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ABSTRACT
A low-diameter, fast interconnection network is going to be a pre-
requisite for building exascale machines. A two-level direct net-
work has been proposed by several groups as a scalable design for
future machines. IBM’s PERCS topology and the dragonfly net-
work discussed in the DARPA exascale hardware study are exam-
ples of this design. The presence of multiple levels in this design
leads to hot-spots on a few links when processes are grouped to-
gether at the lowest level to minimize total communication volume.
This is especially true for communication graphs with a small num-
ber of neighbors per task. Routing and mapping choices can impact
the communication performance of parallel applications running on
a machine with a two-level direct topology. This paper explores
intelligent topology aware mappings of different communication
patterns to the physical topology to identify cases that minimize
link utilization. We also analyze the trade-offs between using di-
rect and indirect routing with different mappings. We use simula-
tions to study communication and overall performance of applica-
tions since there are no installations of two-level direct networks
yet. This study raises interesting issues regarding the choice of job
scheduling, routing and mapping for future machines.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Network topology; C.4 [Performance of Sys-
tems — Design studies]; C.4 [Performance of Systems — Mod-
eling techniques]; I.6 [Simulation and Modeling]

General Terms
Algorithms, Performance
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1. INTRODUCTION
Parallel machines of the future will have a large number of fast

cores on each node and a low network bytes-to-flop ratio. Com-
putation will be cheap and communication will become expensive.
Hence, scalable, low-diameter and fast networks are going to be
a pre-requisite for building multi-Petaflop/s and Exaflop/s capabil-
ity machines. New designs have been proposed recently by IBM
(the PERCS topology [2]) and by the DARPA sponsored Exascale
Computing Study on technical challenges in hardware (the dragon-
fly topology [15]). Both these topologies are multi-level direct net-
works with all-to-all connections at each level. Nodes are grouped
logically to form cliques and cliques are grouped to form larger
clusters. These logical groups at different levels of the hierarchy are
named drawers and supernodes in the PERCS topology and groups
and racks (or cabinets) in the dragonfly topology.

The main idea behind these topologies is to provide high band-
width links within the groups at the lowest level of the hierarchy
and then connect those groups with another level of links. Multiple
levels also allow the use of high bandwidth copper links within the
groups and optical links, which can be longer, for links spanning
across groups. The hierarchical nature of this design poses a prob-
lem for applications where grouping processes together is optimal
for restricting communication to the lower levels of the hierarchy –
grouping at lower levels leads to hot-spots on some links connect-
ing the higher levels, leading to performance degradation.

It has been suggested that non-minimal adaptive routing or indi-
rect routing can solve this problem of overloading of a few links.
Indirect routing leads to the use of more hops/links for each mes-
sage, as compared to direct routing, leading to lower available band-
width overall. Also, indirect routing adds another layer of imple-
mentation complexity for large networks. In this paper, we com-
pare the impact of direct and indirect routing on network conges-
tion and application performance.

We compare intelligent topology aware mappings with the de-
fault MPI rank-ordered mapping with respect to network utiliza-
tion and application performance. We explore mapping of differ-
ent communication patterns on to the network topology to identify
scenarios which minimize hot-spots. We use three diverse com-
munication patterns, representative of widely used parallel applica-
tions - a two-dimensional (2D) five-point stencil (Weather Research
and Forecast Model [17]), a four-dimensional nine-point stencil
(MIMD Lattice Computation [3]) and an n-targets multicast pat-
tern (representative of NAMD [6]).

We use a simulation framework called BigSim [21] to study and
predict the behavior of parallel applications on future architectures/



One supernode in the PERCS topology
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Figure 1: The PERCS network – the left figure shows all to all connections within a supernode (connections originating from only two
nodes, 0 and 16, are shown to keep the diagram simple). The right figure shows second-level all to all connections across supernodes
(again D links originating from only two supernodes, colored in red, are shown).

topologies. Using traces collected by our emulation-based tech-
nique, we simulate application runs on hundreds of thousands of
cores. Non-uniform link bandwidths on different classes of links
complicate the issue of identifying the weakest links. Interesting
issues arise because of the imbalance in number of different types
of links available when using a small subset of the entire topology.
Hence, we do simulations for one quarter of the full system size
(assuming 300 supernodes) and the full system as well.

