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POOR PROGRAMING

CryptoLint tool to perform static  
analysis on Android apps to detect  
how they are using crypto libraries



15,134 apps from Google play used crypto; 
Analyzed 11,748 of them

CRYPTO MISUSE IN ANDROID APPS
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NEVER use ECB
(but over 50% of Android apps do)



• BouncyCastle is a library that conforms to Java’s 
Cipher interface: 

• Java documentation specifies:

Cipher c =  
   Cipher.getInstance(“AES/CBC/PKCS5Padding”);
 
// Ultimately end up wrapping a ByteArrayOutputStream  
// in a CipherOutputStream

BOUNCYCASTLE DEFAULTS
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CRYPTO MISUSE IN ANDROID APPS

A failure of the programmers to know the tools they use

A failure of library writers to provide safe defaults



• Do not roll your own cryptographic mechanisms 
• Takes peer review 
• Apply Kerkhoff’s principle 

• Do not misuse existing crypto 

• Do not even implement the underlying crypto

Avoid shooting yourself in the foot:

MISUSING CRYPTO



• Not talking about creating a brand new crypto scheme, 
just implementing one that’s already widely accepted and 
used. 

• Kerkhoff’s principle: these are all open standards; should 
be implementable. 

• Potentially buggy/incorrect code, but so might be others’ 
implementations (viz. OpenSSL bugs, poor defaults in 
Bouncy castles, etc.) 

• So why not implement it yourself?

WHY NOT IMPLEMENT AES/RSA YOURSELF?



• Cryptography concerns the theoretical difficulty in 
breaking a cipher

Cryptographic processing  
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message
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• Cryptography concerns the theoretical difficulty in 
breaking a cipher

Cryptographic processing  
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message

Leaked information 
  - Power consumption 
  - Electromagnetic radiation 
  - Other (Timing, errors, etc.)

• But what about the information that a particular 
implementation could leak? 
• Attacks based on these are “side-channel attacks”

SIDE-CHANNEL ATTACKS



• Interpret power traces taken during a cryptographic 
operation 

• Simple power analysis can reveal the sequence of 
instructions executed

SIMPLE POWER ANALYSIS (SPA)



Overall operation clearly visible:  
Can identify the 16 rounds of DES

SPA ON DES
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Specific instructions are also discernible

SPA ON DES



Specific instructions are also discernible

Jump taken

No jump taken

SPA ON DES
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  for(int i=0; i < key.len(); i++) {  
     if(key[i] == 0)
        // branch 0
     else
        // branch 1
   }
}
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HypotheticalEncrypt(msg, key) {
  for(int i=0; i < key.len(); i++) {  
     if(key[i] == 0)
        // branch 0
     else
        // branch 1
   }
}

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends 
on the inputs (key/data), then SPA can reveal keys

What if branch 0
  - took longer? (timing attacks)
  - gave off more heat?
  - made more noise? 
  - …

HIGH-LEVEL IDEA



• SPA just visually inspects a single run 

• DPA runs iteratively and reactively 
• Get multiple samples 
• Based on these, construct new plaintext messages as 

inputs, and repeat

DIFFERENTIAL POWER ANALYSIS (DPA)



• Hide information by making the execution paths 
depend on the inputs as little as possible 
• Have to give up some optimizations that depend on 

particular bit values in keys 
- Some Chinese Remainder Theorem (CRT) optimizations 

permitted remote timing attacks on SSL servers 

• The crypto community should seek to design 
cryptosystems under the assumption that some 
information is going to leak

MITIGATING SUCH ATTACKS



POOR POLICIES FROM GOVERNMENTS
Exploits export-grade encryption

1024-bit and smaller feasibly broken 

Logjam downgrades to export-grade (512)



Clipper chip
A lesson in poorly designed protocols

Goal: 
Confidentiality

Support encrypted communication  
between devices

Permit law enforcement to obtain  
“session keys” with a warrant

Goal: 
Key escrow

Clipper Clipper



Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Hardware that is difficult to 
introspect (e.g., extract keys), 
alter (change the algorithms), 
or impersonate

Diffie-Hellman 
key exchange

LEAF generation 
& validation

Skipjack Keys  
Unit key 

Global family key
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encryption algorithm

Block cipher designed by the  
NSA, originally classified 
SECRET. 

