col == bp.col) // both in the same column?

C[i][ap.col] = ap.value + bp.value // put sum in C and advance

ap = ap.rowNext

bp = bp.rowNext

// At this point, only one list has elements remaining

while (ap != null) // copy any remainder from A to C

C[i][ap.col] = ap.value

ap = ap.rowNext

while (bp != null) // copy any remainder from B to C

C[i][bp.col] = bp.value

bp = bp.rowNext

6

The correctness follows from the fact that the two pointers ap and bp move in coordination,
so one never gets too far ahead of the other. To obtain the running time, observe that we
visit each of the nodes of the sparse matrix representations for A and B exactly once (when
we are processing its row). Since there are NA nodes in A and NB nodes in B, this takes
time O(NA + NB). However, even if these quantities are both zero, will still need to access
each of the n entries of A.row and B.row. Thus, the overall running time is O(n+NA+NB).

7

CMSC 420: Spring 2021

Practice Problems for Midterm 1

Exam Logistics: Please read these now, so you don’t have to waste time during the exam.

❼ This exam will be asynchronous and online. The exam will be made available through Grade-
scope for a 48-hour period starting at 12:00am the morning of Thu, Mar 11 and running
through 11:59pm the evening of Fri, Mar 12. The exam is designed to be taken over a
90-minute time period, but to allow time for scanning and uploading, you will have 2 hours

to submit the exam through Gradescope once you start it.

❼ The exam will be open-book, open-notes, open-Internet, but it must be done on your own
without the aid of other people or software. (You may use a simple arithmetic calculator, but
I don’t expect that you will need one.)

❼ You may freely use any information from class, without citing it. Information from external
sources (e.g., books or online sources) can be used without penalty, but you must cite your
sources (e.g., “I found this on Stack Overflow”) and express the answer in your own words.

❼ Please do not discuss any aspects of the exam with classmates during the exam’s 48-hour time
window, even if you have both submitted. This includes its content, difficulty, and length.

❼ If you have any questions during the 2-day exam window, please email me (mount@umd.edu)
or make a private Piazza post. (Please post privately even if you have not yet started. Others
in the class may be working on the exam.)

❼ If you are unsure about how to interpret a problem and I do not respond in a timely manner,
please do your best. Write down any assumptions you are making. There will be no “trick”
questions on the exam. Thus, if a question doesn’t make sense or seems too easy or too hard,
please check with me.

❼ Uploading a large image pdf will take time. Please allow sufficient time to submit your final
work. While I do not want to penalize people for having slow network connectivity, I reserve
the right to deduct 2% of the final grade if you do not complete your upload within the 2-hour

deadline. (You can submit multiple times.)

❼ If you experience any technical issues while taking the exam, don’t panic. Save you work
(ideally in a manner that attaches a time stamp), and contact me by email (mount@umd.edu)
as soon as possible. I understand that unforeseen events can occur, and I will attempt make
reasonable accommodations.

❼ The exam will be long, and so be mindful of this. To get the most credit from each problem,
on your first pass give just the answer and any required justification. If time permits, go back
and fill in intermediate results and explanations to help with partial credit.

Disclaimer: These practice problems have been extracted from old homework assignments and
exams. Material changes from semester to semester. These do not reflect the actual coverage,
difficulty, or length of the midterm exam.

1

mailto:mount@umd.edu?subject=CMSC 420 Midterm 1

Problem 0. Expect at least one question of the form “apply operation X to data structure Y ,”
where X is a data structure that has been presented in lecture. Here is an example from last
semester.

(a) Consider the 2-3 tree shown the figure below. Show the final tree that results after the
operation insert(6). When rebalancing, use only splits, no adoptions (key rotations).

2

1 3 5 : 7 9 14

8 : 12

4

15

30

23 272017 25

21 : 26

32 : 36

2418

Figure 1: 2-3 tree insertion and deletion.

(b) Returning to the original tree, show the final tree that results after the operation
delete(20) When rebalancing, you may use both merge and adoption (key rotation). If
either operation can be applied, give priority to adoptions.

In both cases, you may draw intermediate subtrees to help with partial credit, but don’t
waste too much time on this.

Problem 1. Short answer questions. Except where noted, explanations are not required, but may
be given to help with partial credit.

(a) A binary tree is full if every node either has 0 or 2 children. Given a full binary tree
with n total nodes, what is the maximum number of leaf nodes? What is the minimum
number? Give your answer as a function of n (no explanation needed).

(b) True or false? Let T be extended binary search tree (that is, one having internal and
external nodes). In an inorder traversal, internal and external nodes are encountered in
alternating order. (If true, provide a brief explanation. If false, show a counterexample.)

(c) True or false? In every extended binary tree having n external nodes, there exists an
external node of depth at most ⌈lg n⌉. Explain briefly.

(d) What is the minimum and maximum number of levels in a 2-3 tree with n nodes. (Define
the number of levels to be the height of the tree plus one.) Hint: It may help to recall
the formula for the geometric series:

∑
m−1

i=0
ci = (cm − 1)/(c− 1).

(e) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(f) Repeat (e) in the case of deletion from an AVL tree. (You can give your answer as an
asymptotic function of n.)

2

(g) You are given a 2-3 tree of height h, which you convert to an AA-tree. As a function
of h, what is the minimum number of red nodes that might appear on any path from a
root to a leaf node in the AA tree? What is the maximum number?

(h) Unbalanced search trees and treaps both support dictionary operations in O(log n) “ex-
pected time.” What difference is there (if any) in the meaning of “expected time” in
these two contexts?

(i) You have a set of n distinct keys, where n is a large even number. You randomly permute
all the keys and insert the first n/2 of them into a standard (unbalanced) binary search
tree. You then take the remaining n/2 keys, sort them in ascending order, and insert
them into this tree. The final tree has n nodes. As a function of n, what is the expected
height of this tree? (Select the best from the choices below.)

(i) O(log n)

(ii) O((log n)2)

(iii) O(
√
n)

(iv) O(n)

(j) You have a valid AVL tree with n nodes. You insert two keys, one smaller than all
the keys in the tree and the other larger than all the keys in the tree, but you do no
rebalancing after these insertions. True or False: The resulting tree is a valid AVL
tree. (Briefly explain.)

(k) By mistake, two keys in your treap happen to have the same priority. Which of the
following is a possible consequence of this mistake? (Select one)

(i) The find algorithm may abort, due to dereferencing a null pointer.

(ii) The find algorithm will not abort, but it may return the wrong result.

(iii) The find algorithm will return the correct result if it terminates, but it might go
into an infinite loop.

(iv) The find algorithm will terminate and return the correct result, but it may take
longer than O(log n) time (in expectation over all random choices).

(v) There will be no negative consequences. The find algorithm will terminate, return
the correct result, and run in O(log n) time (in expectation over all random choices).

Problem 2. You are given a degenerate binary search tree with n nodes in a left chain as shown
on the left of Fig. 2, where n = 2k − 1 for some k ≥ 1.

(a) Derive an algorithm that, using only single left- and right-rotations, converts this tree
into a perfectly balanced complete binary tree (right side of Fig. 2).

(b) As an asymptotic function of n, how many rotations are needed to achieve this? O(log n)?
O(n)? O(n log n)? O(n2)? Briefly justify your answer.

Problem 3. You a given an inorder threaded binary search tree T (not necessarily balanced).
Recall that each node has additional fields p.leftIsThread (resp., p.rightIsThread). These
indicate whether p.left (resp., p.right) points to an actual child or it points to the inorder
predecessor (resp., successor).

