
CMSC 420: Spring 2021

Programming Assignment 3: Efficient TSP Heuristics

Handed out: Tue, Mar 27. Due: Tue, May 11, 11pm. (Submission via Gradescope.)

Overview: In this assignment we will combine our extended AA tree and wrapped kd-tree data
structures to implement a data structure for maintaining traveling salesperson (TSP) tours.
We are given a discrete set of points P in R2. Recall from Programming Assignment 0 that
a tour of P is a cycle that visits all the points of P exactly once.

Squared Measure: The (standard) Euclidean TSP problem involves computing the tour over P
of the minimum total Euclidean length. Euclidean distances involve square roots, and this
results in rather unpredictable round-off errors. We will instead consider a variant of this
problem, for the sake of easier testing.

Let T be a tour of P , and let 〈p0, p1, . . . , pn−1〉 denote the sequence of points along the tour.
Define the squared measure of the tour, denoted D[2](T ) to be the sum of the squared distances
of the edges of the tour, that is,

D[2](T ) =
n−1∑
i=0

dist2(pi, pi+1).

Throughout, indices are taken modulo n, so pn = p0. (Note that this is different from taking
the square of the standard TSP length.) The squared measure has the advantage that if the
coordinates P ’s points are all integers, then D[2](T ) is an integer. This is not generally true
for the standard TSP measure.

Modifying Tours: Recall from Programming Assignment 0 that we can represent any tour as a
list of points, and we can modify a tour by reversing a sublist. Given any two indices i and
j, where 0 ≤ i < j ≤ n− 1. We can modify a tour by reversing the sublist from indices i + 1
through j. (Note: We have changed the indexing slightly from Programming Assignment 0.
This is a bit cleaner and more consist with established practice .) Let’s call this operation
reverse(i, j). This has the effect of replacing two edges (i, i + 1) and (j, j + 1) with the edges
(i, j) and (i + 1, j + 1), and reversing the path from i + 1 through j (see Fig. 1).
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Figure 1: The operation reverse(i, j).

1



Note that this operation is not defined when i = j, but we can generalize it to any pair i 6= j
by performing reverse(min(i, j),max(i, j)).

Because the reversal only changes two edges, the change in cost is the difference between the
squared lengths of the two new edges minus the square lengths of the original edges. Define
the change in the measure to be:

∆(i, j) = (dist2(pi, pj) + dist2(pi+1, pj+1))− (dist2(pi, pi+1) + dist2(pj , pj+1))

Using this, we define a few other heuristics for modifying a tour:

2-Opt: Some reversals reduce the overall cost and some do not. Given a pair 0 ≤ i, j ≤ n−1,
where i 6= j, the operation 2-Opt(i, j) that conditionally performs a reversal if the
squared measure decreases strictly. In particular, it first checks whether ∆(i, j) < 0, and
if so, it performs reverse(i, j). Otherwise, the tour is unchanged.

2-Opt-NN: There are clearly O(n2) possible 2-Opts that could be attempted on a tour. If
the tour is close to optimum, the vast majority of these operations will not have any
effect on the tour. How can we focus attention to 2-Opts that are most likely to reduce
the tour’s cost? There many different heuristics that could be applied. One idea for
identifying 2-Opts that are likely to be effective is to let pj be the closest point to pi,
assuming that it is closer than the neighbor pi+1 it replaces.

This gives rise to an important geometric query called a fixed-radius nearest neighbor.
We will define this operation in the strict sense. Given a point set P and a query point
q and a radius r, the problem is to compute the closest point of pj ∈ P to q, assuming
that dist(q, pj) < r (see Fig. 2(a)). If there is no point of P within this distance bound,
the query returns null (see Fig. 2(b)).

q
q

r

r

p1

p2

p3

p4

p5

p6

p7

p8p1

p2

p3

p4

p5

p6p7

p8

Ans: null
Ans: p3

(a) (b)

q
r
Ans: null

Figure 2: Fixed-radius nearest-neighbor queries.

In a 2-Opt-NN operation, we perform the operation 2-Opt(i, j), where pj is the closest
point to pi. However, we only want to do this if the point pj is closer than pi’s current
successor pi+1 (indices taken modulo n). To find pj we perform a fixed-radius nearest
neighbor query for the query point q = pi and search radius.1 r = dist(pi, pi+1). If we

1You might wonder why we need the radius constraint as part of the query. Why not just compute q’s nearest
neighbor, and then check afterwards whether the distance is smaller than r? The reason is that r is typically quite
small, and there may be very few points lying within the query range. Thus, the radius constraint can significantly
improve the query’s efficiency.
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receive a non-null result, pj , we then perform 2-Opt(i, j). If the result is null, the tour
is unchanged.
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Figure 3: 2-Opt-NN operation.