The novel contributions of this paper are:
• To the best of our knowledge, this paper has the first analysis

of congestion on a two-level direct topology due to routing
and mapping choices. We present several solutions for avoid-
ing hot-spots on such networks.

• The paper presents the largest packet-level detailed network
simulations done so far (for 307,200 cores) for several com-
munication patterns. These simulations help us analyze ap-
plication performance in great detail through performance
counter-based per-level link statistics, visualization tools and
predicted application performance.

• We present several intelligent mappings for 2D, 4D and mul-
ticast patterns and compare their performance when coupled
with direct and indirect routing on the PERCS network.

2. THE PERCS TOPOLOGY
The PERCS interconnect topology is a fully connected two-tier

network [2]. Figure 1 (left) shows one supernode of the PERCS
topology as a large circle. Within the large circle, a small circle
represents a quad chip module (QCM) which consists of four 8-
core Power7 chips. We will refer to a QCM as a node in rest of
the paper. Eight nodes in one color in each quadrant constitute a
drawer. Each node has a hub/switch which has three types of links
originating from it - LL, LR and D links. There are seven LL links
(24 GB/s) that connect a node to seven other nodes in the same
drawer. In addition, there are 24 LR links (5 GB/s) that connect
a node to the remaining 24 nodes of the supernode. LL and LR
links constitute the first tier connections that enable communication

between any two nodes in one hop. To maintain simplicity, LL and
LR links originating from only two nodes, numbered 0 and 16 are
shown in Figure 1 (left).

On the right, in Figure 1, the second tier connections between su-
pernodes are shown. Every supernode is connected to every other
supernode by a D link (10 GB/s). These inter-supernode connec-
tions originate and terminate at hub/switches connected to nodes; a
given hub/switch is directly connected to only a fraction (≤ 16) of
the 512 supernodes (full system size). For simplicity, D links orig-
inating from only two supernodes (in red) have been shown. 32
cores of a node can inject on to the network at a rate of 192 GB/s
through a hub/switch directly connected to them.
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Figure 2: The number of D links reduces significantly com-
pared to that of LL and LR links as one uses fewer and fewer
supernodes in the PERCS topology.

An important thing to note about the PERCS topology is the ra-
tio of the number of first level connections to that of second level
connections. For a system with n supernodes, the number of D
links is (n× (n− 1)). There are (32× 31× n) LL and LR links
in total. Hence, there are (992/(n − 1)) first tiers links for every
second tier link as shown in Figure 2. One can observe that as the
number of supernodes used by an application gets smaller, there is



a scarcity of D links in comparison to LL and LR links. This may
be a bottleneck in applications with comparable intra-supernode
and inter-supernode traffic if they are running on a small subset
of supernodes. Hence, we simulate two different system sizes (64
supernodes and 300 supernodes) to compare them.

The next section will present a case study of a 2D Stencil show-
ing that a default mapping of this application with direct routing can
lead to significant congestion on the network. Hence, interesting
research questions arise with respect to reducing hot-spots on two-
level direct networks. Random versus contiguous job scheduling,
direct versus indirect routing and intelligent mapping techniques
present opportunities to minimize congestion.

3. MOTIVATION
Let us look at a relatively simple yet prevalent communication

pattern — a two-dimensional five-point stencil computation. We
will consider a case where the application uses 16 supernodes or
16, 384 cores of the machine. Placement at various levels can play
an important role for this pattern in deciding which MPI processes
to put together on one node (32 cores) on one hand to which nodes
or drawers should be placed on “virtual” supernode boundaries on
the other hand. Let us assume that the virtual cartesian topology
for this example is 128 × 128 and the communication is wrapped
around on all four sides.

