
CMSC 420: Spring 2021

Homework 2: Hashing and Geometric Search

Handed out Thu, Apr 15. Due Mon, Apr 26, 11pm. (Solutions will be discussed in class on Tue,
Apr 27, so late submissions will not be accepted after the start of class.)

Problem 1. (12 points) In this problem, you will show the result of inserting a sequence of three
keys into a hash table, using linear and quadratic probing. (Each is inserted one after the
other.) In each case, at a minimum you should indicate the following:

� Was the insertion successful? (The insertion fails if the probe sequence loops infinitely
without finding an empty slot.)

� Show contents of the hash table after inserting all three keys.

� For each case, give a count of the number of probes, that is, the number of entries in
the hash table that were accessed in order to find an empty slot in which to perform
the insertion. (The initial access counts as a probe, so this number is at least 1. For
example, in Fig. 3 in the Lecture 14 LaTeX lecture notes, insert("z") makes 1 probe
and insert("t") makes 4 probes.)

For the purposes of assigning partial credit, you can illustrate the actual probes that were
performed, as we did in Fig. 4 from Lecture 14. But be sure to also list the probe count.

(1.1) (6 points) Show the results of inserting the keys “X”, “Y”, and “Z” into the hash table
shown in Fig. 1(a), assuming that conflicts are resolved using linear probing.

insert("Z") h("Z") = 9

insert("Y") h("Y") = 15

insert("X") h("X") = 13

(a) Linear probing
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insert("Q") h("Q") = 9

insert("D") h("D") = 6

insert("M") h("M") = 3

(b) Quadratic probing
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Figure 1: Hashing with linear and quadratic probing.

(1.2) (6 points) Show the results of inserting the keys “M”, “D”, and “Q” into the hash table
shown in Fig. 1(b) using quadratic probing. (Hint: If you are unsure whether quadratic
probing has gone into an infinite loop, it may be useful to note that for any positive
integer i, i2 mod 15 ∈ {0, 1, 4, 6, 9, 10}.)

(Intermediate results are not required, but may be given to help assigning partial credit.)

Problem 2. (8 points) You have a hash table of size m into which you insert n keys using separate
chaining (as described in class). The keys are integers from the set U = {1, 2, . . . , nm}.
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(2.1) (5 points) Prove that, no matter how ingeniously you design your hash function, there
must exist a subset S of U of size at least n such that every key in S hashes to the same
location in the hash table.

(2.2) (3 points) What does (2.1) imply about the worst-case running time needed to insert n
keys drawn from U into your hash table (again, assuming separate chaining).

Problem 3. (20 points) You are given a 2-dimensional point kd-tree, as described in class, where
we assume that the cutting dimension alternates between x and y with each level of the tree.
This tree stores a set P of n points in R2. For each of the following parts, the query object
is a square, represented by its center point q = (qx, qy) and radius r > 0. Let S(q, r) denote
a square consisting of the points that lie within a square of side length 2r that is centered at
q (see Fig. 2(a)). Formally, S(q, r) defined to be the set of points p ∈ R2 such that

qx − r ≤ px ≤ qx + r and qy − r ≤ py ≤ qy + r.

(Note that if a point is on the boundary of the square, it is considered as lying within the
square.) Equivalently, we can define the max distance between two points p and q, denoted
max-dist(p, q) to be max(|px − qx|, |py − qy|). The square S(q, r) consist of all p such that
max-dist(p, q) ≤ r.
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Figure 2: Square and L-shaped emptiness queries in a kd-tree.

(3.1) (6 points) Derive an efficient function

boolean emptySquare(Point2D q, float r)

which determines whether P ∩ S(q, r) = ∅ (see Fig. 2(a)). That is, it returns true if no
point of P lies within S(q, r) and false otherwise. By “efficient” we mean that the query
time should be O(

√
n), assuming that the tree is balanced, where n is the number of

points in the tree. I would suggest using a recursive helper function:

boolean emptySquare(Point2D q, float r, KDNode p, Rectangle2D cell)

You may assume that any primitive geometric operations involving points, squares, and
rectangles can be computed in constant time. For example, if your pseudocode, you can
write “if square S(q, r) and rectangle R are disjoint then . . . ” without explaining how
to determine this.

Briefly explain your algorithm and present pseudocode.
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(3.2) (4 points) Derive the running time of your function from (3.1), under the assumptions
that the tree contains n points, the splitting dimension alternates between x and y, and
the tree is balanced.

Hint: It may help to first review the analysis of the orthogonal range-search algorithm
from the latex lecture notes. As we did in class, you may make the idealized assumption
that the left and right subtrees of each node have equal numbers of points.

