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Figure 1: Actual running times for sorting 64-bit keys on a 32K Connection Machine CM-2. In the �gure,the running times are divided by the number of keys per processor to permit extrapolation to machines withdi�erent numbers of processors. The term processor, as used in this paper, is a 32-bit wide so-called Sprintnode, of which there are p = 1024 in a 32K CM-2. To determine the total running time of a sort involving nkeys, multiply the time per key per processor in the �gure by n=p.Parallel algorithms for sorting have been studied since at least the 1960's. An early ad-vance in parallel sorting came in 1968 when Batcher discovered the elegant �(lg2 n)-depthbitonic sorting network [3]. For certain families of �xed interconnection networks, such asthe hypercube and shu�e-exchange, Batcher's bitonic sorting technique provides a parallelalgorithm for sorting n numbers in �(lg2 n) time with n processors. The question of exis-tence of a o(lg2 n)-depth sorting network remained open until 1983, when Ajtai, Koml�os, andSzemer�edi [1] provided an optimal �(lgn)-depth sorting network, but unfortunately, their con-struction leads to larger networks than those given by bitonic sort for all \practical" values ofn. Leighton [15] has shown that any �(lg n)-depth family of sorting networks can be used tosort n numbers in �(lg n) time in the bounded-degree �xed interconnection network domain.Not surprisingly, the optimal �(lgn)-time �xed interconnection sorting networks implied bythe AKS construction are also impractical.In 1983, Reif and Valiant proposed a more practical O(lg n)-time randomized algorithmfor sorting [19], called ashsort. Many other parallel sorting algorithms have been proposed inthe literature, including parallel versions of radix sort and quicksort [5], a variant of quicksortcalled hyperquicksort [23], smoothsort [18], column sort [15], Nassimi and Sahni's sort [17],and parallel merge sort [6].This paper reports the �ndings of a project undertaken at Thinking Machines Corporationto develop a fast sorting algorithm for the Connection Machine Supercomputer model CM-2.The primary goals of this project were1. to implement as fast a sorting algorithm as possible for integers and oating-point num-bers on the CM-2, 2



2. to generate a library sort for the CM-2 (here we were concerned with memory use,stability, and performance over a wide range of problem and key sizes in addition torunning time),3. and to gain insight into practical sorting algorithms in general.Our �rst step towards achieving these goals was to analyze and evaluate many of the parallelsorting algorithms that have been proposed in the literature. After analyzing many algorithms,we selected the three most promising alternatives for implementation: bitonic sort, radix sort,and sample sort. Figure 1 compares the running times of these three algorithms (two versions ofradix sort are shown). As is apparent from the �gure, when the number of keys per processor(n=p) is large, sample sort is the fastest sorting algorithm. On the other hand, radix sortperforms reasonably well over the entire range of n=p, and it is deterministic, much simpler tocode, stable, and faster with small keys. Although bitonic sort is the slowest of the three sortswhen n=p is large, it is more space-e�cient than the other two algorithms, and represents thefastest alternative when n=p is small. Based on various pragmatic issues, the radix sort wasselected to be used as the library sort for Fortran now available on the CM-2.We have modeled the running times of our sorts using equations based on problem size,number of processors, and a set of machine parameters (i.e. time for point-to-point communi-cation, hypercube communication, scans, and local operations). These equations serve severalpurposes. First, they make it easy to analyze how much time is spent in various parts of thealgorithms. For example one can quickly determine the ratio of computation to communica-tion for each algorithm and see how this is a�ected by problem and machine size. Second,they make it easy to generate good estimates of running times on variations of the algorithmswithout having to implement them. Third, one can determine how various improvements inthe architecture would improve the the running times of the algorithms. For example, theequations make it easy to determine the e�ect of doubling the performance of message routing.Fourth, in the case of radix sort we are able to use the equations to analytically determinethe best radix size as a function of the problem size. Finally, the equations allow anyone tomake reasonable estimates of the running times of the algorithms on other machines. Forexample, the radix sort has been implemented and analyzed on the Cray Y-MP [25], and theCM-5 [22], which di�er signi�cantly from the CM-2. In both cases, when appropriate valuesfor the machine parameters are used, our equations accurately predicted the running times.Similar equations are used by Stricker [21] to analyze the running time of bitonic sort on theiWarp, and by Hightower, Prins and Reif [12] to analyze the running time of ashsort on theMaspar MP-1.The remainder of this paper studies the implementations of bitonic sort, radix sort andsample sort. In each case, it describes and analyzes the basic algorithm, as well as any en-hancements and/or minor modi�cations that we introduced to optimize performance. Afterdescribing the model we use for the CM-2 in Section 2, Sections 3, 4, and 5 present our studiesof bitonic sort, radix sort, and sample sort, respectively. In Section 6, we compare the relativeperformance of these three sorts, not only in terms of running time, but also with respect tosuch criteria as stability and space. Appendix A presents a brief analysis of other algorithmsthat we considered for implementation. Appendix B presents a probabilistic analysis of thesampling procedure used in our sample sort algorithm.3



