
CMSC 420 Dave Mount

CMSC 420: Lecture X03
Supplemental: TSP Heuristics

Overview: In this lecture, we will discuss the implementation of heuristics for computing traveling
salesperson (TSP) tours.

Traveling Salesperson Problem: The TSP problem formally stated is, “Given a list of
cities and the distances between each pair of cities, what is the shortest possible route
that visits each city exactly once and returns to the origin city?” This is a well-known
NP-Hard problem, even when the points (cities) are points in the plane and the distance
is the Euclidean distance. To make testing easier, we will consider squared Euclidean
distance, to avoid issues caused by round-off errors when computing square roots in the
standard Euclidean distance.

Given an n-element point set P = {p0, . . . , pn−1} in R2, a tour is defined to be a permu-
tation of these points T = 〈pi0 , pi1 , . . . , pin−1〉. To simplify notation, we omit the double
subscripts and just write a tour as T = 〈p0, p1, . . . , pn−1〉, but it is understood that the
points of P may appear in any order within this list. A edge of the tour is a consecutive
pair of elements (pi, pi+1), for 0 ≤ i ≤ n − 1. We take indices modulo n, so there is an
edge (pn−1, p0).

2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

IAD

LAX
MEX

ORDSFO
BWI

ATL

JFK
YYZ

ANC

0

0

16 BWI, IAD, ORD, SFO, LAX, MEX, ANC, YYZ, JFK, ATL

cost = 292

Fig. 1: A tour for a set of points.

The squared measure of a tour, denoted D[2](T ) is the sum of the square lengths of the
edge in the tour

D[2](T ) =
n−1∑
i=0

dist2(pi, pi+1).

Thus, the TSP problem involves computing the tour (among all n! permutations) that
minimizes this measure. There are a variety of algorithms for solving the TSP problem.
Exact algorithms are often based upon techniques such as branch and bound and cutting
planes, which avoid brute-force search by focusing on the most promising regions of the
solution space. There are well-known approximation algorithms, such as Christofides
algorithm (which achieves a 1.5× approximation factor) and (1 + ε) approximation al-
gorithms by Arora and Mitchell, which employ dynamic programming combined with a
quadtree-like decomposition.

We will consider simple heuristics based on local search. This approach starts with
a feasible (but not optimal solution) and attempts to improve it through small local
changes. We will focus on perhaps the best-known local search technique, called 2-Opt.

Lecture X03 1 Spring 2021



CMSC 420 Dave Mount

2-Opt works by swapping two edges out of the tour and swapping two edges in. Bentley
observed that most 2-Opts do not lead to improved solution, and he proposed a smart
way to select 2-Opts through the use of fixed-radius nearest neighbor searching.

Reversals and 2-Opt: The 2-Opt operation is based on reversing subtours. Given a tour
T = 〈p0, p1, . . . , pn−1〉, and given any two indices i and j, where 0 ≤ i < j ≤ n − 1.
We can modify a tour by reversing the sublist from indices i + 1 through j. Let’s
call this operation reverse(i, j). (Note that this is different from Programming
Assignment 1!)

This has the effect of replacing two edges (pi, pi+1) and (pj , pj+1) with the edges (pi, pj)
and (pi+1, pj+1), and reversing the path from pi+1 through pj (see Fig. 2).

(a) (b)

0

1
2 . . . i i + 1

n− 1

n− 2 . . .
j + 1 j

0

1
2 . . . i i + 1

n− 1

n− 2 . . .
j + 1 j j − 1

〈0, 1, . . . , i, i + 1, . . . , j, j + 1, . . . , n− 1〉 〈0, 1, . . . , i, j, . . . , i + 1, j + 1, . . . , n− 1〉

Fig. 2: The operation reverse(i, j).

Note that this operation is not defined when i = j, but we can generalize it to any pair
i 6= j by performing reverse(min(i, j),max(i, j)). Note also that the operation has no
effect on the tour when pi and pj are adjacent in the tour (since it has the effect of
reversing a subtour consisting of a single point). A couple of examples are shown in
Fig. 3.

IAD

LAX
MEX

ORDSFO
BWI

ATL

JFK
YYZ

ANC

IAD

LAX
MEX

ORDSFO

ATL

JFK
YYZ

ANC

reverse(IAD,JFK)

IAD

LAX
MEX

ORD

ATL

JFK
YYZ

ANC

reverse(ANC,SFO)

SFO

BWI BWI

cost = 292 cost = 254 cost = 198

Fig. 3: Examples of reversals.

We are only interested in reversals that (strictly) reduce the cost of the tour. Define the
change in the measure to be:

∆(i, j) = (dist2(pi, pj) + dist2(pi+1, pj+1))− (dist2(pi, pi+1) + dist2(pj , pj+1))

For 0 ≤ i, j ≤ n − 1 (i 6= j), we define 2-Opt(i, j) as follows. If ∆(i, j) < 0, perform
reverse(i, j), and otherwise the tour is unchanged. If the reversal is performed, we say
that the operation is effective.

