Can we do better?

Range Trees:
- Space is $O(n \log^d n)$
- Query time:
 - Counting: $O(\log^d n)$
 - Reporting: $O(k + \log^d n)$
In \mathbb{R}^2: $\log^2 n$ much better than $\Omega(n)$ for large n.
→ Range trees are more limited

Layering:
Combining search structures
- Suppose you want to answer a composite query w. multiple criteria:
 - Medical data: Count subjects
 - Age range: $a_{i_0} \leq age \leq a_{i_1}$
 - Weight range: $w_{i_0} \leq weight \leq w_{i_1}$
- Design a data structure for each criterion individually
- Layer these structures together to answer full query
→ Multi-Layer Data Structures

Recap:
- kd-Tree: General-purpose data structure for pts in \mathbb{R}^d
- Orthogonal range query:
 - Count/report pts in axis-aligned rect.
 - kd-Tree: Counting: $O(n)$ time
 - Reporting: $O(k + \log^d n)$ time

Claim: A 1-D range tree with n pts has space $O(n)$ and answers 1-D range count/report queries in time $O(\log^d n)$ (or $O(k + \log^d n)$).

Call this a 1-Dim Range Tree:

1-Dim Range Tree:
- Goal: Express answer as disjoint union of subsets
- Method: Search for $Q_{i_0} + Q_{i_1}$ + take maxima/subtrees

Canonical Subsets:
- Design a data structure for each criterion individually
- Layer these structures together to answer full query
→ Multi-Layer Data Structures
Recursive helper:
\[\text{int range1Dx}(\text{Node } p, \text{Intv } Q = [Q_h, Q_w], \text{Intv } C = [x_0, x_1]) \]

Initial call:
\[\text{range1Dx}(\text{root}, Q, C) \]

Cases:
- \(p \) is external:
 - if \(p \).pt.x \(\in \) \(Q \) \(\rightarrow \) 1 else \(\rightarrow \) 0
- \(p \) is internal:
 - \(C \subseteq Q \) \(\Rightarrow \) all of \(p \)'s pts lie within query \(\rightarrow \) return \(p \).size
 - \(C \) is disjoint from \(Q \) \(\Rightarrow \) none of \(p \)'s pts lie in \(Q \) \(\rightarrow \) return 0
 - Else partial overlap
 - Recurse on \(p \)'s children + trim the cell

More details:
Given a 1-D range tree \(T \):
- Let \(Q = [Q_h, Q_w] \) be query interval
- For each node \(p \), define interval cell \(C = [x_0, x_1] \) s.t. all pts of \(p \)'s subtree lie in \(C \)
- Root cell: \(C_o = [-\infty, +\infty] \)

2-D Range Searching:
- Layer a range tree for \(x \) with range tree for \(y \)
- For each node \(p \) \(\in \) 1-D \(x \) tree, let
 \[S(p) = \text{set of pts in } p \)'s subtree \]
- Def: \(p_{aux} \): A 1-D \(y \) tree for \(S(p) \)

Analysis:
Lemma: Given a 1-D range tree with \(n \) pts, given any interval \(Q \), can compute \(O(\log n) \) subtrees whose union is answer to query.

Thm: Given 1-D range tree... can answer range queries in time \(O(\log n) \) \(\rightarrow \) \((k \text{ to report}) \)
Answering Queries?
Given query range
$Q = [Q_{lo,x}, Q_{hi,x}] \times [Q_{lo,y}, Q_{hi,y}]$
- Run range1Dx to find all subtrees that contribute
 - For each such node p
 - run range1Dy on p.aux
- Return sum of all result

x-range tree

2D Range Tree:
- Construct 1D range tree based on x coord for all pts
- For each node p:
 - Let $S(p)$ be pts of pi tree
 - Build 1D range tree for $S(p)$ based on y \to p.aux
- Final structure is union of x-tree + (n-1) y-trees

y-range tree

Higher Dimensions?
- In d-dim space, we create d-layers
- Each recrusrs one dim lower until we reach 1-d search
- Time is the product:
 $\log n \cdot \log n \ldots \log n = O(\log^d n)$

Analysis: The 1D x search takes
of $O(\log n)$ time and generates
$O(\log^d n)$ calls to 1Dy search
\Rightarrow Total: $O(\log n \cdot \log n) = O(\log^2 n)$

Intuition: The x-layer finds
subtrees p contained in x-range
+ each aux tree filters based
on y.

int range2D(Node p, Rect Q, Intv C=[x_0,x_1])
if (p is external) return p.pt in Q
else if (Q.x contains C) \COMMENT{C \subseteq Q.x \text{-projection}}
 \begin{align*}
 [y_0, y_1] &= [-\infty, +\infty] \COMMENT{init y-cell} \\
 \text{return range1Dy}(p.aux, Q, [y_0, y_1])
 \end{align*}
else if (Q.x is disjoint of C) return 0
else \COMMENT{partial x-overlap}
 return range2D(p.left, Q, [x_0, p.x])
 + range2D(p.right, Q, [p.x, x_1])

Invoked $O(\log n)$ times - once per maximal sub-tree
Invoked $O(\log n)$ times - once for each ancestor of max subtree