Present pseudocode for each of the following operations. Both operations should run in time
proportional to the height of the tree.

3

a

c

d

e

f

g

b

d

a

b

c e g

f

Figure 2: Rotating into balanced form.

(a) void T.insert(Key x, Value v): Insert a new key-value pair (x, v) into T and update
the node threads appropriately (see Fig. 3(a)).

(b) Node preorderSuccessor(Node p): Given a non-null pointer to any node p in T , return
a pointer to its preorder successor. (Return null if there is no preorder successor.)

5

74

3

2

1

6

5

74

2

1

6

insert(3)

Figure 3: Threaded tree operations.

Problem 4. You are given a binary search tree where, in addition to the usual fields p.key,
p.left, and p.right, each node p has a parent link, p.parent. This points to p’s parent,
and is null if p is the root. Given such a tree, present pseudo-code for a function

Node preorderPred(Node p)

which is given a non-null reference p to a node of the tree and returns a pointer to p’s preorder
predecessor in the tree (or null if p has no preorder predecessor). Your function should run
in time proportional to the height of the tree. Briefly explain how your function works.

Problem 5. Consider the following possible node structure for 2-3 trees, where in addition to the
keys and children, we add a link to the parent node. The root’s parent link is null.

class Node23 { // a node in a 2-3 tree

int nChildren // number of children (2 or 3)

Node23 child[3] // our children (2 or 3)

Key key[2] // our keys (1 or 2)

Node23 parent // our parent

}

4

Assuming this structure, answer each of the following questions:

(a) Present pseudocode for a function Node23 rightSibling(Node23 p), which returns a
reference to the sibling to the immediate right of node p, if it exists. If p is the rightmost
child of its parent, or if p is the root, this function returns null. (For example, in Fig. ??,
the right sibling of the node containing “2” is the node containing “8:12”. Since the node
containing “8:12” is the rightmost node of its parent (“4”), it has no right sibling.)

Your function should run in O(1) time.

2

1 3 5 : 7 9 14

8 : 12

4

15

30

23 272017

24

19 : 21

32 : 36

2levelSuccessor() = 8 : 12

levelSuccessor() =8 : 12 19 : 21

rightSibling() = null8 : 12

2rightSibling() = 8 : 12

Figure 4: Sibling and level successor in a 2-3 tree.

(b) For a node p in a 2-3 tree, its level successor is the node to its immediate right at the
same level. Give pseudocode for a function Node23 levelSuccessor(Node23 p), which
returns a reference to p’s level successor, if it exists. If p is the rightmost node on its
level (including the case where p is the root), this function returns null. (For example,
in Fig. 4, the level successor of the node containing “2” is the node containing “8:12”,
and the level successor of “8:12” is the node containing “19:21”.)

Your function should run in O(log n) time. If you like, you may use rightSibling.

(c) Suppose we start at any node p in a 2-3 tree with n nodes, and we repeatedly perform
p = levelSuccessor(p) until p == null. What is the (worst-case) total time needed
to perform all these operations? (Briefly justify your answer.)

Problem 6. A social-distanced bit vector (SDBV) is an abstract data type that stores bits, but
no two 1-bits are allowed to be consecutive. It supports the following operations (see Fig. 5):

❼ init(m): Creates an empty bit vector B[0..m-1], with all entries initialized to zero.

❼ boolean set(i): For 0 ≤ i ≤ m (where m is the current size of B), this checks whether
the bit at positions i and its two neighboring indices, i− 1 and i+ 1, are all zero. If so,
it sets the ith bit to 1 and returns true. Otherwise, it does nothing and returns false.
(The first entry, B[0], can be set, provided both it and B[1] are zero. The same is true
symmetrically for the last entry, B[m-1].)

For example, the operation set(9) in Fig. 5 is successful and sets B[9] = 1. In contrast,
set(8) fails because the adjacent entry B[7] is nonzero.

There is one additional feature of the SDBV, its ability to expand. If we ever come to a
situation where it is impossible set any more bits (because every entry of the bit vector is

5

10 0 0 0 1 0 1 0 0 0 0 0 1

0 1 2 3 . . . 13

m = 14

B

10 0 0 0 1 0 1 0 1 0 0 0 1

0 1 2 3 . . . 139
set(9)

10 0 0 0 1 0 1 0 0 0 0 0 1

0 1 2 3 . . . 138

set(8)
false!

10 0 1 0 1 0

0 1 2 3 . . .

B

7

m = 8

0 1 0 1 0

0 1 2 3

B

3m = 24

23

k = 3

reallocate
1 0 0 0 0 0 0 0 0. . .

4 5

cost = 1

cost = 1

cost = m = 8

8 9

Figure 5: Social-distanced bit vector. (Shaded entries cannot be set to one, due to social-distancing.)

either nonzero or it is adjacent to an entry that is nonzero), we reallocate the bit vector to
one of three times the current size. In particular, we replace the current array of size m with
an array of size 3m, and we copy all the bits into this new array, compressing them as much
as possible. In particular, if k bits of the original vector were nonzero, we set the entries
{0, 2, 4, . . . , 2k} to 1, and all others to 0 (see Fig. 5).

The cost of the operation set is 1, unless a reallocation takes place. If so, the cost is m,
where m is the size of the bit vector before reallocation.

Our objective is to derive an amortized analysis of this data structure.

(a) Suppose that we have arrived at a state where we need to reallocate an array of size m.
As a function of m, what is the minimum and maximum number of bits of the SDBV
that are set to 1? (Briefly explain.)

(b) Following the reallocation, what is the minimum number of operations that may be
performed on the data structure until the next reallocation event occurs? Express your
answer as a function of m. (Briefly explain.)

(c) As a function of m, what is the cost of this next reallocation event? (Briefly explain.)

(d) Derive the amortized cost of the SDBV. (For full credit, we would like a tight constant,
as we did in the homework assignment. We will give partial credit for an asymptotically
correct answer. Assume the limiting case, as the number of operations is very large and
the initial size of the bit vector is small.)

Throughout, if divisions are involved, don’t worry about floors and ceilings.

6

CMSC 420: Spring 2021

Midterm Exam 1

The exam is asynchronous and online. It is open-book, open-notes, open-Internet, but it must
be done on your own without the aid of other people or software. The total point value is 100
points. Good luck!

Problem 1. (20 points) Consider the trees shown in Fig. 1.

2

1 3

8

5
6

(a) (b)

9

12

11 153 : 51 8

2 : 6

9

1

2

3

Level

12 15

4
10

14

Figure 1: 2-3 and AA Trees.

(1.1) (5 points) Draw a picture of the AA tree corresponding to the 2-3 tree shown in Fig. 1(a).
(Similar to Fig. 1(b), indicate which levels the nodes are at and indicate black-red pairs
by connecting them with a dashed line.)

(1.2) (5 points) Draw a picture of the 2-3 tree corresponding to the AA tree shown in Fig. 1(b).

(1.3) (10 points) Show the final AA tree that results by inserting 7 into the AA tree of Fig. 1(b).
(Intermediate results may be given to help with partial credit.)

Problem 2. (35 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(2.1) (5 points) You have a binary tree with inorder threads (for both inorder predecessor
and inorder successor). Let u and v be two arbitrary nodes in this tree. True or false:
There is a path from u to v, using some combination of child links and threads. (No
justification needed.)

(2.2) (5 points) Recall that the depth of a node in a tree is the number of edges along the
path from the root to this node. In an inorder threaded binary tree, if u.right is a
thread, what can be inferred about the relative depths of these two nodes? (Select one.
No explanation needed.)

