CMSC 420: Spring 2021

Practice Problems for Midterm 2

This exam will be asynchronous and online. The exam will be made available through Gradescope
for a 48-hour period starting at 12:00am the morning of Thu, Mar 29 and running through
11:59pm the evening of Fri, Mar 30 (Eastern Time). The exam is designed to be taken over
a 1.5-hour time period, but to allow time for scanning and uploading, you will have 2 hours to
submit the exam through Gradescope once you start it. The exam will be open-book, open-notes,
open-Internet, but it must be done on your own without the aid of other people or software. (You
may use a simple arithmetic calculator, but I don’t expect that you will need one.)

Disclaimer: These practice problems have been extracted from old homework assignments and
exams. Material changes from semester to semester. These do not necessarily reflect the actual
coverage, difficulty, or length of the midterm exam.

Problem 0. Expect at least one problem that involves working through some operations on a data
structure that we have covered since the previous exam.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) What is the purpose of the nezt-leaf pointer in B+ trees?

(b) Suppose you know that a very small fraction of the keys in a data structure are to be
accessed most of the time, but you do not know which these keys are. Among the data
structures we have seen this semester, which would be best for this situation? Explain
briefly.

(¢) You are using hashing with open addressing. Suppose that the table has just one empty
slot in it. In which of the following cases are you guaranteed to succeed in finding the
empty slot? (Select all that apply.)

1) Linear probing (under any circumstances)
2) Quadratic probing (under any circumstances)
3

(

(2)

(3) Quadratic probing, where the table size m is a prime number

(4) Double hashing (under any circumstances)

(5) Double hashing, where the table size m and hash function h(z) are relatively prime
(6)

6) Double hashing, where the table size m and secondary hash function g(x) are rela-
tively prime

(d) What is the maximum number of points that can be stored in a 3-dimensional point
quadtree of height h? Express your answer as an exact (not asymptotic) function of h.
(Hint: It may be useful to recall the formula for any ¢ > 1, >°1" ¢" = (¢™1)—1)/(c—1).)

(e) We have n uniformly distributed points in the unit square, with no duplicate x- or y-
coordinates. Suppose we insert these points into a kd-tree in random order (see the left
side of Fig. 1). As in class, we assume that the cutting dimension alternates between
x and y. As a function of n what is the expected height of the tree? (No explanation
needed.)

8 o7 old A.l o3 of 01214.
ol3 ol oD o9
o2 o9 . o oll -
o 5 oll ’ o 6 010 :
. .
. o 10 .6 o3) ol .8 ol3
....... = e

Figure 1: Height of kd-tree.

(f) Same as the previous problem, but suppose that we insert points in ascending order of
x-coordinates, but the y-coordinates are random (see the right side of Fig. 1). What is
the expected height of the tree? (No explanation needed.)

Problem 2. Suppose that you are given a treap data structure storing n keys. The node structure
is shown in Fig. 2. You may assume that all keys and all priorities are distinct.

class TreapNode {
Key key // key
int priority // priority
TreapNode left // left child
TreapNode right // right child

PR priority
< key

Figure 2: Treap node structure and an example.

(a) Present pseudocode for the operation int minPriority(Key x0, Key x1), which is
given two keys zp and z; (which may or may not be in the treap), and returns the
lowest priority among all nodes whose keys x lie in the range x¢o < x < x1. If the treap
has no keys in this range, the function returns Integer .MAX_VALUE. Briefly explain why
your function is correct.

For example, in Fig. 2 the query minPriority("c", "g") would return 2 from node
"e" since it is the lowest priority among all keys x where "c" < x < "g".

(b) Assuming that the treap stores n keys and has height O(log n), what is the running time
of your algorithm? (Briefly justify your answer.)

Problem 3. Define a new treap operation, expose (Key x). It finds the key x in the tree (throwing
an exception if not found), sets its priority to —oo (or more practically Integer.MIN VALUE),
and then restores the treap’s priority order through rotations. (Observe that the node con-
taining x will be rotated to the root of the tree.) Present pseudo-code for this operation.