The default placement of processes by the job scheduler will di-
vide the 2D topology of 128× 128 tasks along one dimension and
each supernode gets a block of 8× 128 tasks. Within a supernode,
each drawer gets a block of 2 × 128 tasks in order and each node
gets a block of 1×32 tasks. Figure 3 (left) shows the default place-
ment of the 16, 384 tasks on the 16 supernodes. As is obvious from
the diagram, 128 cores at the boundaries share a D link (shown in
red) with a capacity of 10 GB/s leading to an effective bandwidth
of 10÷ 128 GB/s.

SN 0

SN 1

SN 15

SN 0 SN 1

SN 4

SN 15

Figure 3: Default (linear) and blocked (square) mapping of
tasks performing 2D communication on 16 supernodes

A simple square decomposition of the domain at each level (su-
pernodes, drawers and nodes) can improve the utilization of links
significantly. Assigning a square block of 32 × 32 tasks to each
supernode leads to the use of more D links (see Figure 3, right) –
32 instead of 16 D links are used now. Also, each D link is used
for only one-fourth of the data in this setup and hence the effective
bandwidth per D link is 10÷ 32 GB/s.

Next, let us consider the grouping of MPI processes within a
drawer and a node, for optimizing communication further using
topology aware mapping (Figure 4). As opposed to the default
mapping, within a supernode, tasks can be grouped into blocks of
16× 16 to be placed on the four drawers and further into blocks of
4 × 8 to be placed on each node. In this case, the effective band-
width available on LR links is 5÷ 8 GB/s and that on each LL link

Figure 4: Default (linear) and blocked (square) mapping of
tasks on to drawers and nodes within a supernode

is 24 ÷ 8 GB/s. These improvements in link utilization using an
intelligent mapping are summarized in Table 1.

Link Default Mapping Good Mapping

D 10/128 = 0.078 10/32 = 0.313
LR 5/32 = 0.156 5/8 = 0.625
LL 24/32 = 0.75 24/8 = 3.0

Table 1: Effective link bandwidth (in GB/s) when using the de-
fault and an intelligent mapping for a 2D Stencil of 16K tasks

As we can see, an intelligent mapping can increase the number of
links used and reduce the load on each link. This can lead to signif-
icant performance improvements. However, it is important to note
that even a good blocked mapping utilizes only 32 D links whereas
the number of D links among 16 supernodes is 16× 15 = 240. A
random mapping at the level of nodes or drawers will increase the
number of D links used although it might lead to hot-spots. We will
look at these issues in detail in Section 6.

4. APPROACHES TO MINIMIZING CON-
GESTION ON THE NETWORK

Topology aware mapping of MPI tasks to physical cores/nodes
on a machine can minimize contention and impact application per-
formance [4, 9, 19, 20]. Intelligent mapping can be used to care-
fully distribute traffic over the various links on two-level direct net-
works. This section outlines the different mappings that we eval-
uate for minimizing hot-spots on the network. We also explore
indirect routing coupled with some of the mappings to analyze if it
can be used as an alternative to intelligent mapping.

4.1 Topology aware mapping
A default MPI rank-ordered mapping of processes on to nodes

of a two-level direct network can lead to significant hot-spots and
extremely low effective bandwidth on some links (as shown in Sec-
tion 3). Intelligent mapping of the virtual communication topology
on to such networks can spread the communication over more links
instead of concentrating it over a few and result in reduced con-
tention and better application performance. Below, we present dif-
ferent mapping techniques for near-neighbor communication pat-
terns that will be compared using simulations:

Default Mapping (DEF): Default mapping refers to a “contigu-
ous” MPI rank-ordered mapping where rank 0 is placed on the first
core in the allocated job partition, rank 1 on the second and so on.
Let us use a concrete example of mapping a 2D near-neighbor com-
munication pattern originating from a 5-point stencil on to 64 su-
pernodes of the PERCS topology to understand different mappings.
We assume a virtual topology of 256× 256 tasks for this example
since there are 65, 536 cores on 64 supernodes. The default map-
ping by the job scheduler will place the first 1024 tasks i.e. a block



