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Abstract—The Gemini System Interconnect is a new network 
for Cray’s supercomputer systems.  It provides improved 
network functionality, latency and issue rate.  Latency is reduced 
with OS bypass for sends and direct user completion notification 
on receives.  Atomic memory operations support the construction 
of fast synchronization and reduction primitives. 

I. INTRODUCTION

EMINI is the new network for Cray’s supercomputer 
systems. It enhances the highly scalable Seastar design 

used to deliver the 225,000 core Oak Ridge National 
Laboratory Jaguar system, improving network functionality, 
latency, and issue rate. Gemini uses a novel system-on-chip 
(SoC) design to construct direct 3D torus networks (Figure 1)
that can scale to in excess of 100,000 multi-core nodes. 
Gemini is designed to deliver high performance on MPI 
applications and filesystem traffic; in addition it provides 
hardware support for global address space programming. 
Gemini enables efficient implementation of programming 
languages such as Chapel, UPC, and Co-Array Fortran on 
massively parallel systems. 

Figure 1: 3D Torus network 

Each Gemini ASIC provides two network interface 
controllers (NICs), and a 48-port router. Each of the NICs has 
its own HyperTransport™ 3 host interface, enabling Gemini to 
connect two Opteron nodes to the network. This 2-node 
building block provides 10 torus connections, 4 each in two of 
the dimensions (‘x’ and ‘z’) and 2 in the third dimension (‘y’), 
as shown in Figure 2. Traffic between the two nodes 
connected to a single Gemini is routed internally. The router 
uses a tiled design, with 8 tiles dedicated to the NICs and 40 
(10 groups of 4) dedicated to the network. 

The Gemini ASIC is implemented in the TSMC 90nm 
process and has a die size of 232.8 mm2.  The block structure 
of the Gemini design is illustrated in Figure 3. The Netlink 
block connects the NICs to the router. Traffic from both NICs 

is distributed over all eight of the router’s inputs enabling 
injection bandwidth to be load balanced on a packet-by-packet 
basis. The Netlink also handles changes in clock speed 
between the NIC and router domains. 

Figure 2: Seastar and Gemini 

The supervisor block connects Gemini to an embedded control 
processor (L0) for the blade and hence the Cray Hardware 
Supervisory System  (HSS) network, used for monitoring the 
device and loading its routing tables.  

Gemini is designed for large systems in which failures are 
to be expected and applications must continue to run in the 
presence of errors. Each torus connection comprises 4 groups 
of 3 lanes. Packet CRCs are checked by each device with 
automatic link-level retry on error. The failure of a single lane 
is tolerated by shunting its data to the remaining 2 lanes in the 
group. In the event of the complete failure of a link, the router 
will select an alternate path for adaptively routed traffic.  
Gemini uses ECC to protect major memories and data paths 
within the device.  

Figure 3: Gemini block structure 

For traffic designated as adaptive, the Gemini router 
performs packet by packet adaptive routing, distributing traffic 
over lightly loaded links. With 8 links connecting each Gemini 
to its neighbors in the ‘x’ and ‘z’ directions and 4 links in the 
‘y’ dimension, there are multiple paths available. Hashed 
deterministic routing can be selected as an alternative when a 
sequence of operations to the same cache line must be 
performed in order.  

Gemini provides the ability for user processes to transfer 
data directly between nodes without OS intervention. For 
example, one process in a parallel job can initiate a put 
directly from its memory to that of another process. To do this 

G

it specifies the data (or source address), the destination virtual 
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addresses, the destination process id, and the size of the 
transfer. Additional hardware primitives include remote get, 
atomic operations, block transfer and completion notification. 
The Gemini NIC is a hardware pipeline that maximizes the 
performance of these simple operations. More complex 
communication protocols such as message passing and TCP/IP 
are implemented using these primitives.  
User space communication is supported by the User Gemini 