(3.3) (6 points) Given a point q ∈ R2 and two positive floats w and h, define the L-shaped
region L(q, w, h) to be the set of points lying within the “L”-shaped region whose lower
left corner is q and which extends infinitely upwards and rightwards. The width of the
vertical part is w, and the height of the horizontal part is h (see Fig. 2(b)). As above,
points lying on the boundary of the region are considered to lie within the region.

Present pseudocode for an efficient function

boolean emptyL(Point2D q, float w, float h)

which determines whether P ∩ L(q, w, h) = ∅.
Briefly explain your algorithm and present pseudocode. I would suggest the recursive
helper function:

boolean emptyL(Point2D q, float w, float h, KDNode p, Rectangle2D cell)

(3.4) (4 points) Derive the running time of your function from (2.3), under the same assump-
tions as in (2.2). A complete analysis is not needed. You can explain what modifications
are needed to the analysis of (2.2).

Note: You may assume the results proven in class, without the need to prove them again. If
you need to modify these results, you need only explain the modifications.

Problem 4. (10 points) In this problem, we will consider how to use/modify range trees to answer
two related queries. Throughout, the input set P is a set of n points in R2 (Fig. 3(a)).
While the answer should be based on range trees, you may need to make modifications
including possibly transforming the points and even adding additional coordinates. In each
case, describe the points that are stored in the range tree and how the search process works.
An English explanation (as opposed to pseudocode) is sufficient. Justify your algorithm’s
correctness and derive its running time.

(4.1) (5 points) In a vertical segment sliding, the query is given a vertical line segment, specified
by its lower endpoint q = (qx, qy) and its height h (see Fig. 3(b)). The query returns the
first point pi ∈ P that is first hit if we slide the segment to its right. If no point of P is
hit, the query returns null.

Describe how to preprocess the point set P in a data structure so that given any query
(q, h), segment sliding queries can be answered efficiently. Your data structure should
use O(n log n) storage and answer queries in O(log2 n) time.

(4.2) (5 points) A min-V query is defined by q = (qx, qy). Consider the V-shape defined
between two rays emanating upwards from q, one with slope +1 and one with slope −1
(see Fig. 3(c)). Among all the points of P lying within this V-shape, the answer is the
one with the smallest y-coordinate. If no point of P lies within the shape, the query
returns null. Your data structure should use O(n log2 n) storage and answer queries in
O(log3 n) time.
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Figure 3: Vertical segment-sliding and min-V queries.

Challenge Problem: You just started work at your new company, “Dilbert’s Pretty Good Data
Structures”. Your team has been tasked to implement a new “automatically initializing”
array. The array table is specified by its size m > 0 and an initialization function f . For
simplicity, let’s assume that the entries of table are integers. The initial value of table[i]
is defined to be f(i). For example, if f(i) = i2, the array’s initial “virtual” contents are as
shown in Fig. 4. You may assume that f can be computed in constant time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

49160 94 25 361 . . . m = 16Initial (virtual) contents:

i

49160 4 -8 361 . . .set(5,-8)

get(5) −8
get(3)

49160 114 25 361 . . .set(3,11)

get(5) 25
get(3) 11
get(7) 49

get(7) 49

11

11

Figure 4: Auto-initializing array for m = 16 and f(i) = i2. The initial actual (not virtual) contents
are entirely unpredictable.

Your part of the project is to implement two accessor functions void set(int i, int x)

and int get(i). The first function sets table[i] = x. For the second function, if entry
table[i] has been set by a previous set command, then its (latest) set value is returned. If
its value has not yet been set, it returns f(i). In both cases, you may assume that 0 ≤ i < m.

This would be easy, if you were allowed O(m) time to initialize the array, but you are not.
The initial contents of the array are entirely unpredictable (and may have even been set
maliciously to trick your algorithm). In spite of this, each function must run in worst-case
O(1) time, independent of the value of m or the number n of elements that have already been
set.

Your team leader has informed you that you may use additional storage of size up to O(m) in
which you may store any auxiliary data structure you like (limited to primitive data structures
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such as queues and stacks or one of the data structures we have seen this semester). But, as
with the table, you cannot assume that this additional storage comes initialized. It too may
contain garbage.

Explain how to produce a data structure to solve this problem in the required time and space.
Explain your algorithm and derive its running time.

Hint: You will definitely need the additional storage to solve the problem in the stated
time bound. For full credit, your answer should be deterministic (not randomized) and the
worst-case running time is O(1). For partial credit, show how to perform the operations in
amortized O(1) time, or randomized O(1) time (correct with high probability) or alternatively
in deterministic O(logm) time. Note that if you attempt to apply a solution based on hashing,
you need to take into consideration the time needed to initialize the hash table.
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