
CMSC 420: Spring 2021

Programming Assignment 2: Wrapped k-d Trees

Handed out: Tue, Apr 6. Due: Wed, Apr 21, 11pm. (Submission via Gradescope.)

Overview: In this assignment you will implement a variant of the kd-tree data structure, called
a wrapped kd-tree (or WKDTree) to store a set of points in 2-dimensional space. This data
structure will support insertion, deletion, and a number of geometric queries, some of which
will be used later in Part 3 of the programming assignment.

The data structure will be templated with the point type, which is any class that implements
the Java interface LabeledPoint2D, as described in the file LabeledPoint2D.java from the
provided skeleton code. A labeled point is a 2-dimensional point (Point2D from the skeleton
code) that supports an additional function getLabel(). This returns a string associated with
the point.

In our case, the points will be the airports from our earlier projects, and the labels will be
the 3-letter airport codes. The associated point (represented as a Point2D) can be extracted
using the function getPoint2D(). The individual coordinates (which are floats) can be
extracted directly using the functions getX() and getY(), or get(i), where i = 0 for x and
i = 1 for y.

Your wrapped kd-tree will be templated with one type, which we will call LPoint (for “labeled
point”). For example, your file WKDTree will contain the following public class:

public class WKDTree<LPoint extends LabeledPoint2D> { ... }

Wrapped kd-Tree: Recall that a kd-tree is a data structure based on a hierarchical decomposition
of space, using axis-orthogonal splits. A wrapped kd-tree involves two modifications to the
standard kd-tree (see Fig. 1).

Extension: As with the previous assignment, our tree will be an extended binary tree in-
volving internal nodes and external nodes. Each external node stores a single point.

Each internal node stores the splitting information, consisting of a cutting dimension
and a cutting value. The cutting dimension (or cutDim) indicates which axis (0 for x
and 1 for y) is to be split, and the cutting value (or cutVal) indicates where the cut
occurs along this axis (see Fig. 1). For example, if the cutting dimension is 0 (for x) and
the cutting value is z, then a point p = (px, py) will be put in the left subtree if px < z
and in the right subtree if px ≥ z. Note that the cutting value does not need to be the
coordinate of any point in the tree.1

Wrapping: In normal kd-trees, each node is associated with an axis-aligned rectangular cell,
which is based on the splits that have been made by this node and its ancestors. In a
wrapped kd-tree each internal node explicitly stores a wrapper, which is defined to be a

1In general, this is a useful feature because we can select splitting lines to optimize query processing. Although we
will not take advantage of this fact in this project, this can be important in applications in high dimensional spaces
as occurs in machine-learning applications.
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Figure 1: A wrapped kd-tree and the associated spatial subdivision.

minimum axis-aligned bounding box for the points in the subtree associated with this
node. (In Fig. 1, the wrapper for the internal node “x = 7” is highlighted. A wrapper
can be represented as any axis-parallel rectangle, say its lower-left and upper-right corner
points.) We will provide a class Rectangle2D in the skeleton code, and a node’s wrapper
is of this type.

The use of wrappers modestly increases the storage requirements of the data structure,
but query processing can be much faster because a wrapper can be significantly smaller
than the associated cell. This means that query processing can do a better job of
filtering out subtrees that cannot contribute to the search result. This feature becomes
more significant as the dimension of the space increases. As points are inserted and
deleted from the tree, the wrappers associated with nodes of the tree need to be updated
accordingly.

Wrappers are only computed for internal nodes. (Each external node has an “implicit”
wrapper consisting of the trivial rectangle that contains the associated point.) We can
define a node’s wrapper recursively as the smallest axis-aligned rectangle that contains
the wrappers of the node’s left and right children. (The class Rectangle2D provides a
function union to perform this operation.)

Specifications on how to implement will be given in the Supplemental Lecture on Wrapped
kd-Trees, which will be posted on the class’s Projects Page.

Requirements: Your program will implement the following functions for the WKDTree. While
you can implement the data structure internally however you like (subject to the style and
efficiency requirements given below), the following function signatures should not be altered.
Recall that Point2D is a 2-dimensional point, and an LPoint is any object that implements
LabeledPoint2D.

