
CMSC 420: Spring 2021

Programming Assignment 0: Tour and Locator

Handed out: Tue, Feb 2. Due: Sun, Feb 14 (11:00pm). (Fair warning: Don’t wait until too late,
since TA support will be limited over the weekends.) See the course syllabus for the late policy.
Will be discussed in class on Tue, Feb 2.

Overview: Our programming project this semester will involve implementing algorithms for ef-
ficiently computing transportation tours for a set of points in 2-dimensional space. A tour
is a cycle that visits all the points of some set. Computing efficient tours is fundamental to
many transportation applications. This assignment will be a short warm-up exercise, which
is designed to (re)familiarize yourself with Java programming, and to gain practice with the
submission and grading process. You will not need to implement any fancy data structures.

Tours: Let P = {p1, . . . , pn} be a set of n points in two-dimensional space R2 (see Fig. 1(a)). A
tour is defined to be a cycle that visits each point of P exactly once (see Fig. 1(b)). The most
famous example is the travelling salesperson problem (TSP), a famous NP-hard problem that
involves computing the tour of minimum length (see Fig. 1(c)).

(a) (b) (c)

p2
p4

p1

p8
p7

p6
p5

p3
p2 p4

p1

p8
p6

p5

p3

p4

p5

p3
p2

p1

p8 p7

p6

P = {p1, . . . , pn} T1 = 〈p1, p3, p5, p8, p7, p6, p2, p4〉 T2 = 〈p8, p2, p1, p4, p3, p5, p6, p7〉

p7

Figure 1: (a) A point set P , (b) a tour of P starting at p1, and (c) another tour starting at p8.

Representing a tour: Given a set of points P , we can represent a tour simply as a list (or more
conveniently in Java as an ArrayList) of points. The associated tour is defined to be the
cycle defined by visiting each point of the list in order, returning finally from the last point
to the first.

Modifying through reversals: One way to modify any tour is by reversing an arbitrary sublist.
For example, consider the tour shown in Fig. 2(a). Let us assume that the points of the tour
are indexed from 0 to n− 1, and let i and j be any two indices, where 0 ≤ i < j ≤ n− 1. We
can form a new tour by reversing the sublist running from indices i through j (see Fig. 2(b)).
This has the effect of replacing two edges (i− 1, i) and (j, j + 1) with the edges (i− 1, j) and
(i, j + 1), and reversing all the edges in between.

Tour Object: In this assignment, you will implement a simple data structure, called Tour, that
will maintain a tour for a set of points. Among other things, it will support sublist reversals
as shown in Fig. 2. It will support other operations, such as the ability to add new points to
tour, and various methods for listing out the points in the current tour.

1



(a) (b)

0

1
2 . . . i− 1 i i + 1

n− 1

n− 2 . . .
j + 1 j j − 1

0

1
2 . . . i− 1 i i + 1

n− 1

n− 2 . . .
j + 1 j j − 1

〈0, 1, . . . , i− 1, i, . . . , j, j + 1, . . . , n− 1〉 〈0, 1, . . . , i− 1, j, . . . , i, j + 1, . . . , n− 1〉

Figure 2: (a) A tour and (b) result of reversing the subtour from i to j.

Labeled Points: In order to refer to points in our data structure, we will associate each one with
a string label. For example, if the points are airports, it will be convenient to identify each by
its 3-letter IATA code. For example, Los Angeles International airport is given by the code
“LAX” and Dulles International Aiport by “IAD”. Its coordinates are given by its longitude
and latitude. Each airport will also be associated with other information (its name, city,
country, latitude and longitude), but we will not be using these for this assignment.

Of course, it would be too restrictive to build a data structure that works only on airport
objects. The Tour class will be designed so that it can be applied to any generic type, called
a labeled point. Such an object is defined by its (x, y) coordinates (of type float) and its
label (of type String). A labeled point is any Java class that implements the following Java
interface:

public interface LabeledPoint2D {

public float getX(); // get point’s x-coordinate

public float getY(); // get point’s y-coordinate

public String getLabel(); // get the label

// ... (and a few other methods, which we won’t worry about now)

}

The Tour class (which you will implement) will be a generic Java object based on a type
Point. This type can be any Java object that implements the LabeledPoint2D interface. In
particular, our Airport class (which we will provide you) does this.

Airport.java: (We will provide this)

public class Airport implements LabeledPoint2D { // An Aiport is a labeled point

// ...

}

Tour.java: (You will fill in the details here)

public class Tour<Point extends LabeledPoint2D> { // A Tour stores labeled points

// ... (You will fill in the rest of this)

}

SomeApplication.java: (We will also provide this)

...

