CRYPTOGRAPHY INTRO

GRAD SEC OCT 172017

SCENARIOS AND GOALS

Public network

SCENARIOS AND GOALS

Public network

SCENARIOS AND GOALS

Public network

CONFIDENTIALITY Keep others from reading Alice's messages / data

INTEGRITY
Keep others from undetectably tampering with Alice's messages / data

Keep others from undetectably impersonating Alice (keep her to her word, too)

RANDOMNESS

RANDOMNESS

Message m

RANDOMNESS

RANDOMNESS

RANDOMNESS

RANDOMNESS

RANDOMNESS

RANDOMNESS

Ideally, to the attacker, it is indistinguishable from
a string of bits chosen uniformly at random

RANDOMNESS

Ideally, to the attacker, it is indistinguishable from a string of bits chosen uniformly at random

This will be impossible with Alice and Bob having a shared secret

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$

$$
\begin{aligned}
& f_{2} \begin{array}{ll|l|l|l}
\hline 1 & 0 & 2 & 3 & 4 \\
\end{array} \\
& f_{|X|:} \begin{array}{l|l|l|l|l|}
\hline 7 & 9 & 5 & 1 & 8 \\
\hline
\end{array}
\end{aligned}
$$

Think of X as all
128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|}
\hline f_{1} & 0 & 0 & 1 & 2 & 3
\end{array}{ }^{\prime} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|}
\hline 7 & \\
\hline 7 & 9 & 5 & 1 & 8 \\
\hline
\end{array}
\end{aligned}
$$

If you know i, then $f_{i}(x)$ is trivial to invert

Think of X as all
128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$

```
fl
```


If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

Think of X as all
128-bit bit strings

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$


```
flX|: 7 7 9:5
```

Think of X as all
128-bit bit strings

If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way
"One-way trapdoor function"

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$


```
flX|: 7-7)9:5
```

Think of X as all
128-bit bit strings

If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way
"One-way trapdoor function"

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$


```
flX|: 7 7 9:5
```

Think of X as all
If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

"One-way trapdoor function"

128-bit bit strings
Shared secret: index i chosen u.a.r.

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$

Think of X as all
If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

"One-way trapdoor function"

128-bit bit strings
Shared secret: index i chosen u.a.r.

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$


```
fl\\!:7
```

Think of X as all
If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

"One-way trapdoor function"

128-bit bit strings
Shared secret: index i chosen u.a.r.

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$


```
flX|!: 7 % 9:5
```

Think of X as all
If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

"One-way trapdoor function"

128-bit bit strings
Shared secret: index i chosen u.a.r.

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$


```
flX|!: 7 % 9:5
```

Think of X as all
If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

"One-way trapdoor function"

128-bit bit strings
Shared secret: index i chosen u.a.r.

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$

Think of X as all
If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

"One-way trapdoor function"

128-bit bit strings
Shared secret: index i chosen u.a.r.

Without knowing i,
learns nothing about m

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Consider the set of all permutations $f_{i}: X \rightarrow X$

Think of X as all
If you know i, then $f_{i}(x)$ is trivial to invert
If you don't know i, then $f_{i}(x)$ is one-way

"One-way trapdoor function"

128-bit bit strings
Shared secret: index i chosen u.a.r.

Without knowing i,
learns nothing about m

WHAT WE IDEALLY HAVE: RANDOM FUNCTIONS

Shared secret: index i chosen u.a.r.

In essence, this protocol is saying "Let's use the ${ }^{i t h}$ permutation function"

Infeasible to store all permutation functions
So instead cryptographers construct pseudorandom functions

BLACKBOX \#1: BLOCK CIPHERS

BLOCK CIPHERS

Plaintext

AES key sizes:
128, 192, 256

> Block ciphers are deterministic For a given m and K,
> $E(K, m)$ always returns the same c

Confusion: Each bit of the ciphertext should depend on each bit of the key Diffusion: Flipping a bit in m should flip each bit in c with $\operatorname{Pr}=1 / 2$

BLOCK CIPHERS ARE DETERMINISTIC

Block ciphers are deterministic
For a given m and K,
$E(K, m)$ always returns the same c

An eavesdropper could determine when messages are re-sent

BLOCK CIPHERS ARE DETERMINISTIC

Block ciphers are deterministic
For a given m and K,
$E(K, m)$ always returns the same c

An eavesdropper could determine when messages are re-sent

INITIALIZATION VECTORS

rjust needs to be different each time

Random: Must send with the message Good if messages can be reordered

Counter: Can infer from message number Good if messages are delivered in-order

INITIALIZATION VECTORS

rjust needs to be different each time

Random: Must send with the message Good if messages can be reordered

Counter: Can infer from message number Good if messages are delivered in-order

BLOCK CIPHERS HAVE FIXED SIZE

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

NEVER use ECB

(but over 50\% of Android apps do)

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

Counter (CTR) mode encryption

Counter (CTR) mode decryption

BLACKBOX \#2: MESSAGE AUTHENTICATION CODE (MAC)

MESSAGE AUTHENTICATION CODES

AES key sizes:
Plaintext
Same fixed block size
(AES: 128 bits)
Ciphertext

128, 192, 256

Block ciphers are deterministic For a given m and K, $E(K, m)$ always returns the same c

Confusion: Each bit of the ciphertext should depend on each bit of the key Diffusion: Flipping a bit in m should flip each bit in c with $\operatorname{Pr}=1 / 2$

MESSAGE AUTHENTICATION CODES

- Sign: takes a key and a message and outputs a "tag"
- $\operatorname{Sgn}(\mathrm{k}, \mathrm{m})=\mathrm{t}$
- Verify: takes a key, a message, and a tag, and outputs Y/N - Vfy $(k, m, t)=\{Y, N\}$
- Correctness:
- Vfy(k, m, Sgn(k, m)) = Y

ATTACKER'S GOAL: EXISTENTIAL FORGERY

- A MAC is secure if an attacker cannot demonstrate an existential forgery despite being able to perform a chosen plaintext attack:
- Chose plaintext:
- Attacker gets to choose m1, m2, m3, ...
- And in return gets a properly computed $\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3, \ldots$
- Existential forgery:
- Construct a new (m, t) pair such that $V f y(k, m, t)=Y$

ENCRYPTED CBC

Just take the last block in CBC It's a trap!

Cipher Block Chaining (CBC) mode encryption

Use a separate key and encrypt the last block

BLACKBOX \#3: HASH FUNCTIONS

HASH FUNCTION PROPERTIES

- Very fast to compute
- Takes arbitrarily-sized inputs, returns fixed-sized output
- Pre-image resistant:

Given $\mathrm{H}(\mathrm{m})$, hard to determine m

- Collision resistant

Given m and $H(m)$, hard to find $m^{\prime} \neq m$ s.t. $H(m)=H\left(m^{\prime}\right)$

Good hash functions: SHA family (SHA-256, SHA-512, ...)

HASH MACS

- Sign(k, m):
- opad $=0 \times 5 c 5 c 5 c \ldots$
- ipad =0x363636...
- H((k \oplus opad) II H((k \oplus ipad) II m))
- Verify:
- Recompute and compare

