
CMSC 420: Spring 2021

Final Exam

The exam is asynchronous and online. It is open-book, open-notes, open-Internet, but it must
be done on your own without the aid of other people or software. The total point value is 120
points. Good luck!

Problem 1. (35 points) Short answer questions. Except where noted, explanations are not re-
quired but may be given for partial credit.

(1.1) (2 pts) What was play on words with the data structure named “deque”?

(1.2) (6 pts) Recall that a free tree is an unrooted tree. A leaf in a free tree is a node that
has exactly one incident edge. Consider a free tree with n ≥ 200 nodes. As a function
of n, what is the minimum number of leaves the tree can have? What is the maximum
number of leaves the tree can have? (Draw two pictures to illustrate your answers.)

(1.3) (3 pts) You just inserted a key into an AVL tree, where the newly inserted key is larger
than any other key in the tree. True or false: If a rotation was needed to balance the
tree after the insertion, it was a single rotation (not a double rotation). Briefly explain.

(1.4) (3 pts) It is a fact that any 2-3 tree storing a set of n keys has height less than or equal
to the height of an AVL tree storing the same set of keys. True or false: Given a 2-3
tree and AVL tree, both storing the same set of keys, the number of comparisons needed
to perform find(x) in the 2-3 tree is less than or equal to the number of comparisons
needed to perform the same operation in the AVL tree. Briefly explain.

(1.5) (3 pts) The splay operation promotes a key to the root of the splay tree through rotations.
While we could have achieved this through simple Zig rotations, we instead preferred
Zig-Zag and Zig-Zig rotations. Why does using Zig rotations alone fail to produce a data
structure that guarantees efficient amortized performance? (You may want to explain
with the help of a drawing.)

(1.6) (6 pts) Given a B-tree of order m = 15, what is the minimum and maximum number
of children that any internal node might have, assuming this node is not the root of the
tree. What if the node is the root?

(1.7) (6 pts) We showed in class that if we alternate splitting between x and y in a height-
balanced kd-tree storing n points in R2, the number of nodes whose associated cell is
stabbed by any axis parallel line is O(

√
n).

� Show (by drawing a picture) that this may fail if the tree is not height balanced.

� Show (by drawing a picture) that this may fail if the splitting directions do not
alternate.

(1.8) (3 pts) The fastest known algorithm for building a binary search tree from a set of n keys,
runs in time O(n log n). But, with scapegoat trees, we claimed that we could rebuild a
subtree containing m keys in time O(m). How is this possible?

(1.9) (3 pts) The Cartesian tree by Jean Vuillemin and the priority search tree of Edward
McCreight are both closely related to what other data structure that we have studied
this semester?

1



a

h

f

b

c

i

d

e

g

j

Figure 1: Tree traversals.

Problem 2. (15 points) This problem involves the binary tree shown in Fig. 1.

(2.1) (3 points) List the nodes according to a preorder traversal

(2.2) (3 points) List the nodes according to an inorder traversal

(2.3) (4 points) List the nodes according to the order given in the pseudocode block below.
The initial call is crazyTraverse(root), where root is the root of the tree.

void crazyTraverse(Node p) { // a crazy way to traverse a tree

if (p != null) {

print(p.key)

crazyTraverse(p.right)

if (p.left != null) {

print(p.key)

crazyTraverse(p.left)

}

}

}

(2.4) (5 points) Present pseudocode for a tree traversal procedure that produces the output
shown below1 when run on the tree of Fig. 1. Notice that each key is printed twice.

d j i f f i a a j b g c h h e e c g b d

Problem 3. (15 points) In this problem we will build a suffix tree for the string S = baabaabababaa$.

(3.1) (5 points) List the substring identifiers for the 14 suffixes of S. For the sake of uniformity,
list them in order (either back to front or front to back). For example, you could start
with “$” and end with the substring identifier for the entire string.

(3.2) (2 points) List the substring identifiers again together with their indices (0 through 13),
but this time in alphabetical order (where "a" < "b" < "$").

(3.3) (8 points) Draw a picture of the suffix tree for S. For the sake of uniformity, when
drawing your tree, use the convention of Fig. 7 in the Lecture 17 LaTeX lecture notes.
In particular, label edges of the final tree with substrings, index the suffixes from 0 to
13, and order subtrees in ascending lexicographical order.

1An early version of the exam contained an extra character “g”. If you had this version of the exam and lost
points for this reason, please file a regrade request.

2



Problem 4. (25 points) This problem involves an input which is a binary search tree having n
nodes of height O(log n). You may assume that each node p has a field p.size that stores
the number of nodes in its subtree (including p itself). Here is the node structure:

class Node {

int key;

Node left;

Node right;

int size; // number of nodes in this subtree

}

(4.1) (10 points) Present pseudocode for a function printMaxK(int k), which is given 0 ≤
k ≤ n, and prints the values of the k largest keys in the binary search tree. (See, for
example, Fig. 2.)

8

5

11

6

4

14

7

3

1

10

15

25

26

21

19

18 printMaxK(8) = 〈11, 14, 15, 18, 19, 21, 25, 26〉

printMaxK(2) = 〈25, 26〉

printOdd() = 〈1, 4, 6, 8, 11, 15, 19, 25〉

16

5

3

11

4

10

5

4

1 1

2

4

1

1

p.key
p.size

Figure 2: The functions printMaxK and printOdd.