Tour<Airport> theTour; // This stores a tour of Airports

2



I’m really confused! This is a lot to take in, so don’t worry too much if this is a bit confusing.
The program you need to write is actually pretty short. We will provide you with a skeleton
implementation containing all of the above. All that you will need to do is fill in one file,
Tour.java, which implements all the operations we ask of you. We will even provide the
function declarations, and you just need to fill in their contents.

Public Interface: Here is a formal definition of the public interface of the Tour<Point> class:

Tour(): This constructor performs whatever initializations are needed to create an empty
tour. For our purposes, a tour can be represented as an expandable array, say a Java
array-list, containing objects of type Point, that is, ArrayList<Point>. Thus, your
constructor might create a new (empty) array-list object.

String append(Point pt): This appends a labeled point pt to the end of the current tour
(e.g., by appending it to the aforementioned array-list).

It returns a string that summarizes the result of the operation. This string starts with
the prefix "append(XXX): ", where “XXX” is the label associated with the point and “ ”
denotes a single space. If the tour already contains a point with this same label, this is
followed by the string "Error - Label exists (operation ignored)". Otherwise, it
adds this point to the end of the current tour. Letting i denote the index where the new
point is placed, the prefix is followed by the string "Added to tour at index i". (In
standard Java style, we assume that indexing starts at zero.) An example is shown in
Table 1. (Input lines have been shortened.)

Table 1: Example of commands and output strings.

Input: Output:
append:IAD: ... append(IAD): Added to tour at index 0

append:BWI: ... append(BWI): Added to tour at index 1

append:LAX: ... append(LAX): Added to tour at index 2

append:IAD: ... append(IAD): Error - Label exists (operation ignored)

list-tour list-tour: 0:IAD 1:BWI 2:LAX

list-labels list-labels: BWI:1 IAD:0 LAX:2

index-of:LAX index-of(LAX): 2

String listTour(): This operation returns a string containing all the labels of the points in
tour order. Each label is preceded with the index of this point in the tour. The output
string starts with the prefix "list-tour: ", and it followed with a blank-separated
sequence of the form “i:XXX”, where i is the index (ranging from 0 up to n − 1), and
“XXX” is the label associated with this point. An example is given above.

String listLabels(): This operation returns a string containing all the labels of the points
in the tour in alphabetical order of the labels. Each label is succeeded with the index of
this point in the tour. The output string starts with the prefix "list-labels: ", and it
followed with a blank-separated sequence of the form “XXX:i”, where “XXX” is the label
associated with this point, and i is its index in the tour. An example is given above.

String indexOf(String label): This operation finds the point with the given label and re-
turns its index in the tour. The output string starts with the prefix "index-of(XXX): ",

3



where “XXX” is the given label. If no point with the given label appears in the tour, this
is followed with the string "Not-found". Otherwise, it is followed with the index of the
point in the tour.

String reverse(String label1, String label2): This operation reverses the subtour
between the two given labels. The output starts with the prefix "reverse(XXX,YYY): ",
where “XXX” is the first label and “YYY” is the second label. Assuming that there are
two distinct points in the tour with these labels, let i and j denote their indices in the
tour. Swap i and j if needed so that i < j. Then reverse the order of points in the
sublist from i to j, as shown in Fig. 2. Following the prefix, output "Successfully

reversed subtour of length k", where k is the number of points in the sublist that
was reversed. Some examples are shown in Table 2.

There are a few error cases to consider, which are processed in the following order:

� If no point of the tour has label XXX, then the prefix is followed by "Error - Label

XXX does not exist (operation ignored)"

� If no point of the tour has label YYY, then the prefix is followed by "Error - Label

YYY does not exist (operation ignored)"

� If XXX and YYY are the same, then the prefix is followed by "Error - Labels are

equal (operation ignored)"

Table 2: Example of reverse operations.

Input: Output:
list-tour list-tour: 0:IAD 1:BWI 2:LAX 3:DCA 4:JFK 5:ATL 6:SFO

reverse:BWI:ATL reverse(BWI,ATL): Successfully reversed subtour of length 5

list-tour list-tour: 0:IAD 1:ATL 2:JFK 3:DCA 4:LAX 5:BWI 6:SFO

reverse:IAD:IAD reverse(IAD,IAD): Error - Labels are equal (operation ignored)

reverse:LAX:CDG reverse(LAX,CDG): Error - Label CDG does not exist (operation ignored)

reverse:DFW:CDG reverse(DFW,CDG): Error - Label DFW does not exist (operation ignored)

reverse:DFW:DFW reverse(DFW,DFW): Error - Label DFW does not exist (operation ignored)

Locators: This completes the description of the input/output behavior of the program. There
is, however, an issue related to the program’s efficiency. Consider the operation indexOf

described above. Based on our description so far, this operation would take worst-case time
O(n) to implement on a tour of length n, since it would involve searching through the entire
tour to find the point with the given label. We would like to do better.