(a) depth(u) < depth(u.right)

(b) depth(u) <= depth(u.right)

(c) depth(u) > depth(u.right)

(d) depth(u) >= depth(u.right)

(e) We cannot infer anything. It depends on the tree’s structure.

1

(2.3) (5 points) Suppose we have an inorder threaded binary tree, which is full. If u.right
is a thread, which of the following are possible? (Select all that apply. No explanation
needed.)

(a) Both u and u.right are internal.

(b) Both u and u.right are leaves.

(c) Node u is a leaf and u.right is internal.

(d) Node u is internal and u.right is a leaf.

(2.4) (5 points) You are given a sorted set of n keys x1 < x2 < · · · < xn (for some large
number n). You insert them all into an AA tree in some arbitrary order. No matter
what insertion order to choose, one of these keys cannot possibly be a red node. Which
is it? (Briefly explain)

(2.5) (5 points) Below we give the AA rebalancing operation skew, but we have explicitly
commented out the check where p == nil). What will the modified function do if we
were to call skew(nil)? (Select one and briefly explain your answer.)

AANode skew(AANode p) {

// ----> Intentionally omitted: if (p == nil) return p;

if (p.left.level == p.level) { // red node to our left?

AANode q = p.left; // do a right rotation at p

p.left = q.right;

q.right = p;

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

(a) It has no effect and returns a reference to nil.

(b) It will alter the contents of nil, but it will not modify any of the other nodes of the
tree.

(c) It may alter both nil and other nodes the tree as well.

(d) It will abort due to an attempt to dereference a null pointer.

(2.6) (5 points) Under what circumstances will the priority value of a treap node change?
(Select all that apply. No explanation needed.)

(a) Once created, it will never change (until the node is deleted).

(b) It will be changed periodically according to a random process.

(c) It may change if the node is involved in a rotation.

(d) It may change if the node is used as a replacement for a deleted node.

(2.7) (5 points) You are given a skip list storing n items. What is the expected number of
nodes that will contribute to level 3 of the skip list? (Express your answer as a function
of n. Assume that level 0 is the lowest level, containing all n items. Also assume that
the coin is fair, return heads half the time and tails half the time.)

Problem 3. (25 points) Recall that in a binary tree the depth of a node is defined to be the
number of edges from the root to the node. The height of a node is defined to be the height

2

of the subtree rooted at this node, that is, the maximum number of edges on any path from
this node to one of its leaves.

In this problem, we will consider some questions involving nodes of a particular depth and
height in an AVL tree. Let us assume (as in class) that an AVLNode stores its key, value,
left, right, and height, and let us assume that the AVLTree stores a pointer to the root

node.

11

13
1

0

1

5

9

15

63

4

4

32

1 20

00

16

2218

19

1 0

00

21

height
depth

0

1

2

3

4

listAtDepth(2) = 〈3, 6, 13, 21〉

listAtHeight(1) = 〈3, 13, 18〉

Figure 2: AVL tree heights and depths.

(3.1) (5 points) Present an algorithm listAtHeight(int h), which is given an integer h ≥ 0,
and returns a list (e.g., a Java ArrayList) containing all the keys, in increasing order,
associated with all the nodes that are at height h in the AVL tree. If there are no nodes
at height h, the function returns an empty list.

For example, in Fig. 2, the call listAtHeight(1) would return the list 〈3, 13, 18〉.

Briefly explain how your algorithm works, present a description (pseudocode preferred
or a clear English explanation), and briefly explain its running time. The running time
should be proportional to the number of nodes at height ≥ h. (For example, in the case
of listAtHeight(1), there are 7 nodes of equal or greater height.)

(3.2) (5 points) Present an algorithm listAtDepth(int d), which is given an integer d ≥ 0,
and returns a list (e.g., a Java ArrayList) containing all the keys, in increasing order,
associated with all the nodes that are at depth d in the AVL tree. If there are no nodes
at depth d, the function returns an empty list. Note: Nodes do not store their depths,
only their heights.

For example, in Fig. 2, the call listAtDepth(2) would return the list 〈3, 6, 13, 21〉.

In each of the coding problems, briefly explain how your algorithm works, present a
description (pseudocode preferred or a clear English explanation), and briefly explain its
running time. The running time of your algorithm should be proportional to the number
of nodes at depths ≤ d. (For example, in the case of listAtDepth(2), there are 7 nodes
of equal or lesser depth.)

(3.3) (5 points) Prove that in any AVL tree, the maximum number of nodes that there are
can be at depth d ≥ 0 is 2d. (Hint: This is intended to be easy. Even so, please give a
short proof, even you think the observation is “obvious”.)

(3.4) (10 points) Given any AVL tree T and depth d ≥ 0, we say that T is full at depth d if
it has 2d nodes at depth d. (For example, the tree of Fig. 2 is full at depths 0, 1, and 2,

3

but it is not full at depths 3 and 4.) Prove that for any h ≥ 0, an AVL tree of height h
is full at all depths from 0 up to ⌊h/2⌋. (For example, the AVL tree of Fig. 2 has height
4, and is full at levels 0, 1, and 2.)

Problem 4. (20 points) In this problem, we will consider generalization of the amortized analysis
of the dynamic stack algorithm from Lecture 2. Recall that in the dynamic stack from the
class, whenever we run out of space using an array of size k, we expand by allocating a new
array of size 2k, copy the elements over, and remove the old array. In this problem, we will
also consider contracting, by halving the size of the array when we have too few elements.
Below we give a formal description of our new dynamic stack and the cost of each operation.
Throughout, assume that k is a power of 2.

Initialization: We allocate an array of size k = 1, which is empty. (Actual Cost = 0)

push(x): If n < k (standard case), we push the element onto the stack and increment n.
(Actual Cost = 1) If n = k (overflow case), we double the array size by setting k ← 2k,
allocate a new array of this size, copy the contents of the old array into the new array,
and remove the old array. We then do the standard-case push. (Actual Cost = 2k + 1)

pop(): If n = 0, we return null. (Actual Cost = 1) Otherwise, we pop the stack and
decrement n. If (after decrementing) n ≤ k

4
, we halve the array size by setting k ← k

2
,

allocate a new array of this size, copy the contents of the old array into the new array,
and remove the old array. (Actual Cost = 1 + k

2
)

Note that in either case, just after reallocation, roughly half of the current array is being
used. In this problem, you will derive the amortized cost of operations on this data structure.
Consider a long sequence of pushes and pops, starting from any empty stack. We will break
this sequence into runs, with each run ending just after each reallocation (expanding or
contracting).

(4.1) (5 points) Suppose that when the run starts, the current array size is k, and the run
ends with an expansion to size 2k. Prove that there is a constant c (which you may
choose) so that the amortized cost is c. (That is, show that the sum of actual costs in
the run is at most c times the number of operations.) Hint: This is pretty much what
we did in class. You can just adapt the proof from the lecture, but put it in your own
words.

(4.2) (10 points) Suppose that when the run starts, the current array size is k, and the run
ends with a contraction to size k

2
. Prove that there is a constant c (which you may

choose) so that the amortized cost is c.

(4.3) (5 points) We triggered a contraction when n ≤ k

4
. Suppose instead that we triggered a

contraction (halving the size of the array) whenever n ≤ k

2
. Would the amortized cost

still be a constant? Briefly justify your answer.

Because we are most interested in asymptotic bounds, you may focus mainly on the case
where n and k are both large numbers.

4

CMSC 420: Spring 2021

Homework 2: Hashing and Geometric Search

Handed out Thu, Apr 15. Due Mon, Apr 26, 11pm. (Solutions will be discussed in class on Tue,
Apr 27, so late submissions will not be accepted after the start of class.)