II. GEMINI NIC 

A. Overview
ASIC has a pair of NICs, each with its own 

H

ackets are routed across the network to a destination NIC. 
Th

Network Interface (uGNI) and Distributed Memory 
Application (DMAPP) APIs. These libraries are called by 
Cray MPI and Shmem. DMAPP is also used in the run time 
for Cray Chapel, UPC, and Co-Array Fortran compilers. Inter-
kernel communication is provided using the Kernel Gemini 
Network Interface (kGNI) which provides both messaging and 
RDMA. The Lustre filesystem is supported via a Lustre 
Network Driver (LND) for kGNI. Other filesystems such as 
NFS, GPFS and Panasas are provided via DVS, the Cray Data 
Virtualization Service layered over LND. TCP/IP 
communication over the Gemini fabric is provided by the IP 
over Gemini Fabric (IPoGIF) module. 

Each Gemini 
yperTransport 3 interface (known as the HT Cave and shown 

on the left hand side of Figure 3). The NICs are connected to 
the Gemini router via the Netlink block (on the right hand side 
of Figure 4). The NIC is a hardware pipeline. The node issues 
commands, writing them across the HyperTransport interface. 
The NIC packetizes these requests and issues the packets to 
the network, with output flowing from left to right at the top of 
Figure 4. 

P
e input pipeline flows from right to left at the bottom of  

Figure 4. The Gemini network employs a 3-tuple, the Network 
Address, to specify a logical address in a user process on a 
remote node. The address consists of a processing element 
identifier (or PE), a Memory Domain Handle (MDH) 

associated with a memory segment registered at the remote 
node, and an offset into this segment. This 58-bit network 
address extends the physical address space of the node, 
enabling global access to all of the memory of a large system. 

Gemini supports both virtual addressing and virtual PEs. 
The MDH is combined with the offset to generate a user 
virtual address in the remote process. Virtual PEs (ranks in 
MPI parlance) used by the application are translated on output 
by the Node Translation Table (NTT) to obtain the physical 
PE. Constraints on physical resources limit the size of the 
NTT; only the top 12 bits of the PE are translated. Very large 
jobs are laid out in a regular fashion with low bits of the 
virtual and physical PEs being equal; alternately, they can use 
physical PEs 

B. Fast Memory Access (FMA) 
Fast Memory Access is a mechanism whereby user 

processes generate network transactions, such as puts, gets and 
atomic memory operations (AMO), by storing directly to the 
NIC.  The FMA block translates stores by the processor into 
fully qualified network requests. FMA provides both low 
latency and high issue rate on small transfers. On initialization 
the user process is allocated one or more FMA descriptors and 
associated FMA windows. Writes to the FMA descriptor 
determine the remote processing element and the remote 
address associated with the base of the window. A write of up 
to 64 bytes to the put window generates a remote put. Storing 
an 8 byte control word to the get window generates a get of up 
to 64 bytes or a fetching AMO. FMA supports scattered 
accesses by allowing the user to select which bits in an FMA 
window determine the remote address and which determine 
the remote PE. Having set the FMA descriptor appropriately 
one can, for example, store a unique cacheline of data to each 
process in a parallel job by simply storing a contiguous block 
of data to the FMA window. The DMAPP library provides a 
lightweight wrapper around this functionality for the Cray 
compilers and libraries.  

FMA supports source-side synchronization methods for 
tracking when put requests have reached a globally ordered 

Figure 4: Gemini NIC 
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point at the target and when responses to get requests have 
reached a globally ordered point in the local node. It is also 
possible to issue puts that generate destination-side 
synchronization events at the target node, enabling a process 
on that node to be notified of new data, or to poll a single 

 to 
en

arge amounts of 
nvolvement. 

hey include both user data and transaction status 

 Gemini application interface to update an atomic 

lso matches 
BTE send requests to queued receive descriptors. 

ture for replication and physical 
im

access, are switched onto the output port via the multiplexer. 

Fi

completion queue for its arrival. 

