
The Gemini System Interconnect
Robert Alverson, Duncan Roweth, Larry Kaplan Cray Inc

Abstract—The Gemini System Interconnect is a new network
for Cray’s supercomputer systems. It provides improved
network functionality, latency and issue rate. Latency is reduced
with OS bypass for sends and direct user completion notification
on receives. Atomic memory operations support the construction
of fast synchronization and reduction primitives.

I. INTRODUCTION

EMINI is the new network for Cray’s supercomputer
systems. It enhances the highly scalable Seastar design

used to deliver the 225,000 core Oak Ridge National
Laboratory Jaguar system, improving network functionality,
latency, and issue rate. Gemini uses a novel system-on-chip
(SoC) design to construct direct 3D torus networks (Figure 1)
that can scale to in excess of 100,000 multi-core nodes.
Gemini is designed to deliver high performance on MPI
applications and filesystem traffic; in addition it provides
hardware support for global address space programming.
Gemini enables efficient implementation of programming
languages such as Chapel, UPC, and Co-Array Fortran on
massively parallel systems.

Figure 1: 3D Torus network

Each Gemini ASIC provides two network interface
controllers (NICs), and a 48-port router. Each of the NICs has
its own HyperTransport™ 3 host interface, enabling Gemini to
connect two Opteron nodes to the network. This 2-node
building block provides 10 torus connections, 4 each in two of
the dimensions (‘x’ and ‘z’) and 2 in the third dimension (‘y’),
as shown in Figure 2. Traffic between the two nodes
connected to a single Gemini is routed internally. The router
uses a tiled design, with 8 tiles dedicated to the NICs and 40
(10 groups of 4) dedicated to the network.

The Gemini ASIC is implemented in the TSMC 90nm
process and has a die size of 232.8 mm2. The block structure
of the Gemini design is illustrated in Figure 3. The Netlink
block connects the NICs to the router. Traffic from both NICs

is distributed over all eight of the router’s inputs enabling
injection bandwidth to be load balanced on a packet-by-packet
basis. The Netlink also handles changes in clock speed
between the NIC and router domains.

Figure 2: Seastar and Gemini

The supervisor block connects Gemini to an embedded control
processor (L0) for the blade and hence the Cray Hardware
Supervisory System (HSS) network, used for monitoring the
device and loading its routing tables.

Gemini is designed for large systems in which failures are
to be expected and applications must continue to run in the
presence of errors. Each torus connection comprises 4 groups
of 3 lanes. Packet CRCs are checked by each device with
automatic link-level retry on error. The failure of a single lane
is tolerated by shunting its data to the remaining 2 lanes in the
group. In the event of the complete failure of a link, the router
will select an alternate path for adaptively routed traffic.
Gemini uses ECC to protect major memories and data paths
within the device.

Figure 3: Gemini block structure

For traffic designated as adaptive, the Gemini router
performs packet by packet adaptive routing, distributing traffic
over lightly loaded links. With 8 links connecting each Gemini
to its neighbors in the ‘x’ and ‘z’ directions and 4 links in the
‘y’ dimension, there are multiple paths available. Hashed
deterministic routing can be selected as an alternative when a
sequence of operations to the same cache line must be
performed in order.

Gemini provides the ability for user processes to transfer
data directly between nodes without OS intervention. For
example, one process in a parallel job can initiate a put
directly from its memory to that of another process. To do this

G

it specifies the data (or source address), the destination virtual

2010 18th IEEE Symposium on High Performance Interconnects

978-0-7695-4208-9/10 $26.00 © 2010 IEEE

DOI 10.1109/HOTI.2010.23

83

addresses, the destination process id, and the size of the
transfer. Additional hardware primitives include remote get,
atomic operations, block transfer and completion notification.
The Gemini NIC is a hardware pipeline that maximizes the
performance of these simple operations. More complex
communication protocols such as message passing and TCP/IP
are implemented using these primitives.
User space communication is supported by the User Gemini