In addition to the wrapped kd-tree, you will also need to provide a working version of the
AAXTree from the previous assignment. We will use the AAXTree data structure as a locator.
Whenever we insert a labeled point (e.g., airport “DCA” at coordinates (6, 7)), we will insert the
key-value pair 〈DCA, (6, 7)〉 in the AAXTree. This way, if we need to determine the coordinates
of any airport, we can look it up using its three-letter code. You do not need to do anything

2

http://www.cs.umd.edu/class/spring2021/cmsc420-0101/project.html


other than provide the file, however. Our command handler will automatically insert each
airport into both data structures.

LPoint find(Point2D pt): Determines whether a point coordinates pt occurs within the
tree, and if so, it returns the associated LPoint. Otherwise, it returns null.

void insert(LPoint pt) throws Exception: Inserts point pt in the tree. It throws an
Exception with the message "Insertion of point with duplicate coordinates"

if there is a point in the dictionary with the same coordinates. The insertion process is
described in the supplementary lecture. (If there is a tie for the choice of the cutting
dimension, x is preferred over y.)

void delete(Point2D pt) throws Exception: Deletes the entry whose coordinates match
those of pt. If there is no such point, it throws an Exception with the error message
"Deletion of nonexistent point". The deletion process is described in the supple-
mentary lecture.

Note that the above exception will usually not appear in your output. The reason is
that the default deletion command is given an airport code (e.g., “delete:DCA”), and
our command handler checks first whether this code exists within your AAXTree. If so,
it invokes the appropriate deletion command (e.g., “delete(Point2D(6,7))”). There is
a variant form of the delete command (delete-point) which calls your WKDTree delete
function directly, but we use it sparingly since it causes the AAXTree and WKDTree to go
out of sync with each other.

ArrayList<String> getPreorderList(): This operation generates a preorder enumeration
of the nodes in the tree. This is represented as a Java ArrayList of type String, with
one entry per node. The output for internal and external nodes has the following form
(which must be matched exactly):

� Internal nodes: Depending on whether the cutting dimension is x or y, this generates
either:

"(x=" + cutVal + "): " + wrapper.toString()

"(y=" + cutVal + "): " + wrapper.toString()

where “ ” is a space character. The function wrapper.toString() is defined in
Rectangle2D.java, which is part of the skeleton code. It outputs the lower-left and
upper-right corners of the rectangle.

� External node: Letting point denote the labeled point stored in this node, this
generates "[" + point.toString() + "]". The function point.toString() is
defined in Airport.java.

For example, here is the result for the tree of Fig. 1.

(x=5.0): [(2.0,2.0),(9.0,8.0)]

(y=4.0): [(2.0,2.0),(4.0,6.0)]

[LAX: (4.0,2.0)]

[IAD: (2.0,6.0)]

(x=7.0): [(6.0,4.0),(9.0,8.0)]

[DCA: (6.0,7.0)]

(y=6.0): [(8.0,4.0),(9.0,8.0)]

[JFK: (9.0,4.0)]

[BWI: (8.0,8.0)]
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Note that our autograder is sensitive to both case and whitespace.

void clear(): This removes all the entries of the tree.

int size(): Returns the number of points in the tree. For example, for the tree of Fig. 1(a),
this would return 5.

LPoint getMinX(): This returns a reference to the labeled point that is associated with
the smallest x-coordinate in the tree. If two or more points have the same minimum
x-coordinate, then the one with the smallest y-coordinate is returned. If the dictionary
is empty, this returns null.

Analogously, there are functions getMaxX(), getMinY(), and getMaxY(), which per-
form the analogous operations. For the max versions, if there are ties for the principal
coordinate, return the point with the largest “other” coordinate.

For example for the tree shown in Fig. 2(a), the calls getMinX() getMaxX(), getMinY(),
and getMaxY() would return the labeled points “SEA”, “JFK”, “LAX”, and “SFO” (respec-
tively).
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Figure 2: Queries on a wrapped kd-tree.