Problem 4. In scapegoat trees, we showed that if size(u.child)/size(u) < % for every node
of a tree, then the tree’s height is at most logz/, n. In this problem, we will generalize this

condition to:
size(u.child)

< a (%)

size(u)

for some constant «.

(a) Why does it not make sense to set a larger than 1 or smaller than 1?

(b) If every node of an n-node tree satisfies condition (*) above, what can be said about the
height of the tree as a function of n and a7 Briefly justify your answer.

Problem 5. In class we demonstrated a simple idea for deleting keys from a hash table with open
addressing. Namely, whenever a key is deleted, we stored a special value “deleted” in this
cell of the table. It indicates that this cell contained a deleted key. The cell may be used
for future insertions, but unlike “empty” cells, when the probe sequence searching for a key
encounters such a location, it should continue the search.

Suppose that we are using linear probing in our hashing system. Describe an alternative
approach, which does not use the “deleted” value. Instead it moves the table entries around
to fill any holes caused by a deleted items.

In addition to explaining your new method, justify that dictionary operations are still per-
formed correctly. (For example, you have not accidentally moved any key to a cell where it
cannot be found!)

Problem 6. Given a set P of n points in the real plane, a partial-range maz query is given two
z-coordinates x1 and s, and the problem is to find the point p € P that lies in the vertical
strip bounded by z1 and zy (that is, 1 < p.z < x9) and has the maximum y-coordinate (see
Fig. 3).

® Answer

............ > ml],‘2

Figure 3: Partial-range max query.

Present pseudo-code for an efficient algorithm to solve partial-range max queries, assuming
that the points are stored in a point kd-tree. You may make use of any primitive operations
on points and rectangles (but please explain them).

Assuming the tree is balanced and the splitting dimension alternates between x and y, show
that your algorithm runs in time O(y/n).

Problem 7. In class we showed that for a balanced kd-tree with n points in the real plane (that

is, in 2-dimensional space), any azis-parallel line intersects at most O(y/n) cells of the tree.

The purpose of this problem is to show that does not apply to lines that are not axis-parallel.
Show that for every n, there exists a set of points P in the real plane, a kd-tree of height
O(logn) storing the points of P, and a line ¢, such that every cell of the kd-tree intersects
this line.

Problem 8. In this problem we will see how to use kd-trees to answer a common geometric query,

called ray shooting. You are given a collection of vertical line segments in 2D space, each
starts at the z-axis and goes up to a point in the positive quadrant. Let P = {p1,...,pn}
denote the upper endpoints of these segments (see Fig. 4). You may assume that both the z-
and y-coordinates of all the points of P are strictly positive real numbers.

rayShoot(q) = ps

o |
5 5 rayShoot(q') = null
p| pp P . P9 ol oy P . P9
D4 , P10 D4 P10
P6 . D6
1] ” Hamnnl
....... - g

Figure 4: Ray shooting in a kd-tree.

Given a point ¢, we shoot a horizontal ray emanating from ¢ to the right. This ray travels
until it hits one of these segments (or perhaps misses them all). For example, in the figure
above, the ray shot from ¢ hits the segment with upper endpoint pg. The ray shot from ¢’
hits nothing.

In this problem we will show how to answer such queries using a standard point kd-tree for
the point set P. A query is given the point ¢ = (¢, qy), and it returns the upper endpoint
p; € P of the segment the ray first hits, or null if the ray misses all the segments.

Suppose you are given a kd-tree of height O(logn) storing the points of P. (It does not store
the segments, just the points.) Present pseudo-code for an efficient algorithm, rayShoot (q),
which returns an answer to the horizontal ray-shooting query (see the figure above, right).

You may assume the kd-tree structure given in class, where each node stores a point p.point,
a cutting dimension p.cutDim, and left and right child pointers p.left and p.right, respec-
tively. You may make use of any primitive operations on points and rectangles (but please
explain them). You may assume that there are no duplicate coordinate values among the
points of P or the query point.

Problem 9. (Expect a problem on range trees. I can’t find any good practice problems, but the

examples from Homework 2 are pretty good.)