We need to make one modification to the fixed-radius NN query. Clearly, the closest
point pi is pi itself (not very useful!). So, the operation 2-Opt-NN(i) is defined formally
as follows. First, apply a fixed-radius NN query with q = pi, maximum distance r =
dist(pi, pi+1), and ignoring pi itself (or equivalently, any points at distance 0). Then
perform 2-Opt(i, j).

What if there are multiple candidates for the nearest neighbor? For the sake of consis-
tency, let’s agree that the point to be selected is the one that is lexicographically smallest
with respect to its coordinates.2 That is, among all nearest neighbors, its x-coordinate
should be the smallest, and among all that have the same x-coordinate, the y-coordinate
should be the smallest.

All 2-Opt: In contrast to 2-Opt-NN, which performs 2-Opt on a judiciously chosen pair,
this operation is pure brute force. It iterates through all indices i from 0 to n− 1, and
for all j from i + 1 to n− 1, and performs 2-Opt(i, j) for each pair. Thus, in total there
are

(
n
2

)
= O(n2) instances of 2-Opt being performed.

Tour Object: In this assignment, you will implement a data structure, called Tour, that will
maintain a tour for a set of points. It supports a number of operations, as described below.
The data structure will be templated with the point type, which is any class that implements
the Java interface LabeledPoint2D, as described in the file LabeledPoint2D.java from the
provided skeleton code. A labeled point is a 2-dimensional point (Point2D from the skeleton
code) that supports an additional function getLabel(). This returns a string associated with
the point.

Each tour object will store three principal data elements:

Tour: This is a tour itself, that is, a list (e.g., Java ArrayList) containing the points (LPoint)
of the tour.

Locator: This structure is used for locating the index of an airport in the tour from its code
(e.g., “LAX”). It is a dictionary (implemented as an AAXTree) storing key-value pairs,
where the keys are strings and the values are indices (represented as a Java Integer).

2We do not expect many test cases to check for this condition, so in your first pass, you might ignore this issue.
The input file test05-input.txt has an instance where there are multiple candidates for the nearest neighbor.
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The index for a given string gives the index of the corresponding labeled point in the
tour. As with Programming Assignment 0, whenever we insert a new point into our
tour, we need to record its location, and whenever we move a point to a new index (e.g.,
through reversal), we need to update its location.

At a minimum, the locator will need to support the operations of insert, find, clear,
and a new operation called replace (which was not required in Programming Assign-
ment 1). The replace operation has the following signature:

void replace(Key x, Value v) throws Exception

It is given a key x (that is, an airport code) and an associated value v (that is, an index
in the tour). It searches for x. If it is not found, it throws an exception with the error
message "Replacement of nonexistent key". Otherwise, the value associated with
this entry is changed to v.

Spatial Index: This is a 2-dimensional spatial index (implemented as a WKDTree) storing
the points (LPoint). At a minimum, it must support the operations insert, find,
clear, and a new operation called fixedRadNN (which was not required in Programming
Assignment 2). The fixedRadNN operation has the following signature:

LPoint fixedRadNN(Point2D q, double sqRadius)

It returns a reference to the fixed-radius nearest-neighbor query to q, where the squared
radius of the disk is sqRadius. Among the points whose squared distance to q is strictly
more than zero and strictly less than sqRadius, it returns the closest to q. If there
is no such point in the disk, it returns null. If there are multiple points at the same
distance, your function should return that is lexicographically smallest in terms of its x
and y coordinates. (That is, if two points are at each distance to q, prefer the one with
the smaller x-coordinate. If both have the same x-coordinate, prefer the one with the
smaller y-coordinate.)

Tour Operations: The Tour object should support the following public functions.

Tour(): Initializes an empty tour, creating the tour, locator, and spatial index (all empty).

void append(LPoint pt) throws Exception: Appends the labeled point pt to the end of
the tour. If there exists a point with this label, an exception with the error message
“Duplicate label” is thrown. If there already exists a point with the same coordinates,
an exception with the error message “Duplicate coordinates” is thrown. Otherwise,
the point is added to the tour, its index is added to the locator, and the point is added
to the spatial index.