Problem 1. (12 points) In this problem, you will show the result of inserting a sequence of three
keys into a hash table, using linear and quadratic probing. (Each is inserted one after the
other.) In each case, at a minimum you should indicate the following:

❼ Was the insertion successful? (The insertion fails if the probe sequence loops infinitely
without finding an empty slot.)

❼ Show contents of the hash table after inserting all three keys.

❼ For each case, give a count of the number of probes, that is, the number of entries in
the hash table that were accessed in order to find an empty slot in which to perform
the insertion. (The initial access counts as a probe, so this number is at least 1. For
example, in Fig. 3 in the Lecture 14 LaTeX lecture notes, insert("z") makes 1 probe
and insert("t") makes 4 probes.)

For the purposes of assigning partial credit, you can illustrate the actual probes that were
performed, as we did in Fig. 4 from Lecture 14. But be sure to also list the probe count.

(1.1) (6 points) Show the results of inserting the keys “X”, “Y”, and “Z” into the hash table
shown in Fig. 1(a), assuming that conflicts are resolved using linear probing.

insert("Z") h("Z") = 9

insert("Y") h("Y") = 15

insert("X") h("X") = 13

(a) Linear probing

P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LG

insert("Q") h("Q") = 9

insert("D") h("D") = 6

insert("M") h("M") = 3

(b) Quadratic probing

NA C EHI JP K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LM G W A R

Figure 1: Hashing with linear and quadratic probing.

(1.2) (6 points) Show the results of inserting the keys “M”, “D”, and “Q” into the hash table
shown in Fig. 1(b) using quadratic probing. (Hint: If you are unsure whether quadratic
probing has gone into an infinite loop, it may be useful to note that for any positive
integer i, i2 mod 15 ∈ {0, 1, 4, 6, 9, 10}.)

(Intermediate results are not required, but may be given to help assigning partial credit.)

Problem 2. (8 points) You have a hash table of size m into which you insert n keys using separate
chaining (as described in class). The keys are integers from the set U = {1, 2, . . . , nm}.

1

http://www.cs.umd.edu/class/spring2021/cmsc420-0101/Lects/lect14-hashing.pdf

(2.1) (5 points) Prove that, no matter how ingeniously you design your hash function, there
must exist a subset S of U of size at least n such that every key in S hashes to the same
location in the hash table.

(2.2) (3 points) What does (2.1) imply about the worst-case running time needed to insert n
keys drawn from U into your hash table (again, assuming separate chaining).

Problem 3. (20 points) You are given a 2-dimensional point kd-tree, as described in class, where
we assume that the cutting dimension alternates between x and y with each level of the tree.
This tree stores a set P of n points in R

2. For each of the following parts, the query object
is a square, represented by its center point q = (qx, qy) and radius r > 0. Let S(q, r) denote
a square consisting of the points that lie within a square of side length 2r that is centered at
q (see Fig. 2(a)). Formally, S(q, r) defined to be the set of points p ∈ R

2 such that

qx − r ≤ px ≤ qx + r and qy − r ≤ py ≤ qy + r.

(Note that if a point is on the boundary of the square, it is considered as lying within the
square.) Equivalently, we can define the max distance between two points p and q, denoted
max-dist(p, q) to be max(|px − qx|, |py − qy|). The square S(q, r) consist of all p such that
max-dist(p, q) ≤ r.

q

r

r

S(q, r) L(q, w, h)

(a) (b)

q h

w

Figure 2: Square and L-shaped emptiness queries in a kd-tree.

(3.1) (6 points) Derive an efficient function

boolean emptySquare(Point2D q, float r)

which determines whether P ∩ S(q, r) = ∅ (see Fig. 2(a)). That is, it returns true if no
point of P lies within S(q, r) and false otherwise. By “efficient” we mean that the query
time should be O(

√
n), assuming that the tree is balanced, where n is the number of

points in the tree. I would suggest using a recursive helper function:

boolean emptySquare(Point2D q, float r, KDNode p, Rectangle2D cell)

You may assume that any primitive geometric operations involving points, squares, and
rectangles can be computed in constant time. For example, if your pseudocode, you can
write “if square S(q, r) and rectangle R are disjoint then . . . ” without explaining how
to determine this.

Briefly explain your algorithm and present pseudocode.

2

(3.2) (4 points) Derive the running time of your function from (3.1), under the assumptions
that the tree contains n points, the splitting dimension alternates between x and y, and
the tree is balanced.

Hint: It may help to first review the analysis of the orthogonal range-search algorithm
from the latex lecture notes. As we did in class, you may make the idealized assumption
that the left and right subtrees of each node have equal numbers of points.

(3.3) (6 points) Given a point q ∈ R
2 and two positive floats w and h, define the L-shaped

region L(q, w, h) to be the set of points lying within the “L”-shaped region whose lower
left corner is q and which extends infinitely upwards and rightwards. The width of the
vertical part is w, and the height of the horizontal part is h (see Fig. 2(b)). As above,
points lying on the boundary of the region are considered to lie within the region.

Present pseudocode for an efficient function

boolean emptyL(Point2D q, float w, float h)

which determines whether P ∩ L(q, w, h) = ∅.
Briefly explain your algorithm and present pseudocode. I would suggest the recursive
helper function:

boolean emptyL(Point2D q, float w, float h, KDNode p, Rectangle2D cell)

(3.4) (4 points) Derive the running time of your function from (2.3), under the same assump-
tions as in (2.2). A complete analysis is not needed. You can explain what modifications
are needed to the analysis of (2.2).

Note: You may assume the results proven in class, without the need to prove them again. If
you need to modify these results, you need only explain the modifications.

Problem 4. (10 points) In this problem, we will consider how to use/modify range trees to answer
two related queries. Throughout, the input set P is a set of n points in R

2 (Fig. 3(a)).
While the answer should be based on range trees, you may need to make modifications
including possibly transforming the points and even adding additional coordinates. In each
case, describe the points that are stored in the range tree and how the search process works.
An English explanation (as opposed to pseudocode) is sufficient. Justify your algorithm’s
correctness and derive its running time.

(4.1) (5 points) In a vertical segment sliding, the query is given a vertical line segment, specified
by its lower endpoint q = (qx, qy) and its height h (see Fig. 3(b)). The query returns the
first point pi ∈ P that is first hit if we slide the segment to its right. If no point of P is
hit, the query returns null.

Describe how to preprocess the point set P in a data structure so that given any query
(q, h), segment sliding queries can be answered efficiently. Your data structure should
use O(n log n) storage and answer queries in O(log2 n) time.

(4.2) (5 points) A min-V query is defined by q = (qx, qy). Consider the V-shape defined
between two rays emanating upwards from q, one with slope +1 and one with slope −1
(see Fig. 3(c)). Among all the points of P lying within this V-shape, the answer is the
one with the smallest y-coordinate. If no point of P lies within the shape, the query
returns null. Your data structure should use O(n log2 n) storage and answer queries in
O(log3 n) time.

3

p8

p1
p2

p3

p4

p5

p6

p7

p9
q

h

x

y

p8

p1
p2

p3

p4

p5

p6

p7

p9

P

(a) (b) (c)

Answer: p7

p8

p1
p2

p3

p4

p5

p6

p7

p9
q

Answer: p9

q

Figure 3: Vertical segment-sliding and min-V queries.