C. Block Transfer Engine (BTE) 
The Block Transfer Engine (BTE) supports asynchronous 

transfers between local and remote memory. Kernel software 
writes block transfer descriptors to a queue and the Gemini 
hardware performs the transfers asynchronously. The BTE 
supports memory operations (put/get) where the user specifies 
a local address, a network address and a transfer size. In 
addition the BTE supports channel operations (send) where 
the user specifies a local address and a target, but no target 
address. Channel semantics require the user to have pre-posted 
a receive buffer with the target BTE. By default there is no 
guarantee of completion ordering in block transfers issued by 
a given Gemini. Fence operations are used where necessary

sure that one transfer is completed before another starts.  
In general FMA is used for small transfers and BTE for 

large. FMA transfers are lower latency. BTE transfers take 
longer to start, but once running can transfer l
data (up to 4GB) without CPU i

D. Completion Queue (CQ) 
Completion queues provide a lightweight event notification 

mechanism. The completion of a BTE or FMA transaction can 
generate an event in a user (or kernel thread) specific queue. 
Completion events can be generated on either the source or the 
target node. T
information.  

E. Atomic Memory Operation (AMO) 
Gemini supports a wide range of atomic operations, those 

with put semantics such as atomic add and those with get 
semantics such as conditional swap. Gemini maintains an 
AMO cache, reducing the need for reads of host memory 
when multiple processes access the same atomic variable. 
Host memory is updated each time the variable is updated 
(lazy update mechanisms are also provided to reduce load on 
the host interface), but network atomics are not coherent with 
respect to local AMD64 memory operations - all processes 
must use a
variable.  

F. Synchronization Sequence Identification 
Gemini uses a mechanism known as Synchronization 

Sequence Identification to track the set of packets that make 
up a transaction. Every packet in the sequence contains the 
same Synchronization Sequence Identifier (SSID). Packets can 
be delivered in arbitrary order; each contains a network 
address and can be committed to memory as soon as it arrives.  
There is no need for a reorder buffer. The sequence as a whole 
completes and CQ events are generated when all packets have 
been delivered. This mechanism is implemented using the 
SSID and Output Request Buffer (ORB) blocks on the output 

side and the Receive Message Table (RMT) block on the input 
side. The RMT caches active SSID state avoiding a network 
round trip for performance critical operations. It a

III. GEMINI ROUTER

The building block for the Gemini router is the tile (see 
Figure 5). Each tile contains all of the logic and buffering 
associated with one input port, one output port, an 8x8 switch, 
and associated buffers. In Gemini, each tile's switch accepts 
inputs from six row buses that are driven by the input ports in 
its row, and drives separate output channels to the eight output 
ports in its column. Using a tile-based micro-architecture 
facilitates implementation, since each tile is identical and 
produces a very regular struc

plementation in silicon. 
The tile-based design is best understood by following a 

packet through the router. A packet arrives in the input link of 
a tile. When the packet reaches the head of the input buffer, a 
routing decision is made to select the output column for the 
packet. The packet is then driven onto the row bus associated 
with the input port and buffered in a row buffer at the input of 
the 8x8 switch at the junction of the packet's input row and 
output column (at the cross-point tile). At this point the 
routing decision must be refined to select a particular output 
port within the output column. The switch then routes the 
packet to the column channel associated with the selected 
output port. The column channel delivers the packet to an 
output buffer (associated with the input row) at the output port 
multiplexer. Packets in the per-input-row output buffers 
arbitrate for access to the output port and, when granted 

gure 5: Gemini router 

Gemini uses virtual cut-through flow control across the 
network links, but uses wormhole flow control internally due 
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to buffer size constraints. Network link input buffers are deep 
en

-phit 
re

trols routing; it specifies the destination, 
th virtual channel, and details of how the packet is to be 
routed (see Figure 6). 

ough to account for credit round-trip latency and the 
maximum packet size. 

Packets have a variable size and are divided into 24-bit 
phits (physical units) for transmission over network links. 
Write request packets have a 7-phit header, up to 24 phits of 
data and a single phit end-of-packet that denotes the last phit 
of a packet and contains status bits for error handling. A 2

sponse packet is generated for each request (3 phits on 
error). Get responses include a payload of up to 24 phits.  