Communication Number of Number Number of Message Sequential
Pattern Supernodes of Elements Messages Size (KB) Computation (ms)

2D 5-point Stencil 64 8192× 8192 4 64 479
4D 9-point Stencil 64 64× 64× 64× 64 8 2048 224
Multicast Pattern 64 – 14 1024 –
4D 9-point Stencil 300 64× 32× 64× 32 8 1024 50

Table 2: Details of the experimental setup for different communication patterns and different number of supernodes

of 4 × 256 tasks on the first supernode, the next block of 4 × 256
tasks on the second supernode and so on. Within each supernode,
the first 256 tasks i.e. a block of 1× 256 will be placed on the first
drawer and so on. Each node in a drawer will get a block of 1× 32
tasks. As we have seen in Section 3, this can be very inefficient.

Blocked Nodes Mapping (BNM): The first obvious thing to try
with respect to near-neighbor communication is to cluster com-
municating processes on a node, which has 32 cores, to minimize
inter-node traffic and hence reduce the communication volume be-
ing sent on the network links. Hence, for all intelligent mappings
in the paper, we place 4 × 8 tasks in 2D and 4 × 2 × 2 × 2 in 4D
on a node.

Blocked Drawers Mapping (BDM): Next, we can attempt block-
ing processes at the level of drawers. For the 2D example, instead
of the default 1 × 256 processes being placed on a drawer, we try
different blocks of 4× 64, 8× 32 and 16× 16. The smallest pos-
sible dimension size of the drawer blocks is decided by the smaller
dimension of the node blocks which is 4. Hence we cannot map a
block of 2× 128 tasks, for example, on to the drawer.

Blocked Supernodes Mapping (BSM): In this particular mapping,
in addition to blocking for nodes and drawers, we also block MPI
tasks for supernodes. Similar to the block size restriction on draw-
ers in BDM, the smallest possible dimension size for the supernode
block is decided by the smallest dimension of the drawer block for
a particular mapping. For example, in the 2D case, for a drawer
block of 16× 16, we cannot map a block of 8× 128 or 4× 256 on
the supernode. The only possible choices are 16× 64 and 32× 32.

Random Nodes Mapping (RNM): The goal with intelligent map-
ping is to increase the number of links used in this two-level direct
network and reduce the volume of data sent on each link. Mapping
MPI processes randomly on to the supernodes (still maintaining a
block of 4×8 on each node to minimize inter-node communication
volume) is one possible solution to achieve this. Randomizing the
placement of MPI tasks at the level of nodes increases the num-
ber of D links used for sending data across supernodes and in turn,
reduces the amount of data being sent on each link. Also, this map-
ping requires no programming effort from the application end-user.

Random Drawers Mapping (RDM): We also try random mapping
at the level of drawers where each drawer gets a block of 16 × 16
tasks (for the 2D case, for example). The intuition for this mapping
is to restrict most of the communication within a drawer where we
can use the high-bandwidth LL links to the fullest. This would
minimize data being sent over the lower bandwidth LR and D links.

4.2 Direct versus indirect routing
When using direct routing on the PERCS topology, each mes-

sage travels 1 to 3 hops on the network. The 3 hop routes consist
of an LL or LR link as the 1st and 3rd hop and a D link as the mid-
dle hop. Indirect routing aims to reduce the load on the D links by
jumping to a random supernode first and then going to the destina-

tion supernode through that supernode. This avoids using the direct
D link between a pair of supernodes for sending all the traffic be-
tween them, which can lead to congestion. The maximum number
of hops in an indirect route is 5 (LL/LR – D – LL/LR – D – LL/LR).
We simulated two of the mappings above with indirect routing:

Default Mapping with Indirect Routing (DFI): This is represen-
tative of the case where an application user lets the job scheduler
map MPI ranks on to the supernodes contiguously, but the routing
is indirect to minimize congestion on the network.