(Violates Kirchhoff’s principle) 
 
Broken within one day of 
declassification. 

80-bit key; similar algorithm 
to DES (also broken)
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Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Assigned when the hardware 
is manufactured. 

Unit key is unique to this unit 
in particular (each Clipper chip  
also has a unit ID). 

Global family key is the same 
across many units.Diffie-Hellman 

key exchange
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Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Used for establishing a 
(symmetric) session key 

Session keys are ephemeral 
(e.g., last only for a given  
connection, transaction, etc.) 

General properties about 
session keys: 
• Compromising one session key 

does not compromise others 
• Compromising a long-term key 

should not compromise past 
session keys (forward secrecy)
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Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Diffie-Hellman 
key exchange

LEAF generation 
& validation

Skipjack Keys  
Unit key 

Global family key

LEAF 
(Law Enforcement Access Field)

To permit wiretapping, law 
enforcement needs to be able  

to extract session keys, but  
only has access to what is sent  

during communication

Idea: send data that has enough  
info to allow law enforcement  
to extract keys (but not any  

other eavesdropper).



LEAF protocol design

Clipper Clipper

1. DH key exchange

2. Each send LEAF packet

The Clipper chips will not decrypt until  
it has received a valid LEAF packet

3. Send data encrypted 
with the session key

Law enforcement sees all packets. 
• Cannot infer key from DH key exchange 
• Can infer it from the LEAF packet



LEAF message structure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables
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The other Clipper chip “verifies” 
the LEAF by making sure that  

the hash is correct
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LEAF message structure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

Law enforcement does not have direct access  
to all unit keys; needs a warrant to get them 

Unit keys are split across two locations 
(one location gets a OTP, the other gets the XOR)



LEAF: failure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

To verify the LEAF, 
the otherClipper chip 
only checks the hash

Clipper chips also allow you to  
test a LEAF locally



LEAF: failure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

Encrypted session key HashUnit ID

Generate a random LEAF =>  
1/216 chance of a valid hash

Validates at the other 
Clipper chip (so it will 
decrypt messages)

But law enforcement will just  
see random ID & key



USEFUL TOOL: ZMAP
Goal: port-scan the entire Internet  
in less than an hour

Approaches:

Non-blocking, stateless
⟹	Highly parallelizable

Randomize addresses
⟹	Avoid takedown notices

Datasets: Rapid7, censys.io

http://censys.io


UNSAFE OPTIMIZATIONS
TLS session ticket resumption

Session ticket: session keys and  
other data to resume the session

Server sends an “opaque” ticket  
(encrypted with the Session Ticket  
Encryption Key, STEK)

Client sends the encrypted session  
ticket during handshake; server uses  
the STEK to recover it and pick up  
in one round-trip of communication



UNSAFE OPTIMIZATIONS

Incentive to hold onto STEKs (lower RTTs)

But they’re holding onto them long enough  
for nation-states to recover them
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for nation-states to recover them











POOR CERTIFICATE MANAGEMENT
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OpenSSL
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Heartbleed

OpenSSL
“hi” 22

“hi”
+20B from memory

< 216

Potentially reveals user data and private keys

Heartbleed exploits were undetectable
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03/21 04/02 04/07

Discovered
Akamai
patched Publicly announced

03/21 04/02 04/07

Discovered
Akamai
patched Publicly announced

1 Patched 2 Revoked 3 Reissued

Every vulnerable website should have:

Heartbleed is a natural experiment:  
How quickly and thoroughly do administrators act?
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Patching rates are mostly positive 
Only ~7% had not patched within 3 weeks

Was ever vulnerable
Still vulnerable after 3 weeks
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Reaction ramps up quickly

Security takes the weekends off

Weekends
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Similar pattern to patches:  
Exponential drop-off, then levels out

After 3 weeks: 13% Revoked 27% Reissued
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Reissuing the same key is common practice

4.1% Heartbleed-induced
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We may be dealing with Heartbleed for years