II. GEMINI NIC

A. Overview
ASIC has a pair of NICs, each with its own

H

ackets are routed across the network to a destination NIC.
Th

Network Interface (uGNI) and Distributed Memory
Application (DMAPP) APIs. These libraries are called by
Cray MPI and Shmem. DMAPP is also used in the run time
for Cray Chapel, UPC, and Co-Array Fortran compilers. Inter-
kernel communication is provided using the Kernel Gemini
Network Interface (kGNI) which provides both messaging and
RDMA. The Lustre filesystem is supported via a Lustre
Network Driver (LND) for kGNI. Other filesystems such as
NFS, GPFS and Panasas are provided via DVS, the Cray Data
Virtualization Service layered over LND. TCP/IP
communication over the Gemini fabric is provided by the IP
over Gemini Fabric (IPoGIF) module.

Each Gemini
yperTransport 3 interface (known as the HT Cave and shown

on the left hand side of Figure 3). The NICs are connected to
the Gemini router via the Netlink block (on the right hand side
of Figure 4). The NIC is a hardware pipeline. The node issues
commands, writing them across the HyperTransport interface.
The NIC packetizes these requests and issues the packets to
the network, with output flowing from left to right at the top of
Figure 4.

P
e input pipeline flows from right to left at the bottom of

Figure 4. The Gemini network employs a 3-tuple, the Network
Address, to specify a logical address in a user process on a
remote node. The address consists of a processing element
identifier (or PE), a Memory Domain Handle (MDH)

associated with a memory segment registered at the remote
node, and an offset into this segment. This 58-bit network
address extends the physical address space of the node,
enabling global access to all of the memory of a large system.

Gemini supports both virtual addressing and virtual PEs.
The MDH is combined with the offset to generate a user
virtual address in the remote process. Virtual PEs (ranks in
MPI parlance) used by the application are translated on output
by the Node Translation Table (NTT) to obtain the physical
PE. Constraints on physical resources limit the size of the
NTT; only the top 12 bits of the PE are translated. Very large
jobs are laid out in a regular fashion with low bits of the
virtual and physical PEs being equal; alternately, they can use
physical PEs

B. Fast Memory Access (FMA)
Fast Memory Access is a mechanism whereby user

processes generate network transactions, such as puts, gets and
atomic memory operations (AMO), by storing directly to the
NIC. The FMA block translates stores by the processor into
fully qualified network requests. FMA provides both low
latency and high issue rate on small transfers. On initialization
the user process is allocated one or more FMA descriptors and
associated FMA windows. Writes to the FMA descriptor
determine the remote processing element and the remote
address associated with the base of the window. A write of up
to 64 bytes to the put window generates a remote put. Storing
an 8 byte control word to the get window generates a get of up
to 64 bytes or a fetching AMO. FMA supports scattered
accesses by allowing the user to select which bits in an FMA
window determine the remote address and which determine
the remote PE. Having set the FMA descriptor appropriately
one can, for example, store a unique cacheline of data to each
process in a parallel job by simply storing a contiguous block
of data to the FMA window. The DMAPP library provides a
lightweight wrapper around this functionality for the Cray
compilers and libraries.

FMA supports source-side synchronization methods for
tracking when put requests have reached a globally ordered

Figure 4: Gemini NIC

84

point at the target and when responses to get requests have
reached a globally ordered point in the local node. It is also
possible to issue puts that generate destination-side
synchronization events at the target node, enabling a process
on that node to be notified of new data, or to poll a single

 to
en

arge amounts of
nvolvement.

hey include both user data and transaction status

 Gemini application interface to update an atomic

lso matches
BTE send requests to queued receive descriptors.

ture for replication and physical
im

access, are switched onto the output port via the multiplexer.

Fi

completion queue for its arrival.