Random Drawers Mapping with Indirect Routing (RDI): This
approach is representative of the scenario where the user maps to
random drawers or the job scheduler assigns random drawers from
all supernodes on the machine to a particular job and an indirect
routing is used on the system.

5. SIMULATION METHODOLOGY
In this section, we describe the experimental methodology and

setup that have been used to predict the link utilization and perfor-
mance on the PERCS topology. We present results for three bench-
marks – a 2D Stencil, a 4D stencil and a multicast pattern. We use
a three step method that consists of compute time prediction, trace
collection through emulation and then, simulation.

5.1 Problem sizes
Simulations in this paper were done for two different allocation

sizes – 64 supernodes and 300 supernodes, both being a fraction of
the largest possible machine size (512 supernodes) with a two-level
PERCS network. The use of fewer supernodes than the full system
size leads to different ratios of D to LL and LR links and hence,
interesting contention issues (see Section 2).

We use MPI codes run as AMPI programs [12] in all our ex-
periments. The details of the experiments are summarized in Ta-
ble 2. For the 2D Stencil, a block decomposition of the data array
to the MPI tasks is done wherein each MPI task holds a 2D array
of 8192 × 8192 elements. In each iteration, each MPI task sends
and receives four messages of 64 KB each to/from its four neigh-
bors and updates its elements using a 5-point stencil computation.
In the 4D Stencil on 64 supernodes, the array on each MPI task has
64 × 64 × 64 × 64 elements with MPI tasks also arranged in a 4-
dimensional virtual topology. Every MPI task exchanges 2 MB of
data with each of its eight neighbors and updates its elements using
a 9-point stencil in every iteration. For simulating 4D Stencil on
300 supernodes, we used an array of 64× 32× 64× 32 elements
per MPI task. For the multicast pattern, every MPI task sends 1 MB
messages to fourteen other tasks. The tasks are supposed to repre-
sent the recipients of a multicast tree and are chosen accordingly
for each root.

5.2 Prediction methodology
Predicting performance of an application for a future machine

using BigSim [21] involves emulation on an existing architecture



to obtain traces for the future machine and then simulation using
those traces. If the computational characteristics of the emulating
architecture and the target architecture are different, then a “com-
pute time” replacement step is also involved. The three step process
for performance prediction is outlined below:

Compute Time Prediction: We first obtain the computation time
for the various kernels (2D and 4D Stencil) on Blue Drop, an IBM
Power7 processor. Blue Drop, located at NCSA, has four 8-core
chips running at 3.8 GHz. We ran a multi threaded version (4-
way SMT) of the kernels and obtained execution times as shown
in Table 2. These are used to replace the actual computation times
during trace collection using BgAdvance, a function call that helps
in incrementing the runtime clock by user defined values.

Trace Collection: BigSim [21], a part of the Charm++ distribu-
tion [13], is used for emulating the PERCS network with 307, 200
cores. We use Blue Print, an IBM Power5 cluster (also at NCSA),
to generate the traces. Each node of Blue Print has 16 cores and
64 GB of memory running at 1.9 GHz. We were able to emulate
2D Stencil, 4D Stencil and the multicast pattern for a 64 supernode
target system on 32 nodes of Blue Print in approximately two min-
utes. Emulations of 4D Stencil for the 300 supernode target system
were done on 85 nodes of Blue Print in approximately ten minutes.

Simulation: We use the simulation component of BigSim with a
detailed PERCS network model [2] to simulate the applications us-
ing the traces collected from the previous step. These simulation
runs were done on Ember, which is a SGI Altix UV 1000 dis-
tributed shared memory system at NCSA.

6. SIMULATIONS FOR 64 SUPERNODES
We now present simulation results for the three communication

patterns described in detail below and also summarized in Table 2.
All simulations in this section were done for 64 supernodes.