A common issue arising in data structure design is that we insert an object in the data struc-
ture at one time and later we wish to locate where this object appears our the data structure.
We would like the indexOf operator to run in at most O(log n) time. Our suggestion on how
to achieve this is to employ a Java TreeMap to store a collection of key-value pairs, where
the key is the point’s label and the value is the point’s index in the tour. For example, given
the tour from Table 1, this map would store the pairs {(BWI, 1), (IAD, 0)(LAX, 2)}. Now, to
perform the operation indexOf, we can search the TreeMap for the given label to retrieve the
associated index in O(log n) time.

4



Note that whenever the index of a point changes, as can happen during a reverse operation,
you will need to look up the point in the TreeMap, and modify its associated value based on
the point’s new index.

Running-time Requirements: Our grading of your program will involve an inspection of your
code for the manner in which you implement the above operations. Assuming that the current
tour contains n points, we require that the above operations run in the following worst-case
asymptotic times:

append: O(log n) (amortized) time, assuming you can add an item to Java’s ArrayList.add()
in O(1) amortized time and can add an entry to a tree map in O(log n) time.

listTour: O(n) time.

listLabels: O(n) time, assuming Java’s TreeMap.entrySet() function returns the entries
sorted by key value in this time.

indexOf: O(log n) time, assuming this is the search time of Java’s TreeMap.

reverse: O(k log n) time, where k is the length of the tour being reversed. It should take
only O(k) time to perform the reversal, but k locator values in the TreeMap need to be
updated.

If you prefer, you can use a HashMap instead of a TreeMap. Note that the run time of
listLabels will go up to O(n log n), since the strings will need to be sorted. This is acceptable
for full credit.

Program structure: We will provide a driver program that will input a set of commands. You
need only implement the Tour class and the functions listed above. Here is the public interface:

package cmsc420_s21;

public class Tour<Point extends LabeledPoint2D> {

public Tour() { } // Constructor

public String append(Point pt) { ... } // Append point to tour

public String listTour() { ... } // List in tour order

public String listLabels() { ... } // List in alpha order

public String indexOf(String label) { ... } // Index of label

public String reverse(String label1, String label2) { ... } // Reverse

}

Skeleton Code: We will provide you with some skeleton code to start with. This consists of the
following:

Tour.java: This is the only file you need modify. A skeletal version of the main class
for the extended binary search tree.

Airport.java: A class that stores information about airports.

LabeledPoint2D.java: The interface for the labeled point type.

Point2D.java: A small utility class for storing (x, y) coordinates.

5



Tester.java: Main program for testing your implementation. It inputs commands either
from a file or standard input and sends output to another file or standard output. (You
may modify this file to select different input/output files.)

CommandHandler.java: A class that processes commands that are read from the input file
and produces the appropriate function calls to the member functions of your Tour class.

You may submit additional files as well, but it is not necessary. Other than Tour.java avoid
modifying or reusing any of the above files, since we will overwrite them with our own when
testing your program. Use the package “cmsc420 s21” for all your source files.

Testing/Grading: We will be using Gradescope’s autograder and JUnit for testing and grading
your submissions. All the tests and the expected results are visible. We will provide a link
to the final test data on the class Projects page. We will check style and efficiency manually,
and this will constitute 20% of the final score.

Submission Instructions:

Submissions will be made through Gradescope. There is no limit to the number of submissions
you can make. The last submission will be graded. Here is what to do:

� Log into the CMSC420 page on Gradescope, select this assignment, and select “Submit”.
A window will pop up (see Fig. 3). Drag your file Tour.java into the window. If
you generated other files, zip them up and submit them all. (You do not need to
include the files from the skeleton code, included Airport.java, LabeledPoint2D.java,
Point2D.java, Tester.java, and CommandHandler.java.) Select “Upload”.

Figure 3: Gradescope submission.

After a few minutes, Gradescope will display the results (see Fig. 4). In this case, 20
out of 25 points are determined by the autograder, and we will assign the final 5 points
based on inspecting the source code of your program for style and efficiency.

On the top-right of the page, it shows the scores of the individual tests as generated by
the autograder. (If there are compilation errors, these will be displayed on this page.)
The center of the window shows a line-by-line summary, with the output generated by
your program on the left and the expected output on the right. If there are mismatches,

6

http://www.cs.umd.edu/class/spring2021/cmsc420-0101/project.html


Figure 4: Gradescope autograder results (correct).

these will be highlighted (see Fig. 5). The final score is based on the number of commands
for which your program’s output differs from ours. Note that the comparison program is
very primitive. It compares line by line (without considering the possibility of inserted
or deleted lines) and is sensitive to changes in case and the addition of white-space.

Figure 5: Gradescope autograder results (incorrect).

7