Challenge Problem: You just started work at your new company, “Dilbert’s Pretty Good Data
Structures”. Your team has been tasked to implement a new “automatically initializing”
array. The array table is specified by its size m > 0 and an initialization function f . For
simplicity, let’s assume that the entries of table are integers. The initial value of table[i]
is defined to be f(i). For example, if f(i) = i2, the array’s initial “virtual” contents are as
shown in Fig. 4. You may assume that f can be computed in constant time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

49160 94 25 361 . . . m = 16Initial (virtual) contents:

i

49160 4 -8 361 . . .set(5,-8)

get(5) −8
get(3)

49160 114 25 361 . . .
set(3,11)

get(5) 25
get(3) 11
get(7) 49

get(7) 49

11

11

Figure 4: Auto-initializing array for m = 16 and f(i) = i2. The initial actual (not virtual) contents
are entirely unpredictable.

Your part of the project is to implement two accessor functions void set(int i, int x)

and int get(i). The first function sets table[i] = x. For the second function, if entry
table[i] has been set by a previous set command, then its (latest) set value is returned. If
its value has not yet been set, it returns f(i). In both cases, you may assume that 0 ≤ i < m.

This would be easy, if you were allowed O(m) time to initialize the array, but you are not.
The initial contents of the array are entirely unpredictable (and may have even been set
maliciously to trick your algorithm). In spite of this, each function must run in worst-case
O(1) time, independent of the value of m or the number n of elements that have already been
set.

Your team leader has informed you that you may use additional storage of size up to O(m) in
which you may store any auxiliary data structure you like (limited to primitive data structures

4

such as queues and stacks or one of the data structures we have seen this semester). But, as
with the table, you cannot assume that this additional storage comes initialized. It too may
contain garbage.

Explain how to produce a data structure to solve this problem in the required time and space.
Explain your algorithm and derive its running time.

Hint: You will definitely need the additional storage to solve the problem in the stated
time bound. For full credit, your answer should be deterministic (not randomized) and the
worst-case running time is O(1). For partial credit, show how to perform the operations in
amortized O(1) time, or randomized O(1) time (correct with high probability) or alternatively
in deterministic O(logm) time. Note that if you attempt to apply a solution based on hashing,
you need to take into consideration the time needed to initialize the hash table.

5

CMSC 420: Spring 2021

Practice Problems for Midterm 2

This exam will be asynchronous and online. The exam will be made available through Gradescope
for a 48-hour period starting at 12:00am the morning of Thu, Mar 29 and running through
11:59pm the evening of Fri, Mar 30 (Eastern Time). The exam is designed to be taken over
a 1.5-hour time period, but to allow time for scanning and uploading, you will have 2 hours to
submit the exam through Gradescope once you start it. The exam will be open-book, open-notes,
open-Internet, but it must be done on your own without the aid of other people or software. (You
may use a simple arithmetic calculator, but I don’t expect that you will need one.)

Disclaimer: These practice problems have been extracted from old homework assignments and
exams. Material changes from semester to semester. These do not necessarily reflect the actual
coverage, difficulty, or length of the midterm exam.

Problem 0. Expect at least one problem that involves working through some operations on a data
structure that we have covered since the previous exam.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) What is the purpose of the next-leaf pointer in B+ trees?

(b) Suppose you know that a very small fraction of the keys in a data structure are to be
accessed most of the time, but you do not know which these keys are. Among the data
structures we have seen this semester, which would be best for this situation? Explain
briefly.

(c) You are using hashing with open addressing. Suppose that the table has just one empty
slot in it. In which of the following cases are you guaranteed to succeed in finding the
empty slot? (Select all that apply.)

(1) Linear probing (under any circumstances)

(2) Quadratic probing (under any circumstances)

(3) Quadratic probing, where the table size m is a prime number

(4) Double hashing (under any circumstances)

(5) Double hashing, where the table size m and hash function h(x) are relatively prime

(6) Double hashing, where the table size m and secondary hash function g(x) are rela-
tively prime

(d) What is the maximum number of points that can be stored in a 3-dimensional point
quadtree of height h? Express your answer as an exact (not asymptotic) function of h.
(Hint: It may be useful to recall the formula for any c > 1,

∑m
i=0

ci = (cm+1)−1)/(c−1).)

(e) We have n uniformly distributed points in the unit square, with no duplicate x- or y-
coordinates. Suppose we insert these points into a kd-tree in random order (see the left
side of Fig. 1). As in class, we assume that the cutting dimension alternates between
x and y. As a function of n what is the expected height of the tree? (No explanation
needed.)

1

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x

y

1

2

3

4

5

6

7

8

9

10

11

15

13

14

12

Figure 1: Height of kd-tree.

(f) Same as the previous problem, but suppose that we insert points in ascending order of
x-coordinates, but the y-coordinates are random (see the right side of Fig. 1). What is
the expected height of the tree? (No explanation needed.)

Problem 2. Suppose that you are given a treap data structure storing n keys. The node structure
is shown in Fig. 2. You may assume that all keys and all priorities are distinct.

1
k

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

priority

key

class TreapNode {

Key key // key

int priority // priority

TreapNode left // left child

TreapNode right // right child

}

Figure 2: Treap node structure and an example.

(a) Present pseudocode for the operation int minPriority(Key x0, Key x1), which is
given two keys x0 and x1 (which may or may not be in the treap), and returns the
lowest priority among all nodes whose keys x lie in the range x0 ≤ x ≤ x1. If the treap
has no keys in this range, the function returns Integer.MAX VALUE. Briefly explain why
your function is correct.

For example, in Fig. 2 the query minPriority("c", "g") would return 2 from node
"e", since it is the lowest priority among all keys x where "c" ≤ x ≤ "g".

(b) Assuming that the treap stores n keys and has height O(log n), what is the running time
of your algorithm? (Briefly justify your answer.)

Problem 3. Define a new treap operation, expose(Key x). It finds the key x in the tree (throwing
an exception if not found), sets its priority to −∞ (or more practically Integer.MIN VALUE),
and then restores the treap’s priority order through rotations. (Observe that the node con-
taining x will be rotated to the root of the tree.) Present pseudo-code for this operation.

2

Problem 4. In scapegoat trees, we showed that if size(u.child)/size(u) ≤ 2

3
for every node

of a tree, then the tree’s height is at most log3/2 n. In this problem, we will generalize this
condition to:

size(u.child)

size(u)
≤ α, (∗)

for some constant α.

(a) Why does it not make sense to set α larger than 1 or smaller than 1

2
?

(b) If every node of an n-node tree satisfies condition (∗) above, what can be said about the
height of the tree as a function of n and α? Briefly justify your answer.

Problem 5. In class we demonstrated a simple idea for deleting keys from a hash table with open
addressing. Namely, whenever a key is deleted, we stored a special value “deleted” in this
cell of the table. It indicates that this cell contained a deleted key. The cell may be used
for future insertions, but unlike “empty” cells, when the probe sequence searching for a key
encounters such a location, it should continue the search.

Suppose that we are using linear probing in our hashing system. Describe an alternative
approach, which does not use the “deleted” value. Instead it moves the table entries around
to fill any holes caused by a deleted items.

In addition to explaining your new method, justify that dictionary operations are still per-
formed correctly. (For example, you have not accidentally moved any key to a cell where it
cannot be found!)

Problem 6. Given a set P of n points in the real plane, a partial-range max query is given two
x-coordinates x1 and x2, and the problem is to find the point p ∈ P that lies in the vertical
strip bounded by x1 and x2 (that is, x1 ≤ p.x ≤ x2) and has the maximum y-coordinate (see
Fig. 3).

x1 x2

Answer

x

y

Figure 3: Partial-range max query.