Vulnerable but not revoked

~40% did not 
expire after  

one year

~8% of vulnerable
certs still unexpired
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Security is an economic concern

WebsiteBrowser

Certificate

Certificate Authority

Browsers face tension between security and page load times

CAs face tension between security and bandwidth costs

Certificate

Revoked?
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Certificate

OCSP Stapling

WebsiteBrowser

Certificate Authority
Certificate✗ Certificate✗
Certificate✗ Certificate✗

Certificate✗
Certificate✗

Certificate✗ Certificate✗
Certificate✗ Certificate✗

Certificate
Certific✔

But OCSP Stapling rarely activated by admins:  
Our scan:  3% of normal certs;  2% of EV certs



Testing browser behavior

Revocation 
protocols

• Browsers should support all major protocols
• CRLs, OCSP, OCSP stapling

Availability of  
revocation info

• Browsers should reject certs they cannot check
• E.g., because the OCSP server is down

Chain  
lengths

• Browsers should reject a cert if any on the chain fail
• Leaf, intermediate(s), root
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• E.g., because the OCSP server is down

Chain  
lengths

• Browsers should reject a cert if any on the chain fail
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Intermediate Intermediate…



Test harness

Implemented 192 tests using fake root certificate + Javascript
• Unique DNS name, cert chain, CRL/OCSP responder, …



Results across all browsers

 ✔ Passes test
 ✗  Fails test

ev Passes for EV certs
i    Ignores OCSP Staple

a     Pops up alert to user
l/w Passes on Linux/Win.



Results across all browsers

Chrome

Generally, only checks for EV certs
~3% of all certs

Allows if revocation info unavailable

Supports OCSP stapling

 ✔ Passes test
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ev Passes for EV certs
i    Ignores OCSP Staple

a     Pops up alert to user
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Results across all browsers

Firefox

Never checks CRLs
Only checks intermediates for EV certs

Allows if revocation info unavailable

Supports OCSP stapling

 ✔ Passes test
 ✗  Fails test

ev Passes for EV certs
i    Ignores OCSP Staple

a     Pops up alert to user
l/w Passes on Linux/Win.



Results across all browsers

Safari

Checks CRLs and OCSP

Allows if revocation info unavailable
Except for first intermediate, for CRLs

Does not support OCSP stapling

 ✔ Passes test
 ✗  Fails test

ev Passes for EV certs
i    Ignores OCSP Staple

a     Pops up alert to user
l/w Passes on Linux/Win.



Results across all browsers

Internet Explorer

Checks CRLs and OCSP

Often rejects if revocation info unavailable
Pops up alert for leaf in IE 10+

 
Supports OCSP stapling

 ✔ Passes test
 ✗  Fails test

ev Passes for EV certs
i    Ignores OCSP Staple

a     Pops up alert to user
l/w Passes on Linux/Win.



Results across all browsers

   Mobile Browsers

Uniformly never check 

 
 
 
Android browsers request Staple

…and promptly ignore it

 ✔ Passes test
 ✗  Fails test

ev Passes for EV certs
i    Ignores OCSP Staple

a     Pops up alert to user
l/w Passes on Linux/Win.



Results across all browsers

 ✔ Passes test
 ✗  Fails test

ev Passes for EV certs
i    Ignores OCSP Staple

a     Pops up alert to user
l/w Passes on Linux/Win.



Results across all browsers

Browser developers are not
doing what the PKI needs them to do
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Subject Alternate Name (SAN) Lists

Spirit: Multiple names for the  
same organization

Practice: Different organizations  
lumped together

Who gets the private key?  
 

Who manages it?

Cruise-liner Certificate
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Who?
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Who shares?

Key sharing is common across the Internet
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Popular hosting services are prime targets for attack

>40% of all sites, 10 providers

60% of Top 1K, same provider 
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POOR CERTIFICATE MANAGEMENT

Websites aren’t properly revoking their certificates

Browsers aren’t properly checking for revocations

Websites aren’t keeping their secret keys secret

Websites have disincentive to do the right thing (CAs charge; key management hard)

Browsers have a disincentive to do the right thing (page load times)

CAs have incentive to introduce disincentives (bandwidth costs)

Why?