C. Block Transfer Engine (BTE)
The Block Transfer Engine (BTE) supports asynchronous

transfers between local and remote memory. Kernel software
writes block transfer descriptors to a queue and the Gemini
hardware performs the transfers asynchronously. The BTE
supports memory operations (put/get) where the user specifies
a local address, a network address and a transfer size. In
addition the BTE supports channel operations (send) where
the user specifies a local address and a target, but no target
address. Channel semantics require the user to have pre-posted
a receive buffer with the target BTE. By default there is no
guarantee of completion ordering in block transfers issued by
a given Gemini. Fence operations are used where necessary

sure that one transfer is completed before another starts.
In general FMA is used for small transfers and BTE for

large. FMA transfers are lower latency. BTE transfers take
longer to start, but once running can transfer l
data (up to 4GB) without CPU i

D. Completion Queue (CQ)
Completion queues provide a lightweight event notification

mechanism. The completion of a BTE or FMA transaction can
generate an event in a user (or kernel thread) specific queue.
Completion events can be generated on either the source or the
target node. T
information.

E. Atomic Memory Operation (AMO)
Gemini supports a wide range of atomic operations, those

with put semantics such as atomic add and those with get
semantics such as conditional swap. Gemini maintains an
AMO cache, reducing the need for reads of host memory
when multiple processes access the same atomic variable.
Host memory is updated each time the variable is updated
(lazy update mechanisms are also provided to reduce load on
the host interface), but network atomics are not coherent with
respect to local AMD64 memory operations - all processes
must use a
variable.

F. Synchronization Sequence Identification
Gemini uses a mechanism known as Synchronization

Sequence Identification to track the set of packets that make
up a transaction. Every packet in the sequence contains the
same Synchronization Sequence Identifier (SSID). Packets can
be delivered in arbitrary order; each contains a network
address and can be committed to memory as soon as it arrives.
There is no need for a reorder buffer. The sequence as a whole
completes and CQ events are generated when all packets have
been delivered. This mechanism is implemented using the
SSID and Output Request Buffer (ORB) blocks on the output

side and the Receive Message Table (RMT) block on the input
side. The RMT caches active SSID state avoiding a network
round trip for performance critical operations. It a

III. GEMINI ROUTER

The building block for the Gemini router is the tile (see
Figure 5). Each tile contains all of the logic and buffering
associated with one input port, one output port, an 8x8 switch,
and associated buffers. In Gemini, each tile's switch accepts
inputs from six row buses that are driven by the input ports in
its row, and drives separate output channels to the eight output
ports in its column. Using a tile-based micro-architecture
facilitates implementation, since each tile is identical and
produces a very regular struc

plementation in silicon.
The tile-based design is best understood by following a

packet through the router. A packet arrives in the input link of
a tile. When the packet reaches the head of the input buffer, a
routing decision is made to select the output column for the
packet. The packet is then driven onto the row bus associated
with the input port and buffered in a row buffer at the input of
the 8x8 switch at the junction of the packet's input row and
output column (at the cross-point tile). At this point the
routing decision must be refined to select a particular output
port within the output column. The switch then routes the
packet to the column channel associated with the selected
output port. The column channel delivers the packet to an
output buffer (associated with the input row) at the output port
multiplexer. Packets in the per-input-row output buffers
arbitrate for access to the output port and, when granted

gure 5: Gemini router

Gemini uses virtual cut-through flow control across the
network links, but uses wormhole flow control internally due

85

to buffer size constraints. Network link input buffers are deep
en

-phit
re

trols routing; it specifies the destination,
th virtual channel, and details of how the packet is to be
routed (see Figure 6).

ough to account for credit round-trip latency and the
maximum packet size.

Packets have a variable size and are divided into 24-bit
phits (physical units) for transmission over network links.
Write request packets have a 7-phit header, up to 24 phits of
data and a single phit end-of-packet that denotes the last phit
of a packet and contains status bits for error handling. A 2

sponse packet is generated for each request (3 phits on
error). Get responses include a payload of up to 24 phits.