Present pseudo-code for an efficient algorithm to solve partial-range max queries, assuming
that the points are stored in a point kd-tree. You may make use of any primitive operations
on points and rectangles (but please explain them).

Assuming the tree is balanced and the splitting dimension alternates between x and y, show
that your algorithm runs in time O(

√
n).

3

Problem 7. In class we showed that for a balanced kd-tree with n points in the real plane (that
is, in 2-dimensional space), any axis-parallel line intersects at most O(

√
n) cells of the tree.

The purpose of this problem is to show that does not apply to lines that are not axis-parallel.
Show that for every n, there exists a set of points P in the real plane, a kd-tree of height
O(log n) storing the points of P , and a line ℓ, such that every cell of the kd-tree intersects
this line.

Problem 8. In this problem we will see how to use kd-trees to answer a common geometric query,
called ray shooting. You are given a collection of vertical line segments in 2D space, each
starts at the x-axis and goes up to a point in the positive quadrant. Let P = {p1, . . . , pn}
denote the upper endpoints of these segments (see Fig. 4). You may assume that both the x-
and y-coordinates of all the points of P are strictly positive real numbers.

x

y

p8

p1

p2

p3

p4

p5

p6

p7

p9

p10

rayShoot(q) = p8

x

y

q

p8

q
′

rayShoot(q′) = null
p1

p2

p3

p4

p5

p6

p7

p9

p10

Figure 4: Ray shooting in a kd-tree.

Given a point q, we shoot a horizontal ray emanating from q to the right. This ray travels
until it hits one of these segments (or perhaps misses them all). For example, in the figure
above, the ray shot from q hits the segment with upper endpoint p8. The ray shot from q′

hits nothing.

In this problem we will show how to answer such queries using a standard point kd-tree for
the point set P . A query is given the point q = (qx, qy), and it returns the upper endpoint
pi ∈ P of the segment the ray first hits, or null if the ray misses all the segments.

Suppose you are given a kd-tree of height O(log n) storing the points of P . (It does not store
the segments, just the points.) Present pseudo-code for an efficient algorithm, rayShoot(q),
which returns an answer to the horizontal ray-shooting query (see the figure above, right).

You may assume the kd-tree structure given in class, where each node stores a point p.point,
a cutting dimension p.cutDim, and left and right child pointers p.left and p.right, respec-
tively. You may make use of any primitive operations on points and rectangles (but please
explain them). You may assume that there are no duplicate coordinate values among the
points of P or the query point.

Problem 9. (Expect a problem on range trees. I can’t find any good practice problems, but the
examples from Homework 2 are pretty good.)

4

CMSC 420: Spring 2021

Midterm Exam 2

The exam is asynchronous and online. It is open-book, open-notes, open-Internet, but it must
be done on your own without the aid of other people or software. The total point value is 100
points. Good luck!

Problem 1. (20 points) In this problem we will consider a sequence of operations performed on
a hash table. In each case the operations are performed one after the other in sequence. In
each case, indicate how many probes are made to the table. (A probe is defined to be any
access to the table, whether to read or write an entry.) Intermediate results are not required,
but may be given to help assigning partial credit.

P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LM

insert("Z") h("Z") = 4; g("Z") = 5

insert("Y") h("Y") = 13; g("Y") = 6

insert("X") h("X") = 7; g("X") = 2

(a) Double hashing

IK P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LM

insert("D") h("D") = 1

delete("B")

insert("R") h("R") = 2

(b) Linear probing/Deletion

E FA IKB WJ

h("B") = 13

B

Figure 1: Hasing with open addressing

(1.1) (10 points) Show the results of performing the insertion operations given in Fig. 1(a)
assuming double hashing. (The second hash function g is shown in the figure.)

(1.2) (10 points) Show the result of performing the sequence of insert and delete operations
shown in Fig. 1(b) assuming linear probing. The shaded entries are “empty”.

Problem 2. (25 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(2.1) (3 points) In the skip list data structure we assumed that the coin we tossed was even,
coming up heads or tails with equal probability. If we were instead to use a biased coin
that comes up heads more often than tails (but both still with constant probability),
what would the effect be on the expected storage needed by the data structure? Select
one and explain briefly:

(a) The expected storage requirements would go up (by at least a constant factor).

(b) The expected storage requirements would go down (by at least a constant factor).

(c) The expected storage requirements would remain unchanged.

(2.2) (3 points) Same as (2.1), but what would the effect be on the expected query time? Select
one and explain briefly:

(a) The expected query time would go up (by at least a constant factor).

(b) The expected query time would go down (by at least a constant factor).

(c) The expected query time would remain unchanged.

1

(2.3) (3 points) What properties of B-trees make them particularly attractive for use in ex-
ternal (disk) memory?

(2.4) (4 points) Both scapegoat trees and splay trees provide O(log n) amortized time for
standard dictionary operations (insert, delete, and find). Suppose that your application
involves many more find operations than insertions or deletions. Which of these two
structures would you prefer and why?

(2.5) (4 points) A treap and an standard (unbalanced) binary search tree both have the
property that they support dictionary operations in O(log n) expected time. How is the
notion of “expected” different in each case, and which structure would be preferred?
Explain briefly.

(2.6) (4 points) Give one example of an operation that can be performed more efficiently (on
average) with hashing compared to AVL trees. Explain briefly.

(2.7) (4 points) Give one example of an operation that can be performed more efficiently (on
average) on AVL trees compared to hashing. Explain briefly.

Problem 3. (20 points) This problem involves the question of how the depths of nodes change
when splay operations are performed. Consider the splay tree shown in Fig. 2(a) with each
node’s depth indicated in blue. After performing splay(a) observe that some node depths
have increased, some have decreased, and some of remain unchanged. The greatest increase
is node g, whose depth increases by +2.

a

e

d

c

b

g

f

0

1

2

3

4

5

6

0

1

22
e

d

c

b

a

g

f

3 3

4

splay(a)Node depth

(a) (b)

f

g
h

i

e

j

d

c

b

a

splay(f)

(c)

?

Figure 2: How depths change in a splay tree.

(3.1) (8 points) Consider the tree shown in Fig. 2(c). Show the result of performing the
operation splay(f) on this tree. (We only need the final tree, but intermediate results
can be shown to help with partial credit.)

(3.2) (2 points) Indicate in your drawing which nodes have increased in depth, and in each
case by how much the depth has increased.

(3.3) (10 points) Select one of the two options below, and justify your choice.

❼ Given any splay tree T and any key x in this tree, after performing splay(x) if a
node’s depth increases, this increase is at most 2.

❼ There exists a splay tree T and a key x such that, after performing splay(x) there
is a node in this tree such that its depth increases by 3 or more.

2

If you believe that first option is true, provide a short sketch of a proof. If you believe
that the second option is true, provide an example of a tree T and x where this happens.

Problem 4. (20 points) Throughout this problem, assume that you are given a standard (not
wrapped) kd-tree storing a set P of n points in R

2 (see Fig. 3(a)). Assume that the cutting
dimension alternates between x and y. You may also assume that the tree stores a root cell
rootCell, which is a 2-dimensional rectangle containing all the points of P . You may also
assume that that any geometric computations on primitive objects (distances, disjointness,
containment, etc.) can be computed in constant time, without explanation.

p4

p2

p3

p1

p9

p6p7

p8

(a)

p5

(b)

q

r

p4

p2

p3

p1

p9

p6p7

p8

Ans: p3

(c)

q

r

Ans: null

p5

3.6

5

7
4

−2

2.5
3

9

−1
5

rhi

rlo Ans = 4 + 7 + 5− 2 = 14

Figure 3: Queries on kd-trees.