Lecture X03 2 Spring 2021



CMSC 420 Dave Mount

Limiting 2-Opts: There are O(n2) possible 2-Opts that could be attempted on a tour. If
the tour is close to optimal, the vast majority of these operations will not have any
effect on the tour. Bentley (whom you might remember invented the kd-tree) proposed
a simple way to filter out 2-Opts that are clearly ineffective. Consider an point pi in the
tour. In order for the operation 2-Opt(i, j) to be effective, one of the newly added edges,
say (pi, pj), should be shorter than at least one of the two edges are being replaced.
Using this observation, he proposed that the other point pj should be closer to pi than
its successor pi+1. In other words, pj lies within a ball of radius dist(pi, pi+1) centered
at pi. Such a point is called a fixed-radius near neighbor.

In his TSP heuristic, Bentley tried 2-Opts with all such points. We will implement a
more limited variant of Bentley’s proposal by computing just the closest point to pi
(excluding pi itself) that lies within the given distance.

Let’s define the fixed-radius nearest neighbor query (or FRNN query) as follows for a
point set P . Given a query point q and a radius r, the problem is to compute the closest
point pj ∈ P to q, assuming that 0 < dist(q, pj) < r (see Fig. 4(a)). (The reason for
demanding that the distance be strictly larger than zero is that we don’t want to return
the same point that made the query.) If there is no point of P within this distance range,
the query returns null (see Fig. 4(b)).

q
q

r

r

p1

p2

p3

p4

p5

p6

p7

p8p1

p2

p3

p4

p5

p6p7

p8

Ans: null
Ans: p3

(a) (b)

q
r
Ans: null

Fig. 4: Fixed-radius nearest-neighbor queries.

Given 0 ≤ i ≤ n − 1, we define the operation 2-Opt-NN(i) as follows. First, we invoke
a fixed-radius nearest neighbor query with the center point pi and radius dist(pi, pi+1).
(Recall that indices are taken modulo n.) If the query returns null, we do nothing.
Otherwise, letting pj denote the result of the query, we perform the operation 2-Opt(i, j).
Note that this operation may be ineffective (depending on the other distances involved).
If the point pj exists and the 2-Opt is effective, then pj is returned. Otherwise, the
operation returns null.

An example is shown in Fig. 5. We first find the closest point to pi lying within the
ball whose radius is the distance to pi+1. The point pj is the closest. We then invoke
2-Opt(i, j), which reverses the subpath from pi+1 to pj . In this case, the square measure
decreases, so the operation is effective.

Implementing FRNN Queries: Let’s next consider how to efficiently implement fixed-
radius nearest neighbor queries using the WKDTree data structure? We define a recursive
helper function

LPoint fixedRadNN(Point2D center, double sqRadius, LPoint best)

Lecture X03 3 Spring 2021



CMSC 420 Dave Mount

pi

2-Opt-NN(i) = 2-Opt(i, j)

pi+1

pj

pj+1

pi

pi+1

pj

pj+1

Fig. 5: 2-Opt-NN operation.

where center is the center of the disk, sqRadius is its squared radius, and best is the
best point we have seen so far. At the top level, we invoke this function on the root of
the tree with best set to null.

If we arrive at an internal node, we compute the squared distance of the wrapper to
center. If it is greater than or equal to sqRadius, then the node cannot provide viable
point, and we return the current value of best. Otherwise, we compare the squared
distance from the wrapper to center against the squared distance from best to center

(assuming best is not null). If the wrapper distance is strictly greater than the best
distance, then again we can return best. Otherwise, we invoke the helper function
recursively on each of the node’s children, and update best accordingly (e.g., best =

left.fixedRadNN(..., best)).1 Finally, we return best.

If we arrive at an external node, we compute the squared distance of the point stored in
this node to the center. If this squared distance is:

� Equal to zero, or

� Greater than or equal to sqRadius, or

� Greater than the squared distance from the query point to best (assuming best is
non-null)

then there is no change and we return best. Otherwise, we return the point in this node
as the new best. (But see the next paragraph in case the squared distances are equal.)

What if there are multiple candidates for the nearest neighbor? For the sake of consis-
tency, let’s agree that the point to be selected is the one that is lexicographically smallest
with respect to its coordinates.2 That is, among all nearest neighbors, its x-coordinate
should be the smallest, and among all that have the same x-coordinate, the y-coordinate
should be the smallest. (This could happen for example for the point set in Fig. 1. The
points MEX, IAD, ANC, YYZ, JFK are all equidistant from ORD. Among these points, MEX
has the lowest coordinates lexicographically, and so it would be chosen had we invoked
a fixed-radius nearest neighbor search on ORD.

1As a further optimization, we could invoke the helper function first on the child that is closer to the center,
since that child is more likely to provide a closer point. (We did not implement this in our version, and so you do
not need to do so either.

2We do not expect many test cases to check for this condition, so in your first pass, you might ignore this issue.
The input file test05-input.txt has an instance where there are multiple candidates for the nearest neighbor.

Lecture X03 4 Spring 2021