LPoint findSmallerX(float x): Among all the points whose x-coordinates are strictly
smaller than x, this returns a reference to the labeled point having the largest x-
coordinate. (Note that there need not be a point having the coordinate x.) If the
tree is empty or if there is no point whose x-coordinate is smaller than x, this returns
null. If there are ties for the largest x-coordinate, return the point with the largest
y-coordinate.

Analogously, there are functions findLargerX(), findSmallerY(), and findLargerY().
For the larger versions, if there are ties for the point with the smallest principal coordi-
nate, return the point with the smallest “other” coordinate.

For example, for the tree of Fig. 2(a), findSmallerX(6) would return the labeled point
“ATL”, and findLargerY(5) would return the labeled point “IAD”.

ArrayList<LPoint> circularRange(Point2D center, float sqRadius): This function is
given a circular disk, expressed as a center point center and a squared radius of
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sqRadius. (So, to represent a disk of radius 5, we would set sqRadius to 52 = 25.)
This function returns an array-list containing all the points whose squared distance
from the center point is at most sqRadius. (Thus if a point lies on the boundary of the
disk, it will be included.) If there are no points in the disk, it should return an empty
array-list (not null). The order of elements in the list does not matter (because we will
sort it before outputting), but there should be no duplicates in the list.

To assist you, the Point2D and Rectangle2D classes both provide a utility function
distanceSq(Point2D pt), which computes the squared distance from the current object
to point pt.

For example, in the tree of Fig. 2(b), circularRange(Point2D(4,6), 18) would return
an ArrayList with the labeled points “ATL”, “DCA”, “IAD”, “LAX”, and “SFO” (in any
order).

Why squared radius? The advantage of using squared distances over standard Eu-
clidean distances is that we can avoid invoking the square-root function required by the
standard distance (from the Pythagorean Theorem). Since our input points have inte-
ger coordinates, squared distances can be computed exactly as integers, which avoids
floating-point round-off errors due to limited precision. (For example, the squared dis-
tance between (4, 6) and (1, 9) in Fig. 2(b) is 18, whereas the Euclidean distance is
4.242640687119285 . . ..)

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You should
replace the AAXTree.java file with your own, and you should add the implementation of the
above functions to WKDTree.java. You should not modify any of the other files, but you can
add new files of your own. For example, if you wanted to add additional functions to any
of the classes, such as Point2D or Rectangle2D, it would be preferable to create an entirely
new class (e.g., MyRect2D), which you will upload with your submission.

You must use the package “cmsc420 s21” for all your source files. (This is required for
the autgrader to work.) As usual, we will provide a driver program (Tester.java and
CommandHandler.java) that will input a set of commands. Here is a portion of the class’s
public interface (and of course, you will add all the private data and helper functions). You
should not modify the signature of the public functions, but you are free to set up the internal
structure however you like.

package cmsc420_s21;

public class WKDTree<LPoint extends LabeledPoint2D> {

public WKDTree() { ... } // you fill these in

public LPoint find(Point2D pt) { ... }

public void insert(LPoint pt) throws Exception { ... }

public void delete(Point2D pt) throws Exception { ... }

// ... and so on

}

Efficiency requirements: Unlike the AA-Tree, there are no worse-case guarantees on the running
times of the above functions. Nonetheless, you should make a reasonable effort to implement
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your functions in an efficient manner. (See the supplemental lecture notes for suggestions.) In
particular, if it can be inferred (e.g., from the wrapper) that a node’s subtree cannot possibly
contribute to the query result, then the processing should immediately return, without visiting
its children. Also, if there is one subtree that is obviously better to visit first than the other,
your code should take advantage of this. Up to 10% of the final score will be based on this
manual inspection of your code.

Testing/Grading: As before, we will be using Gradescope’s autograder and JUnit for testing and
grading your submissions. Because you will be submitting multiple files for this part, you
should produce a zip file with the two principal files (AAXTree.java and WKDTree.java). You
may include other files, but note that the files given in the skeleton code (e.g., Point2D.java,
Rectangle2D.java, and so on) will be overwritten by the autograder. So, there is nothing
to be gained by modifying these files.

As always, we will provide some sample test data and expected results along with the skeleton
code. Note that some portion (up to 20%) of the final grade will be based on hidden tests.
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