
CMSC 420: Spring 2021

Midterm Exam 1

The exam is asynchronous and online. It is open-book, open-notes, open-Internet, but it must
be done on your own without the aid of other people or software. The total point value is 100
points. Good luck!

Problem 1. (20 points) Consider the trees shown in Fig. 1.

2

1 3

8

5
6

(a) (b)

9

12

11 153 : 51 8

2 : 6

9

1

2

3

Level

12 15

4
10

14

Figure 1: 2-3 and AA Trees.

(1.1) (5 points) Draw a picture of the AA tree corresponding to the 2-3 tree shown in Fig. 1(a).
(Similar to Fig. 1(b), indicate which levels the nodes are at and indicate black-red pairs
by connecting them with a dashed line.)

(1.2) (5 points) Draw a picture of the 2-3 tree corresponding to the AA tree shown in Fig. 1(b).

(1.3) (10 points) Show the final AA tree that results by inserting 7 into the AA tree of Fig. 1(b).
(Intermediate results may be given to help with partial credit.)

Problem 2. (35 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(2.1) (5 points) You have a binary tree with inorder threads (for both inorder predecessor
and inorder successor). Let u and v be two arbitrary nodes in this tree. True or false:
There is a path from u to v, using some combination of child links and threads. (No
justification needed.)

(2.2) (5 points) Recall that the depth of a node in a tree is the number of edges along the
path from the root to this node. In an inorder threaded binary tree, if u.right is a
thread, what can be inferred about the relative depths of these two nodes? (Select one.
No explanation needed.)

(a) depth(u) < depth(u.right)

(b) depth(u) <= depth(u.right)

(c) depth(u) > depth(u.right)

(d) depth(u) >= depth(u.right)

(e) We cannot infer anything. It depends on the tree’s structure.

1



(2.3) (5 points) Suppose we have an inorder threaded binary tree, which is full. If u.right

is a thread, which of the following are possible? (Select all that apply. No explanation
needed.)

(a) Both u and u.right are internal.

(b) Both u and u.right are leaves.

(c) Node u is a leaf and u.right is internal.

(d) Node u is internal and u.right is a leaf.

(2.4) (5 points) You are given a sorted set of n keys x1 < x2 < · · · < xn (for some large
number n). You insert them all into an AA tree in some arbitrary order. No matter
what insertion order to choose, one of these keys cannot possibly be a red node. Which
is it? (Briefly explain)

(2.5) (5 points) Below we give the AA rebalancing operation skew, but we have explicitly
commented out the check where p == nil). What will the modified function do if we
were to call skew(nil)? (Select one and briefly explain your answer.)

AANode skew(AANode p) {

// ----> Intentionally omitted: if (p == nil) return p;

if (p.left.level == p.level) { // red node to our left?

AANode q = p.left; // do a right rotation at p

p.left = q.right;

q.right = p;

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

(a) It has no effect and returns a reference to nil.

(b) It will alter the contents of nil, but it will not modify any of the other nodes of the
tree.

(c) It may alter both nil and other nodes the tree as well.

(d) It will abort due to an attempt to dereference a null pointer.

(2.6) (5 points) Under what circumstances will the priority value of a treap node change?
(Select all that apply. No explanation needed.)

(a) Once created, it will never change (until the node is deleted).

(b) It will be changed periodically according to a random process.

(c) It may change if the node is involved in a rotation.

(d) It may change if the node is used as a replacement for a deleted node.

(2.7) (5 points) You are given a skip list storing n items. What is the expected number of
nodes that will contribute to level 3 of the skip list? (Express your answer as a function
of n. Assume that level 0 is the lowest level, containing all n items. Also assume that
the coin is fair, return heads half the time and tails half the time.)

Problem 3. (25 points) Recall that in a binary tree the depth of a node is defined to be the
number of edges from the root to the node. The height of a node is defined to be the height

2



of the subtree rooted at this node, that is, the maximum number of edges on any path from
this node to one of its leaves.

In this problem, we will consider some questions involving nodes of a particular depth and
height in an AVL tree. Let us assume (as in class) that an AVLNode stores its key, value,
left, right, and height, and let us assume that the AVLTree stores a pointer to the root

node.

11

13
1

0
1

5

9

15

63

4

4

32

1 20

00

16

2218

19

1 0

00

21

height
depth

0

1

2

3

4

listAtDepth(2) = 〈3, 6, 13, 21〉

listAtHeight(1) = 〈3, 13, 18〉

Figure 2: AVL tree heights and depths.