You should do this by traversing the tree. You are not allowed to “cheat” but storing
an auxiliary list of sorted nodes.

For fullest credit, the keys should be printed in ascending order, and your algorithm
should run in time O(k + log n) (see part (4.2) below). (Partial credit will be given
otherwise, but an O(n) time algorithm is not worth anything.)

You may assume that 0 ≤ k ≤ n, where n is the total number of nodes in the tree.
Briefly explain your algorithm. (The running time will be derived in (4.2).)

Hint: I would suggest using the helper function printMaxK(Node p, int k)), where
k is the number of keys to print from the subtree rooted at p.

(4.2) (5 points) Derive the running time of your algorithm in (4.1).

(4.3) (10 points) Present pseudocode for a function printOdd(), which does the following.
Let 〈x1, x2, . . . , xn〉 denote the keys of the tree in ascending order, this function prints
every other key, namely 〈x1, x3, x5, . . . , xn〉, if n is odd, and 〈x1, x3, x5, . . . , xn−1〉, if n is
even.

Beware: We are not printing the “odd-valued” keys, rather we are printing the odd
numbered positions in the sorted order. (See Fig. 2.)

Again, you should do this by traversing the tree. You are not allowed to “cheat” by
storing auxiliary lists or using global variables. Your program should run in time O(n).
Briefly explain your algorithm.

3



Problem 5. (15 points) This problem involves a data structure called an erasable stack. This data
structure is just a stack with an additional operation that allows us to “erase” any element
that is currently in the stack. Whenever we pop the stack, we skip over the erased elements,
returning the topmost “unerased” element. The pseudocode below provides more details be
implemented.

class EStack { // erasable stack of Objects

int top // index of stack top

Object A[HUGE] // array is so big, we will never overflow

Object ERASED // special object which indicates an element is erased

EStack() { top = -1 } // initialize

void push(Object x) { // push

A[++top] = x

}

void erase(int i) { // erase (assume 0 <= i <= top)

A[i] = ERASED

}

Object pop() { // pop (skipping erased items)

while (top >= 0 && A[top] == ERASED) top--

if (top >= 0) return A[top--]

else return null

}

}

Let n = top + 1 denote the current number of entries in the stack (including the ERASED

entries). Define the actual cost of operations as follows: push and erase both run in 1 unit
of time and pop takes k + 1 units of time where k is the number of ERASED elements that
were skipped over.

(5.1) (2 points) As a function of n, what is the worst-case running time of the pop operation?
(For fullest credit, make your bound as tight as possible.) Justify your answer.

(5.2) (8 points) Starting with an empty stack, we perform a sequence of m push, erase, and
pop operations. Give an upper bound on the amortized running time of such as sequence.
You may assume that all the operations are valid and the array never overflows. (For
fullest credit, make your bound as tight as possible.) Justify your answer.

(5.3) (5 points) Given two (large) integers k and m, where k ≤ m/2, we start from an empty
stack, push m elements, and then erase k elements at random, finally we perform a single
pop operation. What is the expected running time of the final pop operation. You may
express your answer asymptotically as a function of k and m.

In each case, state your answer first, and then provide your justification.

Problem 6. (15 points) In this problem, we will consider how to use/modify range trees to answer
two related queries. While the answer should be based on range trees, you may need to

4



make modifications including possibly transforming the points and even adding additional
coordinates. In each case, describe the points that are stored in the range tree and how
the search process works. An English explanation (as opposed to pseudocode) is sufficient.
Justify your algorithm’s correctness and derive its running time.

(6.1) (10 points) Assume you are given an n-element point set P in R2 (see Fig. 3(a)). In
addition to its coordinates (px, py), each point p ∈ P is associated with a numeric
rating, pz. In an orthogonal top-k query, you are given an axis-aligned query rectangle
R (given, say, by its lower-left and upper-right corners) and a positive integer k. The
query returns a list of the (up to) k points of P that lie within R having the highest
ratings (see Fig. 3(b)). (As an application, imagine you are searching for the k highest
rated restaurants in a rectangular region of some city.)

(a) (b) (c)

OrthTopK(3) = {8, 9, 12}
13

5

8 5

1 12

2
9

8

R

4 1

2213

5

8 5

1 12

2
9

8
4 1

22

x

y

pz

13

5
5 510 3

29 2
4 1

22

q r1r2

AnnTopK(3) = {3, 5, 9}

Figure 3: Orthogonal top-k queries and annulus top-k queries.

Describe how to preprocess the point set P into a data structure that can efficiently
answer any orthogonal top-k query (R, k). Your data structure should use O(n log2 n)
storage and answer queries in at most O(k log2 n) time. (I don’t care how you handle
edge cases, such as points lying on the boundary of the rectangle or points having the
same rating.) If there are k points or fewer in the query region, the list will contain
them all.

(6.2) (5 points) In an annulus top-k query a query is given by a query point q ∈ R2 and
two positive radii r1 < r2. Let S1 = S(q, r1) be the square centered at q whose half
side length is r1 and define S2 similarly for q and r2. The square annulus A(q, r1, r2) is
defined to be the region between these two squares. The query returns a list of the (up
to) k points of P that lie within the annulus A(q, r1, r2) that have the highest ratings
(see Fig. 3(c)).

In Problem 4, we saw how to print the k-largest entries from a balanced binary tree. You
may use that result here if you like.

5