The header phit con
e

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit 0 h a r=0 v p c

phit 1 p c

phit 2 p c

…

last phit R R R 1 p c

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit 0 h a r=0v=0 p c

phit 1 F ca rmt b p c

phit 2 p c

phit 3 vm ra p c

phit 4 dt pt p c

phit 5 p c

phit 6 p c

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit n p c

(phit n+1) p c

(phit n+2) p c

CRC-16 ok

payload

address[37:24]ptag[7:0]

vc

cmd[5:0]

vc

payloadoptional hash bitspayload

reserved
addr[45:40]

General Network Packet Format

destination[15:0]

packetID[11:0]SSID[7:0]

MDH[11:0]

Network Request Packet Format

address[23:6]

destination[15:0]

sizedata[19:0]

mask[15:0]

BTEvc

data[63:42]

SrcIDDstIDsource[15:0]

data[41:20]

addr
[39:38]

Data Payload (up to 24 phits)

Fi

f the h bit is set)
th

its. A 64-byte get comprises an 8-phit request (7

heade ader, 24 data
an

ini provides a 16-bit packet CRC, which protects up to
64

C as a
pa

IC, enabling
de

nclude details of the status of each
tra

the problem (this also happens when a board is
removed). To handle this, the management software quiesces
the netw then re-enables

z, the router at
80 MHz, and the link SERDES at 3.125 to 6.25 GHz. The
speed of the HyperTransport interface ranges from 1600 MHz
to 2600 MHz depending on the node type.

siz

gure 6: Network Packet Formats

Each Gemini chip has a unique 16-bit identifier, specified
by the destination field within each packet. NICs and hence
Opteron nodes are specified using a 2-bit identifier for the
source (SrcID) and destination (DstID). The combined 18-bit
address uniquely identifies every node in the system. The v
field specifies the virtual channel; Gemini uses one virtual
channel for requests and another for responses. The r, a, and h
fields control routing. If the r bit is set, then the packet will be
source routed and must contain a routing vector in the
payload. Source routing is only used for diagnostics. If the a
(adapt) bit is set, the packet is routed adaptively, otherwise the
packet is routed using a deterministic hash constructed from
the source and destination ids and (optionally i

e remote address. The fields shaded gray in Figure 6 contain
side band data used by the link control block.

An 8-byte write requires an 11-phit request (7 header, 3 data
and 1 EOP) and a 2-phit response. A 64-byte cache-line write
requires 32 request phits (7 header, 24 data, and 1 EOP) and 2
response ph

r plus EOP) and a 27-phit response (2 he
d EOP).

IV. GEMINI FAULT TOLERANCE

Gem
-bytes of data and the associated headers (768 bits max).

Within each Gemini, major memories are protected using
ECC.

Gemini links provide reliable delivery using a sliding
window protocol. The receiving link checks the CR

cket arrives, returning an error if it is incorrect. The sending
link retransmits on receipt of an error. The link block includes
a send buffer of sufficient size to cover the round trip.

The CRC is also checked as a packet leaves each Gemini
and as it transitions from the router to the N

tection of errors occurring within the router core. If the
checksum is incorrect, the packet is marked as bad and passed
on; it will be dropped by the destination Gemini.

Completion events i
nsaction, allowing software to recover from errors. HSS/OS

interfaces allow the reporting of any of these errors at the
point of occurrence.

Each 3D Torus connection is made up of 4 Gemini links.
The Gemini adaptive routing hardware will spread packets
over the available links. If a link fails, the adaptive routing
hardware will mask it out. In the event of losing all
connectivity between two Gemini chips, it is necessary to
route around

ork, computes new routing tables and
the network.

V. GEMINI PERFORMANCE

A. Clock Speed
The Gemini NIC operates at 650 MH
0

Figure 7; Gemini put and get latencies as a function of transfer
e

0.0

0.5

1.0

1.5

2.0

2.5

8 16 32 64 128 256 512 1024

Ti
m
e�
(m

ic
ro
se
cs
)

Size�(bytes)

PUT,�ping�pong
PUT,�at�source
GET

86

d-point latency is less than 700 nanosecond for
 remote put (see Figure 7), and 1.5 microseconds or less for a

sm

ink
block injects packets into the router, distributing traffic across
the 8 processor tiles. Each 64-byte write is transferred as 32 x
24-bit request phits (7 header, 24 data and 1 end of packet)
with a 2-phit response, with each processor tile transferring
one 64-byte packet in each direction every 32 cycles.

