
CMSC 420 Dave Mount

CMSC 420: Lecture X02
Supplemental: Wrapped kd-Trees

Overview: In this lecture, we will discuss how to implement a variant of a kd-tree called wrapped
kd-tree. Recall that a kd-tree is a data structure based on a hierarchical decomposition
of space, using axis-orthogonal splits. A wrapped kd-tree involves two modifications to the
standard kd-tree.

Extension: The tree has two types of nodes, internal and external. Each external node
stores just a single point. In addition to its two children, each internal node stores the
splitting information, consisting of a cutting dimension and a cutting value. The cutting
dimension (or cutDim) indicates which axis (0 for x and 1 for y) is to be split, and the
cutting value (or cutVal) indicates where the cut occurs along this axis (see Fig. 1). For
example, if the cutting dimension is 0 (for x) and the cutting value is z, then a point
p = (px, py) will be put in the left subtree if px < z and in the right subtree if px ≥ z.
Note that the cutting value does not need to be the coordinate of any point in the tree.
The flexibility to chose the cutting value independent of the points is useful because we
can select splitting lines to optimize query processing.
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Fig. 1: A wrapped kd-tree and the associated spatial subdivision.

Wrapping: In normal kd-trees, each node is associated with an axis-aligned rectangular cell,
which is based on the splits that have been made by this node and its ancestors. In a
wrapped kd-tree each internal node explicitly stores a wrapper, which is defined to be a
minimum axis-aligned bounding box for the points in the subtree associated with this
node. (In Fig. 1, the wrapper for the internal node “x = 7” is highlighted. A wrapper
can be represented as any axis-parallel rectangle, say its lower-left and upper-right corner
points.) We will provide a class Rectangle2D in the skeleton code, and a node’s wrapper
is of this type.

The use of wrappers modestly increases the storage requirements of the data structure,
but query processing is often much faster because a wrapper can be significantly smaller
than the associated cell. This means that query processing can do a better job of
filtering out subtrees that cannot contribute to the search result. This feature becomes
more significant as the dimension of the space increases. As points are inserted and
deleted from the tree, the wrappers associated with nodes of the tree need to be updated
accordingly.
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Wrappers are only computed for internal nodes. (Each external node has an “implicit”
wrapper consisting of the trivial rectangle that contains the associated point.) We can
define a node’s wrapper recursively as the smallest axis-aligned rectangle that contains
the wrappers of the node’s left and right children.

Points and Rectangles: We assume throughout that points are in 2-dimensional space and are
represented in standard form as a pair of real-valued (x, y)-coordinates. We will provide a
simple class Point2D for representing points. Here are some of the functions it provides. (See
the file Point2D.java for full information.)

public class Point2D {

public Point2D(float x, float y); // construct from coordinates

public Point2D(float[] coord); // construct from 2-element array

public Point2D(Point2D p); // copy constructor

public float getX(); // get the x-coordinate

public float getY(); // get the y-coordinate

public float get(int i); // get i-th coordinate (x = 0, y = 1)

public void set(int i, float x); // set i-th coordinate

public boolean equals(Point2D pt); // test for equality

public double distance(Point2D pt); // Euclidean distance to pt

public double distanceSq(Point2D pt); // squared distance to pt

}

For the sake of testing and debugging, we will assume that each point in our data structure
is also associated with a string label. Such a point is called a labeled point or LPoint. This
includes the additional function String getLabel(). (See the file LabeledPoint2D.java for
full information.)

In addition to points, the data structure will make heavy use of axis-aligned rectangles. We
will provide a class Rectangle2D to represent such objects. This class provides a number of
useful functions, including the following. (See the file Rectangle2D.java for full information.)

public class Rectangle2D {

public Rectangle2D(Point2D low, Point2D high); // construct from corners

public Rectangle2D(Rectangle2D r); // copy constructor

public Point2D getLow(); // get lower-left corner

public Point2D getHigh(); // get upper-right corner

public float getWidth(int i); // width along dimension i

public boolean contains(Point2D q); // do we contain point q?

public boolean contains(Rectangle2D c); // do we contain rect c?