(3.1) (5 points) Present an algorithm listAtHeight(int h), which is given an integer h ≥ 0,
and returns a list (e.g., a Java ArrayList) containing all the keys, in increasing order,
associated with all the nodes that are at height h in the AVL tree. If there are no nodes
at height h, the function returns an empty list.

For example, in Fig. 2, the call listAtHeight(1) would return the list 〈3, 13, 18〉.
Briefly explain how your algorithm works, present a description (pseudocode preferred
or a clear English explanation), and briefly explain its running time. The running time
should be proportional to the number of nodes at height ≥ h. (For example, in the case
of listAtHeight(1), there are 7 nodes of equal or greater height.)

(3.2) (5 points) Present an algorithm listAtDepth(int d), which is given an integer d ≥ 0,
and returns a list (e.g., a Java ArrayList) containing all the keys, in increasing order,
associated with all the nodes that are at depth d in the AVL tree. If there are no nodes
at depth d, the function returns an empty list. Note: Nodes do not store their depths,
only their heights.

For example, in Fig. 2, the call listAtDepth(2) would return the list 〈3, 6, 13, 21〉.
In each of the coding problems, briefly explain how your algorithm works, present a
description (pseudocode preferred or a clear English explanation), and briefly explain its
running time. The running time of your algorithm should be proportional to the number
of nodes at depths ≤ d. (For example, in the case of listAtDepth(2), there are 7 nodes
of equal or lesser depth.)

(3.3) (5 points) Prove that in any AVL tree, the maximum number of nodes that there are
can be at depth d ≥ 0 is 2d. (Hint: This is intended to be easy. Even so, please give a
short proof, even you think the observation is “obvious”.)

(3.4) (10 points) Given any AVL tree T and depth d ≥ 0, we say that T is full at depth d if
it has 2d nodes at depth d. (For example, the tree of Fig. 2 is full at depths 0, 1, and 2,

3



but it is not full at depths 3 and 4.) Prove that for any h ≥ 0, an AVL tree of height h
is full at all depths from 0 up to bh/2c. (For example, the AVL tree of Fig. 2 has height
4, and is full at levels 0, 1, and 2.)

Problem 4. (20 points) In this problem, we will consider generalization of the amortized analysis
of the dynamic stack algorithm from Lecture 2. Recall that in the dynamic stack from the
class, whenever we run out of space using an array of size k, we expand by allocating a new
array of size 2k, copy the elements over, and remove the old array. In this problem, we will
also consider contracting, by halving the size of the array when we have too few elements.
Below we give a formal description of our new dynamic stack and the cost of each operation.
Throughout, assume that k is a power of 2.

Initialization: We allocate an array of size k = 1, which is empty. (Actual Cost = 0)

push(x): If n < k (standard case), we push the element onto the stack and increment n.
(Actual Cost = 1) If n = k (overflow case), we double the array size by setting k ← 2k,
allocate a new array of this size, copy the contents of the old array into the new array,
and remove the old array. We then do the standard-case push. (Actual Cost = 2k + 1)

pop(): If n = 0, we return null. (Actual Cost = 1) Otherwise, we pop the stack and
decrement n. If (after decrementing) n ≤ k

4 , we halve the array size by setting k ← k
2 ,

allocate a new array of this size, copy the contents of the old array into the new array,
and remove the old array. (Actual Cost = 1 + k

2 )

Note that in either case, just after reallocation, roughly half of the current array is being
used. In this problem, you will derive the amortized cost of operations on this data structure.
Consider a long sequence of pushes and pops, starting from any empty stack. We will break
this sequence into runs, with each run ending just after each reallocation (expanding or
contracting).

(4.1) (5 points) Suppose that when the run starts, the current array size is k, and the run
ends with an expansion to size 2k. Prove that there is a constant c (which you may
choose) so that the amortized cost is c. (That is, show that the sum of actual costs in
the run is at most c times the number of operations.) Hint: This is pretty much what
we did in class. You can just adapt the proof from the lecture, but put it in your own
words.

(4.2) (10 points) Suppose that when the run starts, the current array size is k, and the run
ends with a contraction to size k

2 . Prove that there is a constant c (which you may
choose) so that the amortized cost is c.

(4.3) (5 points) We triggered a contraction when n ≤ k
4 . Suppose instead that we triggered a

contraction (halving the size of the array) whenever n ≤ k
2 . Would the amortized cost

still be a constant? Briefly justify your answer.

Because we are most interested in asymptotic bounds, you may focus mainly on the case
where n and k are both large numbers.

4