The header phit con
e

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit 0 h a r=0 v p c

phit 1 p c

phit 2 p c

…

last phit R R R 1 p c

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit 0 h a r=0v=0 p c

phit 1 F ca rmt b p c

phit 2 p c

phit 3 vm ra p c

phit 4 dt pt p c

phit 5 p c

phit 6 p c

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit n p c

(phit n+1) p c

(phit n+2) p c

CRC-16 ok

payload

address[37:24]ptag[7:0]

vc

cmd[5:0]

vc

payloadoptional hash bitspayload

reserved 
addr[45:40]

General Network Packet Format

destination[15:0]

packetID[11:0]SSID[7:0]

MDH[11:0]

Network Request Packet Format

address[23:6]

destination[15:0]

sizedata[19:0]

mask[15:0]

BTEvc

data[63:42]

SrcIDDstIDsource[15:0]

data[41:20]

addr
[39:38]

Data Payload (up to 24 phits)

Fi

f the h bit is set) 
th

its. A 64-byte get comprises an 8-phit request (7 

heade ader, 24 data 
an

ini provides a 16-bit packet CRC, which protects up to 
64

C as a 
pa

IC, enabling 
de

nclude details of the status of each 
tra

the problem (this also happens when a board is 
removed). To handle this, the management software quiesces 
the netw  then re-enables 

z, the router at 
80 MHz, and the link SERDES at 3.125 to 6.25 GHz. The 
speed of the HyperTransport interface ranges from 1600 MHz 
to 2600 MHz depending on the node type.  

siz

gure 6: Network Packet Formats 

Each Gemini chip has a unique 16-bit identifier, specified 
by the destination field within each packet. NICs and hence 
Opteron nodes are specified using a 2-bit identifier for the 
source (SrcID) and destination (DstID). The combined 18-bit 
address uniquely identifies every node in the system. The v
field specifies the virtual channel; Gemini uses one virtual 
channel for requests and another for responses. The r, a, and h
fields control routing. If the r bit is set, then the packet will be 
source routed and must contain a routing vector in the 
payload. Source routing is only used for diagnostics. If the a
(adapt) bit is set, the packet is routed adaptively, otherwise the 
packet is routed using a deterministic hash constructed from 
the source and destination ids and (optionally i

e remote address. The fields shaded gray in Figure 6 contain 
side band data used by the link control block. 

An 8-byte write requires an 11-phit request (7 header, 3 data 
and 1 EOP) and a 2-phit response. A 64-byte cache-line write 
requires 32 request phits (7 header, 24 data, and 1 EOP) and 2 
response ph

r plus EOP) and a 27-phit response (2 he
d EOP). 

IV. GEMINI FAULT TOLERANCE

Gem
-bytes of data and the associated headers (768 bits max). 

Within each Gemini, major memories are protected using 
ECC.

Gemini links provide reliable delivery using a sliding 
window protocol. The receiving link checks the CR

cket arrives, returning an error if it is incorrect. The sending 
link retransmits on receipt of an error. The link block includes 
a send buffer of sufficient size to cover the round trip.  

The CRC is also checked as a packet leaves each Gemini 
and as it transitions from the router to the N

tection of errors occurring within the router core. If the 
checksum is incorrect, the packet is marked as bad and passed 
on; it will be dropped by the destination Gemini. 

Completion events i
nsaction, allowing software to recover from errors. HSS/OS 

interfaces allow the reporting of any of these errors at the 
point of occurrence. 

Each 3D Torus connection is made up of 4 Gemini links. 
The Gemini adaptive routing hardware will spread packets 
over the available links. If a link fails, the adaptive routing 
hardware will mask it out. In the event of losing all 
connectivity between two Gemini chips, it is necessary to 
route around 

ork, computes new routing tables and
the network. 