public boolean disjointFrom(Rectangle2D c); // disjoint from rect c?

public double distanceSq(Point2D pt); // squared distance to pt

public void add(Point2D pt); // enlarge to include pt

// compute smallest enclosing rectangle for r1 and r2

public static Rectangle2D union(Rectangle2D r1, Rectangle2D r2);

}

Java Node Structure: Let’s call our wrapped kd-tree WKDTree. It will be templated by the
point type, which we call LPoint for a labeled point, which implements the LabeledPoint2D

interface described above. The most natural way to implement the two node types is to
define an inner node class (within WKDTree) and use inheritance. There will be an abstract
parent class, Node, and two subclasses, InternalNode and ExternalNode. Since Node is only
a placeholder, its methods are all declared to be “abstract.” Here is a possible outline for
the file WKDTree.java:
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public class WKDTree<LPoint extends LabeledPoint2D> {

private abstract class Node { // generic node (purely abstract)

abstract LPoint find(Point2D pt);

// ... other helper functions omitted

}

private class InternalNode extends Node {

int cutDim; // the cutting dimension (0 = x, 1 = y)

float cutVal; // the cutting value

Rectangle2D wrapper; // bounding box

Node left, right; // children

LPoint find(Point2D pt) { /* ... */ }

// ... other helper functions omitted

}

private class ExternalNode extends Node {

LPoint thisPt; // the associated point

LPoint find(Point2D pt) { /* ... */ }

// ... other helper functions omitted

}

// ... the rest of the class

}

Tree Operations: Let us explain how to perform the standard dictionary operations on an ex-
tended tree.

LPoint find(Point2D pt): Determines whether a point coordinates pt occurs within the
tree, and if so, it returns the associated LPoint. Otherwise, it returns null.

Top level: If the root is null, then return null. Otherwise, invoke the find helper
function on the root node.

Internal: Apply the find recursively on the appropriate child and return the result.
For example, if pt[cutDim] < cutVal (we are abusing notation a bit here), apply
recurse on the left subtree and otherwise recurse on the right subtree.

External: If pt is equal to this node’s point, we return a reference to the associate
value, and otherwise we return null.

void insert(LPoint pt): Inserts point pt in the tree, throwing an exception if a point
with the same coordinates already exists.

Top level: If the root is null (meaning that the tree is empty), create a single external
node containing the pt and set the root to point to this node. Otherwise, invoke
the insert helper function on the root.

Internal: Apply the insert helper function recursively on the appropriate child, and
update the child link. Afterwards, update this node’s wrapper to include this addi-
tional point. (Why update the wrapper after the insertion? Does it matter? Think
about it.)

External: If pt matches the point here, throw an exception. Otherwise, create a new
external node containing pt. We will also need to create a new internal node to
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complete the operation. To do this, let R be the bounding rectangle for the current
point and the newly added point. Let i ∈ {0, 1} be the dimension along which R is
widest. (Because the points are distinct, the wider side must be strictly positive.)
Create a new internal node whose cutting dimension is i, and whose cutting value
bisects this rectangle (see Fig. 2), and assign the external nodes as its children. We
also set the internal node’s wrapper to R.

IAD

x = 5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

[(2,6),(8,8)]

DCA

[(6,7),(8,8)]
x = 7

DCA
(6,7)

BWI
(8,8)

x = 5
[(2,2),(8,8)]

[(2,2),(4,6)] [(6,7),(8,8)]
y = 4 x = 7

IAD
(2,6)

LAX
(4,2)

DCA
(6,7)

BWI
(8,8)

IAD

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

BWI

LAX

DCA

IAD
(2,6)

insert(LAX)

R

Fig. 2: Inserting into an external node.

For example, in Fig. 2, we insert the point LAX with coordinates (4, 2). It falls into
the external node with IAD with coordinates (2, 6). The rectangle enclosing these
two points is taller than wide, so we set the cutting dimension to 1 (for y) and split
at the midpoint of the two y-coordinates (2 + 6)/2 = 4, and create the appropriate
internal node with these values.