(4.1) (7 points) In a standard range-counting query, we want to count the number of points
in the range. Suppose that each point pi ∈ P has an associated real-valued weight wi.
In a weighted orthogonal range query, we are given a query rectangle R, given by its
lower-left corner rlo and upper-right corner rhi, and the answer is the sum of the weights
of the points that lie within R (see Fig. 3(b)). If there are no points in the range, the
answer is 0.

Explain how to modify the kd-tree (by adding additional fields to the nodes, if you
like) so that weighted orthogonal range queries can be answered efficiently. Based on
your modified data structure, present an efficient algorithm in pseudo-code for answering
these queries and explain. (For full credit, your algorithm should run in O(

√
n) time).

You may handle the edge cases (e.g., points lying on the boundary of R) however you
like. Hint: You may use whatever helper function(s) you like, but I would suggest using:

float weightedRange(Rectangle R, KDNode p, Rectangle cell)

where p is the current node in the kd-tree, cell is the associated cell. The initial call is
weightedRange(R, root, rootCell).

(4.2) (3 points) Briefly analyze the running time of your algorithm, assuming that the tree is
balanced. (You may apply/modify results proved in class.)

(4.3) (10 points) In a fixed-radius nearest neighbor query, we are given a point q ∈ R
d and

a radius r > 0. Let C denote the circular disk centered at q whose radius is r. If no
points of P lie within this disk, the answer to the query is null. Otherwise, it returns
the point of P within the disk that is closest to q. Present (in pseudo-code) an efficient
kd-tree algorithm that answers such a query.

3

You may handle the edge cases (e.g., multiple points at the same distance or points
lying on the boundary of C) however you like. Hint: You may use whatever helper
function(s) you like, but I would suggest using:

Point frnn(Point q, float r, KDNode p, Rectangle cell, Point best)

where p is the current node in the kd-tree, cell is the associated cell, and best is the
best point seen so far. The initial call is frnn(q, r, root, rootCell, null).

To receive full credit, your algorithm should not recurse on the children of any node p

that (based on p’s cell) cannot contribute a (better) answer to the query.

Briefly explain your algorithm, but you do not need to derive its running time.

Problem 5. (15 points) In this problem, we will consider how to use/modify range trees to answer
two related queries. While the answer should be based on range trees, you may need to
make modifications including possibly transforming the points and even adding additional
coordinates. In each case, describe the points that are stored in the range tree and how
the search process works. An English explanation (as opposed to pseudo-code) is sufficient.
Justify your algorithm’s correctness and derive its running time.

(5.1) (5 points) Assume you are given an n-element point set P in R
2 (see Fig. 4(a)). In an

empty square annulus query a query is given by a query point q ∈ R
2 and two positive

radii r1 < r2. Let S1 = S(q, r1) be the square centered at q whose half side length is
r1 and define S2 similarly for q and r2. The square annulus A(q, r1, r2) is defined to be
the region between these two squares. The query returns true if A(q, r1, r2) contains no
points of P , and false otherwise (see Fig. 4(b)).

(a) (b) (d)

q
r1r2

a1 a2

a3

a4
a5

a6

a7

b1

b2

b3

b4

b5

b6

b7

R

q

a1 a2

a3

a4
a5

a6

a7

b1

b2

b3

b4

b5

b6

b7

R

(c)

Ans: a6Ans: true

Figure 4: Queries on range trees.

Describe how to preprocess the point set P in a data structure that can efficiently answer
any empty annulus query (q, r1, r2). Your data structure should use O(n log n) storage
and answer queries in O(log2 n) time. (I don’t care how you handle edge cases, such as
points lying on the boundary of the annulus as being inside or outside.)

(5.2) (10 points) This problem takes place inside a large axis-aligned rectangle R. You are
given two sets of points A = {a1, . . . , an} and B = {b1, . . . , bn}, all lying within R. At
each point ai there is a vertical line segment from ai to the top edge of R, and at each
point bj there is a vertical line segment from bj down to the bottom edge of R (see
Fig. 4(d)). A horizontal ray-shooting query is presented by a point q ∈ R. The answer

4

to the query is the first line segment (either from the the A set or B set) that is hit by
a horizontal ray shot to the right from q (see Fig. 4(d)).

Describe how to preprocess the point sets A and B into a data structure that can
efficiently answer any horizontal ray-shooting query. Your data structure should use
O(n log n) storage and answer queries in O(log2 n) time. (I don’t care how you handle
edge cases, such as if the ray passes through a point from A or B.)

5

CMSC 420: Spring 2021

Final Exam

The exam is asynchronous and online. It is open-book, open-notes, open-Internet, but it must
be done on your own without the aid of other people or software. The total point value is 120
points. Good luck!

Problem 1. (35 points) Short answer questions. Except where noted, explanations are not re-
quired but may be given for partial credit.

(1.1) (2 pts) What was play on words with the data structure named “deque”?

(1.2) (6 pts) Recall that a free tree is an unrooted tree. A leaf in a free tree is a node that
has exactly one incident edge. Consider a free tree with n ≥ 200 nodes. As a function
of n, what is the minimum number of leaves the tree can have? What is the maximum

number of leaves the tree can have? (Draw two pictures to illustrate your answers.)

(1.3) (3 pts) You just inserted a key into an AVL tree, where the newly inserted key is larger
than any other key in the tree. True or false: If a rotation was needed to balance the
tree after the insertion, it was a single rotation (not a double rotation). Briefly explain.

(1.4) (3 pts) It is a fact that any 2-3 tree storing a set of n keys has height less than or equal
to the height of an AVL tree storing the same set of keys. True or false: Given a 2-3
tree and AVL tree, both storing the same set of keys, the number of comparisons needed
to perform find(x) in the 2-3 tree is less than or equal to the number of comparisons
needed to perform the same operation in the AVL tree. Briefly explain.

(1.5) (3 pts) The splay operation promotes a key to the root of the splay tree through rotations.
While we could have achieved this through simple Zig rotations, we instead preferred
Zig-Zag and Zig-Zig rotations. Why does using Zig rotations alone fail to produce a data
structure that guarantees efficient amortized performance? (You may want to explain
with the help of a drawing.)

(1.6) (6 pts) Given a B-tree of order m = 15, what is the minimum and maximum number
of children that any internal node might have, assuming this node is not the root of the
tree. What if the node is the root?

(1.7) (6 pts) We showed in class that if we alternate splitting between x and y in a height-
balanced kd-tree storing n points in R

2, the number of nodes whose associated cell is
stabbed by any axis parallel line is O(

√
n).

❼ Show (by drawing a picture) that this may fail if the tree is not height balanced.

❼ Show (by drawing a picture) that this may fail if the splitting directions do not

alternate.

(1.8) (3 pts) The fastest known algorithm for building a binary search tree from a set of n keys,
runs in time O(n log n). But, with scapegoat trees, we claimed that we could rebuild a
subtree containing m keys in time O(m). How is this possible?

(1.9) (3 pts) The Cartesian tree by Jean Vuillemin and the priority search tree of Edward
McCreight are both closely related to what other data structure that we have studied
this semester?

1

a

h

f

b

c

i

d

e

g

j

Figure 1: Tree traversals.

Problem 2. (15 points) This problem involves the binary tree shown in Fig. 1.