6.1 Mapping a 2D 5-point Stencil
A two-dimensional five-point stencil is a prevalent communica-

tion pattern in parallel applications in various domains. The two-
level direct topology, by nature of its inherent design, can suffer
from hot-spots for a default MPI rank-ordered mapping of a com-
munication pattern as simple as near-neighbor 2D. We choose this
as our first communication pattern, the mapping for which is easier
to illustrate and the results easier to analyze.

Mapping Node Drawer Supernode

DEF 32× 1 256× 1 256× 4
BNM 8× 4 64× 4 256× 4
BDM 8× 4 16× 16 64× 16
BSM 8× 4 16× 16 32× 32

Table 3: Dimensions of blocks at different levels (node, drawer
and supernode) for different mappings of 2D Stencil

The data array for this 2D Stencil is 2097152 × 2097152 and
each MPI task is given a sub-domain of 8192×8192 elements. This
gives us a logical 2D array of MPI tasks of dimensions 256× 256
which is to be mapped to 65, 536 cores (64 supernodes). We deploy
the six mappings with direct routing and two others with indirect
routing as explained in Section 4 to map a 2D Stencil pattern on
to 64 supernodes. The aspect ratios of the blocks were chosen in
the same fashion as we did for 16 supernodes in Section 3 and the
choices for the various mappings are summarized in Table 3. For
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Figure 5: Average number of bytes sent over LL, LR and D
links for 2D Stencil on 64 supernodes

the random nodes mapping, a block of 4×8 tasks is placed on each
node and for the random drawers mapping, a block of 16×16 tasks
is placed on each drawer.

Independent simulations were done for each mapping and we
obtained the execution times and link statistics (number of packets
sent) on different network links. Figure 5 shows the average, mini-
mum and maximum number of bytes passing through each type of
link for different mappings. As we increasingly block for nodes,
drawers and supernodes, the average bytes sent over the D links
decreases, which correlates well with decrease in execution time
(Table 4). Blocking leads to an increase in the usage of LL links
which is favorable since they have high bandwidth. Simulations
that use indirect routing lower the D link usage even further and
a very small fraction of the total time is spent in communication
(given that the computation time is 479 ms).

The overall improvements in execution time for 2D Stencil are
not significant because the message size is small (64 KB) and hence
there is negligible load on the high bandwidth links. We shall see



DEF BNM BDM BSM RNM RDM DFI RDI

481.70 481.74 480.07 480.90 480.71 481.03 480.07 479.74

Table 4: Execution time per iteration (in ms) for 2D Stencil for different mappings on 64 supernodes

Mapping Node Drawer Supernode

DEF 16× 2× 1× 1 16× 16× 1× 1 16× 16× 4× 1
BNM 4× 2× 2× 2 16× 4× 2× 2 16× 16× 2× 2
BDM 4× 2× 2× 2 4× 4× 4× 4 16× 4× 4× 4
BSM 4× 2× 2× 2 4× 4× 4× 4 8× 8× 4× 4

Table 5: Dimensions of blocks at different levels (node, drawer and supernode) for different mappings of 4D Stencil

that mapping can result in significant improvements when commu-
nication is higher, in the next few sections.

6.2 Mapping a 4D 9-point Stencil
A four-dimensional nine-point stencil is representative of the

communication pattern in MILC, a Lattice QCD code. For the same
amount of data assigned to each task in a two- and four-dimensional
stencil computation, say x4, the computation is 5x4 in 2D versus
9x4 in 4D and the size of each message is x2 in 2D and x3 in 4D.
Hence, we expect more congestion, given larger messages and bet-
ter improvement from mapping for 4D Stencil.

For 4D Stencil simulations, we consider an array of 1024 ×
1024 × 1024 × 1024 doubles. The 4D array is distributed among
MPI tasks by recursively dividing along all four dimensions, with
each task being assigned 64 × 64 × 64 × 64 elements. This leads
to a logical 4D grid of MPI tasks of dimensions 16×16×16×16.
In each iteration, every MPI task sends eight messages of size 64×
64 × 64 elements to its eight neighbors. Table 5 lists the dimen-
sions of the blocks of tasks placed on a node, drawer and supernode
for different mappings. For the random nodes mapping, we place
4×2×2×2 tasks on a node and for the random drawers mapping,
we place 4× 4× 4× 4 tasks on a drawer.