ll of the available links. Note that
th bandwidth at which a node can send data to multiple
de

 cache;
w 8192 variables selected at random by the source
processes, all operations should miss. Gemini can deliver
AMO rates in excess of 45 million/sec. When there is good
cache reuse, as potentially with a barrier implementation, the
AMO rate can reach 100 million updates per second.

 highly efficient MPI communication
system fo ad ition it supports emerging
global addre ne-grain single-

VII. ACKNOWLEDGEMENT

This material is based upon work supported by the Defense
Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0001

A. Latency & Bandwidth
End-to-end latency in a Gemini network is determined by

the end point latencies and the number of hops. On a quiet
network, the en
a

all MPI message. The low overheads of HyperTransport
reads enable Gemini to achieve get latencies of less than 1.5
microseconds. The latency per hop is typically 105 ns on a
quiet network.

The Gemini NIC can transfer 64 bytes of data in each
direction every 5 cycles. Thus the maximum bandwidth per
direction is 64 x 650 / 5 = 8.3 GBytes/s. Injection bandwidth
depends on the speed of the HyperTransport interface and the
method of transfer. The interface is 16 bits wide and transfers
data on both edges of the clock, giving a raw bandwidth of 9.6
GB/sec in each direction at 2400 MHz. With FMA Put, the
HyperTransport overhead is 12 bytes for up to 64 bytes of
data, limiting the peak bandwidth to 8 GBytes/sec. Figure 8
shows FMA put bandwidth for a sweep of transfer sizes. The
bandwidth saturates progressively more easily as more
processes per node participate. For BTE transfers there is a
12-byte read request followed by a 76-byte posted write for
every 64-byte data packet. For symmetric BTE traffic the peak
bandwidth of the host interface is 7 GBytes/sec in each
direction after accounting for protocol overhead. The Netl

Figure 8: Gemini FMA put bandwidth as a function of transfer
size for 1, 2 and 4 processes per node

Each of the 10 Gemini torus connections is comprised of 12
lanes in each direction operating at 3.125 to 6.25 GHz. Link
bandwidths are 4.68 to 9.375 GBytes/sec per direction.
Efficiency on 64-byte transfers is 63%, significantly higher
than competing products. Bandwidth after protocol is 2.9 to
5.8 GB/sec per direction. The torus network provides multiple
links between nodes. Packets are adaptively distributed over
all of the available links, enabling a single transfer (a point-to-
point MPI message for example) to achieve bandwidths of 5

GBytes/sec or more. Higher bandwidths can be achieved
between processes on the same node or processes on nodes
connected to the same Gemini. Where multiple user processes
or kernel threads are sending data at the same time (the
common case for multi-core nodes), the Gemini NIC can
inject packets at host interface bandwidth, with the router
spreading traffic out over a

e
stinations or receive data from multiple destinations exceeds

the point-to-point bandwidth between any pair of nodes. The
former is limited by injection bandwidth and the latter is
limited by link bandwidth.

Figure 9 shows the performance achieved on many-to-one
atomic memory operations (atomic add in this case). With a
single AMO, all operations hit in the Gemini AMO

ith

Figure 9; Gemini AMO performance

VI. CONCLUSION

The Gemini system interconnect provides all the essential
components to build a

0

20

40

60

80

100

120

1�AMO

8192�AMOs

A
M
O
�ra
te
�(m

ill
io
ns
)

r supercomputers. In d
ss space programming with fi

sided remote put, get, and AMO operations. Coupled with its
fault-tolerance features, these allow Gemini systems to scale
to over 100,000 cores.

0
8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Size (bytes)

1000

2000

B
a

3000

4000

5000

6000

7000

nd
w

id
th

 (M
by

te
s/

se
c)

PPN=1
PPN=2
PPN=4

0 256 512 768 1024

Number�of�processes

87