Example: In Fig. 3 below, we present an example of a series of insertions into a wrapped
kd-tree. We highlight

void delete(Point2D pt): Deletes the entry whose coordinates match those of pt, throw-
ing an exception if there is no such point.

Top level: If the root is null (meaning that the tree is empty), throw a non-existent
key exception. Otherwise, invoke the delete helper function on the root.

External: The process is the same as deletion from an extended binary search. If the
point stored in this node does not match pt’s coordinates, we throw a non-existent
key exception. Otherwise, we will remove both this node and its parent from the
tree, replacing it with the parent’s other child q. To do this, we first return null

from the external-node delete function (see Fig. 4).

Internal: We apply the delete helper function recursively on the appropriate child and
save the return result. If the return result is null, this is the signal that we just
deleted an external node. In this case, we return a reference to our other child.
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Fig. 3: Insertion of multiple points into a wrapped kd-tree with some of the wrappers highlighted.
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Fig. 4: Deletion at the external node level.

If the return result is not null, we set our child pointer to the return result. We
also update our wrapper. Assuming inductively that our children’s wrappers are
correctly computed, we can set our wrapper to the rectangle containing the union
of the wrappers of our left and right children.

LPoint getMinX(): (We will describe only getMinX, since the other three are left/right
min/max symmetrical versions.) This returns a reference to the labeled point that is
associated with the smallest x-coordinate in the tree. If two or more points have the
same minimum x-coordinate, then the one with the smallest y-coordinate is returned.
If the dictionary is empty, this returns null.

Top level: If the root is null (meaning that the tree is empty), return null. Otherwise,
invoke the helper function on the root.

Internal: If the cutting dimension is x (0) then we invoke the function recursively on
our left child only. (The right child cannot possibly contribute to the final result.)
Otherwise, invoke the function on both subtrees. Return the result that has the
smaller x-coordinate. If the x-coordinates are equal, return the point from the left
subtree, since it must have the smaller y-coordinate.

External: Simply return a reference to the point in this node.

By the way, you will notice that all four functions (getMin/Max/X/Y) are essentially
identical up to minor variations. If you want to challenge your programming skills, you
might try implementing a single helper function that does all four. It will have two
additional arguments, one that indicates the dimension (0 for x and 1 for y) and one
that indicates the sense of comparison (−1 for min and +1 for max). Try to do this
using the minimum number of “if” statements. (I needed only two.)

LPoint findSmallerX(float x): (We will describe only findSmallerX, since the other
three are left/right min/max symmetrical versions.) Among all the points whose x-
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coordinates are strictly smaller than x, this returns a reference to the labeled point
having the largest x-coordinate. If the tree is empty or if there is no point whose
x-coordinate is smaller than x, this returns null. If there are ties for the largest x-
coordinate, return the point with the largest y-coordinate.

We will leave the efficient implementation of this function as an exercise for you. Fol-
lowing the a similar approach to the kd-tree algorithm for nearest-neighbor searching,
to achieve the best efficiency, you should design your search function to include as one
of its arguments the “best” result it has encountered so far. This point would be passed
into each recursive call. For example, your helper function might have the following
signature:

LPoint findSmallerXHelper(float x, LPoint best)

Intuitively, if a node’s wrapper is to the right of x or strictly to the left of best’s
x-coordinate, we do not need to recurse into this subtree.

For example, in Fig. 5, if we are running the helper function for findSmallerX(6) and
the current best is LAX, we know that the answer must lie within the vertical strip
between LAX and x = 6. (In this case LAX is the final answer, but the search algorithm
doesn’t yet know this.) Given this information, we can avoid recursing into the subtree
rooted at the internal node “x = 7” (shaded in blue) because its wrapper lies entirely
to the right of x = 6. Also, we can avoid recursing into the subtree rooted at “x = 2.5”
(shaded in red) because its wrapper is entirely to the left of LAX’s x-coordinate. (There
is no significant harm in visiting these two internal nodes, but we should not go any
deeper by invoking the helper function recursively on their children.)
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Fig. 5: Pruning the search in the helper function for findSmallerX.

As the algorithm visits more nodes and improves its estimate of the “best” point, our
ability to prune subtrees becomes increasingly stronger.
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