Figure 6 shows histograms based on the amount of data (in bytes)
sent over the LL, LR and D links (note, that the bin sizes and y-
axis ranges for the LL, LR and D link plots are different). The
counts only include links with non-zero utilization. The amount
of data being sent over D links is much higher (bin size of 108.3
MB) and hence, we expect that lowering the amount of data sent
on D links will have a positive impact on the performance. Let
us focus on the right column first which shows the D link usage
for different mappings. For the default mapping, a large number
of links are in the last bin i.e. they are heavily utilized. As we
progressively block tasks using different mappings (BNM, BDM
and BSM), number of links in the lower numbered bins increases,
signifying fewer bytes passing through each link and fewer hot-
spots. Random nodes mapping (RNM) is successful in spreading
the load evenly on more D links and also in reducing the maximum
number of bytes passing through any given link. Even though the
random nodes and random drawer mappings increase the usage of
LL and LR links, since the data being sent over them is small, this
does not have an adverse affect on performance.

Figure 7 presents similar histograms for indirect routing coupled
with default mapping and random drawers mapping. These present
the best scenarios for link usage – for the D link histograms, more
D links are used but the amount of data being sent over each link
reduces further compared to direct routing (Figure 6). The random
drawers mapping with indirect routing (RDI) reduces the maximum
LL and LR link utilization also (which the other mappings are un-
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Figure 8: Average number of bytes sent over LL, LR and D
links for 4D Stencil on 64 supernodes

successful at).
The information presented in these histograms is summarized as

average, minimum and maximum number of bytes sent over LL,
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Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D
Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different
mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,
random nodes and random drawers.
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Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows
represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.
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Figure 9: Time spent in communication and overall execution
per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next
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Figure 10: Projections time profile view showing the utilization
of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern
NAMD is a molecular dynamics application with a multicast

communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare



the default mapping of MPI tasks with four mapping and routing
configurations – BNM, BDM, DFI and RDI.
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Figure 11: Average number of bytes sent over LL, LR and D
links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types
of links. This is a different communication pattern from the 2D
and 4D near-neighbor patterns we have seen so far. The random
nodes and random drawers mapping with direct routing do not get
better link utilization compared to the default mapping because it is
difficult to find a blocking that is optimized for this multicast pat-
tern. However, the indirect routing cases (DFI and RDI) succeed
in lowering the average and maximum usage on the D links signifi-
cantly compared to the other mappings. This is also reflected in the
reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES
Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast
pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual
number is not public). We now present results of running a 4D
Stencil on 307,200 cores using a detailed packet-level PERCS net-
work simulation. To the best of our knowledge, this is the first
attempt at simulating a parallel machine at this scale.
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Figure 12: Average number of bytes sent over LL, LR and D
links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among
307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-
sions 16 × 16 × 16 × 75. We use mapping configurations similar



to those used for the 64 supernode case (see Table 5, Section 6.2).
Since one dimension is a non-power-of-2 and significantly bigger
than the other three, mapping on 300 supernodes is more challeng-
ing than on 64 supernodes. It is also impossible to pack all the su-
pernodes exactly as per the mappings in the table. To handle this,
we continue to map MPI tasks in the described shapes as long as it
is possible to pack them neatly within the supernodes, and for the
remaining supernodes (that are generally small in number), we do
a random drawer assignment. For random nodes and random draw-
ers mappings, we choose the node dimensions to be 4× 4× 2× 1
tasks and the drawer dimensions to be 8× 8× 4× 1 tasks.