(2.1) (3 points) List the nodes according to a preorder traversal

(2.2) (3 points) List the nodes according to an inorder traversal

(2.3) (4 points) List the nodes according to the order given in the pseudocode block below.
The initial call is crazyTraverse(root), where root is the root of the tree.

void crazyTraverse(Node p) { // a crazy way to traverse a tree

if (p != null) {

print(p.key)

crazyTraverse(p.right)

if (p.left != null) {

print(p.key)

crazyTraverse(p.left)

}

}

}

(2.4) (5 points) Present pseudocode for a tree traversal procedure that produces the output
shown below1 when run on the tree of Fig. 1. Notice that each key is printed twice.

d j i f f i a a j b g c h h e e c g b d

Problem 3. (15 points) In this problem we will build a suffix tree for the string S = baabaabababaa✩.

(3.1) (5 points) List the substring identifiers for the 14 suffixes of S. For the sake of uniformity,
list them in order (either back to front or front to back). For example, you could start
with “✩” and end with the substring identifier for the entire string.

(3.2) (2 points) List the substring identifiers again together with their indices (0 through 13),
but this time in alphabetical order (where "a" < "b" < "✩").

(3.3) (8 points) Draw a picture of the suffix tree for S. For the sake of uniformity, when
drawing your tree, use the convention of Fig. 7 in the Lecture 17 LaTeX lecture notes.
In particular, label edges of the final tree with substrings, index the suffixes from 0 to
13, and order subtrees in ascending lexicographical order.

1An early version of the exam contained an extra character “g”. If you had this version of the exam and lost

points for this reason, please file a regrade request.

2

Problem 4. (25 points) This problem involves an input which is a binary search tree having n
nodes of height O(log n). You may assume that each node p has a field p.size that stores
the number of nodes in its subtree (including p itself). Here is the node structure:

class Node {

int key;

Node left;

Node right;

int size; // number of nodes in this subtree

}

(4.1) (10 points) Present pseudocode for a function printMaxK(int k), which is given 0 ≤
k ≤ n, and prints the values of the k largest keys in the binary search tree. (See, for
example, Fig. 2.)

8

5

11

6

4

14

7

3

1

10

15

25

26

21

19

18 printMaxK(8) = 〈11, 14, 15, 18, 19, 21, 25, 26〉

printMaxK(2) = 〈25, 26〉

printOdd() = 〈1, 4, 6, 8, 11, 15, 19, 25〉

16

5

3

11

4

10

5

4

1 1

2

4

1

1

p.key
p.size

Figure 2: The functions printMaxK and printOdd.

You should do this by traversing the tree. You are not allowed to “cheat” but storing
an auxiliary list of sorted nodes.

For fullest credit, the keys should be printed in ascending order, and your algorithm
should run in time O(k + log n) (see part (4.2) below). (Partial credit will be given
otherwise, but an O(n) time algorithm is not worth anything.)

You may assume that 0 ≤ k ≤ n, where n is the total number of nodes in the tree.
Briefly explain your algorithm. (The running time will be derived in (4.2).)

Hint: I would suggest using the helper function printMaxK(Node p, int k)), where
k is the number of keys to print from the subtree rooted at p.

(4.2) (5 points) Derive the running time of your algorithm in (4.1).

(4.3) (10 points) Present pseudocode for a function printOdd(), which does the following.
Let 〈x1, x2, . . . , xn〉 denote the keys of the tree in ascending order, this function prints
every other key, namely 〈x1, x3, x5, . . . , xn〉, if n is odd, and 〈x1, x3, x5, . . . , xn−1〉, if n is
even.

Beware: We are not printing the “odd-valued” keys, rather we are printing the odd
numbered positions in the sorted order. (See Fig. 2.)

Again, you should do this by traversing the tree. You are not allowed to “cheat” by
storing auxiliary lists or using global variables. Your program should run in time O(n).
Briefly explain your algorithm.

3

Problem 5. (15 points) This problem involves a data structure called an erasable stack. This data
structure is just a stack with an additional operation that allows us to “erase” any element
that is currently in the stack. Whenever we pop the stack, we skip over the erased elements,
returning the topmost “unerased” element. The pseudocode below provides more details be
implemented.

class EStack { // erasable stack of Objects

int top // index of stack top

Object A[HUGE] // array is so big, we will never overflow

Object ERASED // special object which indicates an element is erased

EStack() { top = -1 } // initialize

void push(Object x) { // push

A[++top] = x

}

void erase(int i) { // erase (assume 0 <= i <= top)

A[i] = ERASED

}

Object pop() { // pop (skipping erased items)

while (top >= 0 && A[top] == ERASED) top--

if (top >= 0) return A[top--]

else return null

}

}

Let n = top + 1 denote the current number of entries in the stack (including the ERASED

entries). Define the actual cost of operations as follows: push and erase both run in 1 unit
of time and pop takes k + 1 units of time where k is the number of ERASED elements that
were skipped over.

(5.1) (2 points) As a function of n, what is the worst-case running time of the pop operation?
(For fullest credit, make your bound as tight as possible.) Justify your answer.

(5.2) (8 points) Starting with an empty stack, we perform a sequence of m push, erase, and
pop operations. Give an upper bound on the amortized running time of such as sequence.
You may assume that all the operations are valid and the array never overflows. (For
fullest credit, make your bound as tight as possible.) Justify your answer.

(5.3) (5 points) Given two (large) integers k and m, where k ≤ m/2, we start from an empty
stack, push m elements, and then erase k elements at random, finally we perform a single
pop operation. What is the expected running time of the final pop operation. You may
express your answer asymptotically as a function of k and m.

In each case, state your answer first, and then provide your justification.

Problem 6. (15 points) In this problem, we will consider how to use/modify range trees to answer
two related queries. While the answer should be based on range trees, you may need to

4

make modifications including possibly transforming the points and even adding additional
coordinates. In each case, describe the points that are stored in the range tree and how
the search process works. An English explanation (as opposed to pseudocode) is sufficient.
Justify your algorithm’s correctness and derive its running time.

(6.1) (10 points) Assume you are given an n-element point set P in R
2 (see Fig. 3(a)). In

addition to its coordinates (px, py), each point p ∈ P is associated with a numeric
rating, pz. In an orthogonal top-k query, you are given an axis-aligned query rectangle
R (given, say, by its lower-left and upper-right corners) and a positive integer k. The
query returns a list of the (up to) k points of P that lie within R having the highest
ratings (see Fig. 3(b)). (As an application, imagine you are searching for the k highest
rated restaurants in a rectangular region of some city.)

(a) (b) (c)

OrthTopK(3) = {8, 9, 12}

13

5

8 5

1 12

2
9

8

R

4 1

2213

5

8 5

1 12

2
9

8
4 1

22

x

y

pz

13

5
5 510 3

29 2
4 1

22

q r1r2

AnnTopK(3) = {3, 5, 9}

Figure 3: Orthogonal top-k queries and annulus top-k queries.

Describe how to preprocess the point set P into a data structure that can efficiently
answer any orthogonal top-k query (R, k). Your data structure should use O(n log2 n)
storage and answer queries in at most O(k log2 n) time. (I don’t care how you handle
edge cases, such as points lying on the boundary of the rectangle or points having the
same rating.) If there are k points or fewer in the query region, the list will contain
them all.

(6.2) (5 points) In an annulus top-k query a query is given by a query point q ∈ R
2 and

two positive radii r1 < r2. Let S1 = S(q, r1) be the square centered at q whose half
side length is r1 and define S2 similarly for q and r2. The square annulus A(q, r1, r2) is
defined to be the region between these two squares. The query returns a list of the (up
to) k points of P that lie within the annulus A(q, r1, r2) that have the highest ratings
(see Fig. 3(c)).

In Problem 4, we saw how to print the k-largest entries from a balanced binary tree. You
may use that result here if you like.

5

