Other/Better Criteria?
- Expected case: Some keys more popular than others
- Self-adjusting: Tree adapts as popularity changes

How to design/analyze?
- Splay Tree: A self-adjusting binary search tree
 - No rules! (yay anarchy!)
 - No balance factors
 - No limits on tree height
 - No colors/levels/priorities
- Amortized efficiency:
 - Any single op - slow
 - Long series - efficient on avg.

Intuition: Let T be an unbalanced BST; suppose we access its deepest key

Recap: Lots of search trees
- Unbalanced BSTs
- AVL Trees
- 2-3, Red-black, AA Trees
- Treaps & Skip lists

Focus: Worst-case or randomized expected case

Lesson: Different combinations of rotations can:
- bring given node to root
- significantly change (improve) tree structure.

Splay Trees I

Splay Trees II

Final

Tree's height has reduced by ~ half!

Idea I: Rotate "a" to top (Future accesses to "a" fast)

Idea II: Rotate 2 at a time - upper + lower

Still unbalanced!

→ Tree restructures itself

→ Tree restructures itself
ZigZig(p): [LL case]

Subtrees A, C move up↑

ZigZig(p): [LR case]

Subtrees C, E of p move up↑

Zig(p): [L case]

Node p ← find x by standard BST search while (p ≠ root)
 if (p is child of root) zig(p)
 else /* p has grand parent */
 if (p is LL or RR grand child) zigZig(p)
 else /* p is LR or RL grand child */ zigZag(p)

Splay (Key x):

Example: splay(3)

Subtree A moves up↑

C unchanged

Final ↓

Splay Trees II
Splay Trees

- **Analysis**:
 - Amortized analysis
 - Any one op might take $O(n)$
 - Over a long sequence, average time is $O(n \log n)$ each
 - Amortized analysis is based on a sophisticated potential argument
 - Potential: A function of the tree's structure
 - Balanced \Rightarrow Low potential
 - Unbalanced \Rightarrow High potential
 - Every operation tends to reduce the potential

- **Delete (x)**:
 - $\text{splay}(x)$ [x now at root]
 - $p = \text{root}$
 - if (p.key $\neq x$) error!
 - $\text{splay}(x)$ in p's right subtree
 - $q = p$.right [q's key is x's successor]
 - q.left = p.left
 - root = q

- **Splay Trees are Amazingly Adaptive!**

- **Dynamic Finger Theorem**
 - Keys: x_1, \ldots, x_n. We perform accesses $x_{i_1}, x_{i_2}, \ldots, x_{i_m}$
 - Let $\Delta_j = i_j - i_{j-1}$, distance between consecutive items
 - Thm: Total access time is $O(m + n \log n + \sum_{j=1}^{m} (1 + \log \Delta_j))$

- **Static Optimality**
 - Suppose key x_i is accessed with prob p_i. ($\sum p_i = 1$)
 - Information Theory:
 - Best possible binary search tree answers queries in expected time $O(H)$ where $H = \sum p_i \log \frac{1}{p_i} = \text{Entropy}$
 - Given a seq. of m ops on splay tree with keys x_1, \ldots, x_n, where x_i is accessed g_i times. Let $p_i = g_i/m$. Then total time is $O(m \sum p_i \log \frac{1}{p_i})$