ArrayList<LPoint> list(): This returns a Java ArrayList containing all the points of the
tour in order.

void clear(): The clears everything: the tour, the locator, and the spatial index.

double cost(): The returns the current squared measure of the tour. For the sake of consis-
tency and accuracy, you should perform all arithmetic operations using double variables,
and use the Point2D function distanceSq to compute distances between points.

void reverse(String label1, String label2) throws Exception: This begins by lo-
cating the indices i and j for the tour points with labels label1 and label2, respectively.
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If either label is not found in the locator, an exception with the error message “Label
not found” is thrown. If i == j (or equivalently, if the labels are equal), an excep-
tion with the error message “Duplicate label” is thrown. Otherwise, the operation
reverse(i, j) is performed on the tour. (It may be that i < j or j < i. Your function
should work correctly in either case.)

boolean twoOpt(String label1, String label2) throws Exception: This is the same
as reverse above, but after checking the validity of the arguments, instead of reverse,
the operation 2-Opt(i, j) is performed on the tour. That is, we check whether ∆(i, j) < 0
(note that the inequality is strict), and if so, we perform reverse(i, j). If the reversal is
performed, the operation is said to be effective. If the operation is effective, we return
true, and otherwise we return false.

LPoint twoOptNN(String label) throws Exception: This first locates the index i for the
tour point with label label. If this label is not found in the locator, an exception with
the error message “Label not found” is thrown. Otherwise, the operation 2-Opt-NN(i)
is performed on the tour. That is, we invoke fixedRadiusNN(q,rsq) where q = pi and
rsq = dist2(pi, pi+1) (where pi+1 is the point immediately following pi in the tour). If
it returns null, then we return null. Otherwise, let pj denote the result. We invoke
2-Opt(i, j). If it is effective, then we return a reference to the point pj . Otherwise, we
return null.

int allTwoOpt(): This performs the operation all-2-Opt() on the tour. (For consistency in
testing, this should be done exactly as described for all i from 0 to n− 1 and all j from
i + 1 to n − 1, performing 2-Opt(i, j).) Among the

(
n
2

)
2-Opts performed, return the

number that were effective.

Hint on Helpers: In order to implement the above functions, you may define whatever local
helper functions you like. The functions above take labels as inputs, but it is more natural to
work with tour indices. We would recommend that for each of the above label-based functions,
you have a local index-based function to perform the actual operation. For example, the
helper for reverse might be called void reverseHelper(int index1, int index2), where
index1 and index2 are the indices in the tour for the respective labels. The advantage of
doing this is that your other helper functions can easily invoke one another.

Doubles not Floats: For some of the larger test cases we are planning to use, the number of digits
in the tour costs will be too large to store in a single float variable. For the sake of testing,
we have converted all the instances of float in the supporting classes (e.g. Airport.java,
Point2D.java, Rectangle2D.java) to be of type double. You may need to make a similar
change in your WKDTree.java to keep the compiler from complaining.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. We will also
provide canonical versions of our AAXTree and WKDTree implementations. (Note that you will
still need to add the new functions replace and fixedRadiusNN.)

package cmsc420_s21;

public class Tour<LPoint extends LabeledPoint2D> {

public Tour() { /* you fill these in */ }
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public void append(LPoint pt) throws Exception { /* ... */ }

public ArrayList<LPoint> list() { /* ... */ }

// ... and so on

}

Efficiency requirements: The new AAXTree operation replace should run in O(log n) time. The
new WKDTree operation fixedRadNN should be reasonably efficient, in the sense that the code
should check each node’s wrapper. If the wrapper for some node does not overlap the query
disk or is farther away than the closest point seen so far, it should not recursively visit a
node’s children.

Testing/Grading: As before, we will be using Gradescope’s autograder and JUnit for testing and
grading your submissions. You can just drag your files AAXTree.java, WKDTree.java, and
Tour.java into the Gradescope upload window. You may include other files, but note that
the files given in the skeleton code (e.g., Point2D.java, Rectangle2D.java, and so on) will
be overwritten by the autograder. So, there is nothing to be gained by modifying these files.

As always, we will provide some sample test data and expected results along with the skeleton
code. Note that some portion (up to 20%) of the final grade will be based on hidden tests.
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