V. GEMINI PERFORMANCE

A. Clock Speed 
The Gemini NIC operates at 650 MH
0

Figure 7; Gemini put and get latencies as a function of transfer 
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d-point latency is less than 700 nanosecond for 
 remote put (see Figure 7), and 1.5 microseconds or less for a 

sm

ink
block injects packets into the router, distributing traffic across 
the 8 processor tiles. Each 64-byte write is transferred as 32 x 
24-bit request phits (7 header, 24 data and 1 end of packet) 
with a 2-phit response, with each processor tile transferring
one 64-byte packet in each direction every 32 cycles.  

ll of the available links. Note that 
th bandwidth at which a node can send data to multiple 
de

 cache; 
w  8192 variables selected at random by the source 
processes, all operations should miss. Gemini can deliver 
AMO rates in excess of 45 million/sec.  When there is good 
cache reuse, as potentially with a barrier implementation, the 
AMO rate can reach 100 million updates per second. 

 highly efficient MPI communication 
system fo  ad ition it supports emerging 
global addre ne-grain single-
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A. Latency & Bandwidth 
End-to-end latency in a Gemini network is determined by 

the end point latencies and the number of hops. On a quiet 
network, the en
a

all MPI message. The low overheads of HyperTransport 
reads enable Gemini to achieve get latencies of less than 1.5 
microseconds. The latency per hop is typically 105 ns on a 
quiet network. 

The Gemini NIC can transfer 64 bytes of data in each 
direction every 5 cycles. Thus the maximum bandwidth per 
direction is 64 x 650 / 5 = 8.3 GBytes/s. Injection bandwidth 
depends on the speed of the HyperTransport interface and the 
method of transfer. The interface is 16 bits wide and transfers 
data on both edges of the clock, giving a raw bandwidth of 9.6 
GB/sec in each direction at 2400 MHz. With FMA Put, the 
HyperTransport overhead is 12 bytes for up to 64 bytes of 
data, limiting the peak bandwidth to 8 GBytes/sec. Figure 8
shows FMA put bandwidth for a sweep of transfer sizes.  The 
bandwidth saturates progressively more easily as more 
processes per node participate.  For BTE transfers there is a 
12-byte read request followed by a 76-byte posted write for 
every 64-byte data packet. For symmetric BTE traffic the peak 
bandwidth of the host interface is 7 GBytes/sec in each 
direction after accounting for protocol overhead. The Netl

Figure 8: Gemini FMA put bandwidth as a function of transfer 
size for 1, 2 and 4 processes per node 

Each of the 10 Gemini torus connections is comprised of 12 
lanes in each direction operating at 3.125 to 6.25 GHz. Link 
bandwidths are 4.68 to 9.375 GBytes/sec per direction. 
Efficiency on 64-byte transfers is 63%, significantly higher 
than competing products. Bandwidth after protocol is 2.9 to 
5.8 GB/sec per direction. The torus network provides multiple 
links between nodes. Packets are adaptively distributed over 
all of the available links, enabling a single transfer (a point-to-
point MPI message for example) to achieve bandwidths of 5 

GBytes/sec or more. Higher bandwidths can be achieved 
between processes on the same node or processes on nodes 
connected to the same Gemini. Where multiple user processes 
or kernel threads are sending data at the same time (the 
common case for multi-core nodes), the Gemini NIC can 
inject packets at host interface bandwidth, with the router 
spreading traffic out over a

e
stinations or receive data from multiple destinations exceeds 

the point-to-point bandwidth between any pair of nodes. The 
former is limited by injection bandwidth and the latter is 
limited by link bandwidth. 

Figure 9 shows the performance achieved on many-to-one 
atomic memory operations (atomic add in this case). With a 
single AMO, all operations hit in the Gemini AMO

ith

Figure 9; Gemini AMO performance 

VI. CONCLUSION

The Gemini system interconnect provides all the essential 
components to build a
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sided remote put, get, and AMO operations.  Coupled with its 
fault-tolerance features, these allow Gemini systems to scale 
to over 100,000 cores. 
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