Figure 12 presents the average, minimum and maximum data
sent over the LL, LR and D links. Similar to the the 2D and 4D
mappings on 64 supernodes, the default mapping leads to heavy
traffic on all types of links. We observe similar LL and LR link us-
age for all mappings but the differences are significant for the usage
of D links. Again, it is important to note that the communication
volume on D links is almost ten times higher than the communica-
tion on LL and LR links (see y-axis). One difference from the 64
supernode mapping of 4D Stencil is that the blocked node mapping
does not lower link utilization as compared to the default mapping.
Also, the random drawers mapping does not perform as well as the
random nodes mapping. The random nodes mapping and the map-
pings with indirect routing lead to the lowest D link usage which
also translates to improvements in performance (Figure 13).
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Figure 13: Time spent in communication and overall execution
per iteration for different mappings on 300 supernodes

The performance results, in terms of execution time per iteration
are as expected (Figure 13). As observed for the 64 supernode
mapping of 4D Stencil, random nodes mapping and indirect routing
cases give the best performance, followed closely by the random
drawers mapping. The benefit is substantial, not only in terms of
the communication time (which is reduced by 75% for the best
mapping), but also for the per iteration time. We see a reduction of
42% in the application run time relative to the default mapping. The
best mapping is worse by 24% when compared to the lower bound
which indicates that there is still some room for improvement.

8. RELATED WORK
Mapping of guest graphs on to host graphs has been a subject of

interest in mathematics, VLSI design and parallel computing since
the 1980s. In parallel computing, several techniques were devel-
oped to map communication graphs to hypercubes in the 1980s [7,
18, 19] and to torus networks in the early 2000s [4, 20]. More
recently, several application and runtime system developers have
studied techniques for mapping [1, 5, 8, 10] to three-dimensional

torus topologies with the emergence of supercomputers like the
IBM Blue Gene and Cray XT/XE series.

Two-level direct networks were proposed recently by indepen-
dent groups [2, 15, 16] and are being considered as an alternative
to the more popular torus and fat-tree designs for building exascale
machines. Hoefler et al. discuss mapping algorithms to minimize
contention and demonstrate their applicability to the PERCS net-
work through mapping simulations of sparse matrix-vector multi-
plication up to 1, 792 nodes [11]. Our work considers both regular
and irregular communication graphs and presents simulation results
on up to 307, 200 cores. Use of the BigSim simulation framework
allows us to present detailed link utilization and timing information
for different applications. We also discuss the interplay of mapping
and routing and present best choices for both.

In this paper, we did not consider hybrid codes (MPI + OpenMP
or pthreads). Mapping of hybrid codes is a specific instance of the
general mapping problem since one can assume one core per node
and one MPI task being mapped to each core. We also restricted our
discussion to static communication patterns in this work. Changes
in communication within an application can be handled by a dy-
namic load balancer, which in turn can deploy the discussed map-
ping algorithms. Considering inter-job contention, both static and
dynamic is beyond the scope of this work and will be discussed in
a future publication.

9. CONCLUSION
Multi-level direct networks have emerged as a new technology

to connect a large number of processing elements together. De-
fault MPI rank-ordered mapping with direct routing on such net-
works leads to significant hot-spots, even for simple two and four-
dimensional near-neighbor communication patterns. This paper
discusses techniques and analyzes various choices for congestion
control on these networks.

We use detailed packet-level network simulations for up to three
hundred thousand MPI tasks and three different communication
patterns to compare various mappings – default mapping, blocked
mapping to nodes, drawers, or supernodes and mapping to random
nodes and drawers. We also compare direct versus indirect routing
for some of the mappings. We show performance improvements
of up to 42% for some mapping and routing combinations. For
the communication patterns simulated in this paper, we find that
if direct routing is used, mapping blocks of MPI tasks to random
nodes gives the best performance and evenly distributed usage of
D links. We also observe that indirect routing can achieve perfor-
mance comparable to an intelligent mapping and obviates the need
for mapping, at the cost of increasing overall traffic on the network.

This paper also highlights the utility of simulation-based predic-
tions to analyze algorithms and make design choices before a par-
allel machine is installed and available for use. This will become
increasingly important as machine sizes grow, making it essential
to do application and hardware co-design.
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