Floating Point UnitSprint ChipMemory16 1-bit ALU's 16 1-bit ALU'sRouter Router
Figure 2: The organization of a CM-2 Sprint node.2 The Connection MachineThis section describes the CM-2 Connection Machine and de�nes an abstract model of themachine which is used to describe all of the algorithms in this paper. By describing a particularalgorithm in terms of the abstract model, the analysis can be applied to other parallel machines,and approximate run-times can be derived.The CM-2 is a single-instruction multiple-data (SIMD) computer. In its full 64K-processorcon�guration, it can be viewed as 2048 (211) Sprint nodes con�gured as an 11-dimensionalhypercube with multiport capability: all dimensions of the hypercube can be used at the sametime. The Sprint nodes are controlled by a front-end processor (typically a Sun4 or Vax).Figure 2 illustrates the organization of a Sprint node, which consists of the following chips:� Two processor chips, each containing 16 1-bit processors, a 1-bit bidirectional wire toeach of up to 11 neighboring nodes in the hypercube, and hardware for routing support.� Ten DRAM chips, containing a total of between 256K bytes and 4M bytes of error-corrected memory, depending on the con�guration. All recent machines contain at least1M bytes of memory per node.� A oating-point chip (FPU) capable of 32-bit and 64-bit oating-point arithmetic, aswell as 32-bit integer arithmetic.� A Sprint chip that serves as an interface between the memory and the oating-point chip.The Sprint chip contains 128 32-bit registers and has the capability to convert data fromthe bit-serial format used by the 1-bit processors to the 32-bit word format used by theoating-point chip.In this paper, we view each Sprint node as a single processor, rather than considering eachof the 64K 1-bit processors on a fully con�gured CM-2 as separate processors. This point of4



view makes it easier to extrapolate our results on the CM-2 to other hypercube machines,which typically have 32 or 64-bit processors. Furthermore, it is closer to the way in which weviewed the machine when implementing the sorting algorithms.We break the primitive operations of the CM-2 into four classes:� Arithmetic: A local arithmetic or logical operation on each processor (Sprint node). Alsoincluded are global operations involving the front end and processors, such as broadcast-ing a word from the front end to all processors.� Cube Swap: Each processor sends and receives 11 messages, one each across the 11 dimen-sions of the hypercube. The CM-2 is capable of sending messages across all hypercubewires simultaneously.� Send: Each processor sends one message to any other processor through the routingnetwork. In this paper we use two types of sends: a single-destination send, and asend-to-queue. In the single-destination send (used in our radix-sort) messages are sentto a particular address within a particular processor, and no messages may have thesame destination. In the send-to-queue (used in our sample sort) messages are sent to aparticular processor and are placed in a queue in the order they are received. The CM-2also supports combining sends.� Scan: A parallel-pre�x (or su�x) computation on integers, one per processor. Scansoperate on a vector of input values using an associative binary operator such as integeraddition. (The only operator employed by our algorithms is addition.) As output, thescan returns a vector in which each position has the \sum," according to the operator,of those input values in lesser positions. For example, a plus-scan (integer addition asthe operator) of the vector[ 4 7 1 0 5 2 6 4 8 1 9 5 ]yields [ 0 4 11 12 12 17 19 25 29 37 38 47 ]as the result of the scan.Figure 3 gives estimated running times for each of the four classes of primitives on a 32KCM-2. We assume that each of p = 1024 processors contains n=p elements, for a total of nelements. Times are given for 64-bit data, except for scans, which operate on 32-bit data. Withrespect to the operation times, we have generally simpli�ed our expressions by ignoring �xedoverheads whenever they are small, concentrating instead on throughput. (For scans, the �xedoverhead is substantial, so we have included it explicitly.) Because of these simpli�cations,our analyses do not accurately model performance when the number of elements per processoris small. When n=p is large, however, they are accurate to within approximately 10 percent.Since most data on the CM-2 originates in the 1-bit processors, n=p is typically at least 32.As a practical matter, most sorting applications involve n=p � 128, and often, n=p = 2048 ormuch larger. 5



Operation Symbolic Time Actual TimeArithmetic A � (n=p) 1 � (n=1024)Cube Swap Q � (n=p) 40 � (n=1024)Send (routing) R � (n=p) 130 � (n=1024)Scan (parallel pre�x) 3A � (n=p) + S 3 � (n=1024)+ 50Figure 3: The time required for operations on a 32K Connection Machine CM-2. The value p is the numberof processors (Sprint nodes), and n is the total number of elements being operated on. All operations are on64-bit words, except for scans which are on 32-bit words. All times are in microseconds.We now discuss in somewhat more detail the time estimates for each of the classes ofoperations.The time A for arithmetic operations is nominally chosen to be 1 microsecond. For example,the cost of summing two integer values, including the costs of loading and storing the data intolocal memory and of incrementing a counter (assuming the operation is in a loop) is about 1:4A.An indirect access in which di�erent processors access potentially di�erent memory locationsrequires about 3A time. Also, computing the maximum (or minimum) of two values requireabout 3A time, since these operations involve a compare followed by a conditional memorymove. Throughout the paper, the coe�cients of A were obtained empirically. For radix sortand sample sort, we instrumented the code with calls to a real-time clock which providesaccurate and deterministic timings. The constant coe�cient reported for bitonic merge wasdetermined by �tting a curve to the timing data.The time Q for cube swapping is the same whether a processor sends one message acrossjust one dimension of the hypercube or 11 messages each across one of the 11 dimensions ofthe hypercube. To fully exploit the communication bandwidth provided by the hypercube, itis desirable, of course, to use all dimensions simultaneously.The time R given for a send is based on routing messages randomly, where each message isequally likely to go to any other processor. The time for the two types of sends is approximatelythe same as long as in the send-to-queue the number of messages received at each processor isapproximately balanced. Some variation in the time for a send occurs because some routingpatterns take longer than others. As long as there is no congestion at the receiving processor,however, no known pattern takes longer than 2R. If each processor is receiving approximatelythe same number of messages, congestion can be avoided by injecting messages into the routerin a psuedorandom order.Consider the cost of a single scan operation on the CM-2 when the number of elementsper processor is large. In this case, the running time is only about 3A � (n=p), since the �xedoverhead S can be safely ignored. In the case of multiple independent scans, however, the �xedoverhead S must be taken into consideration. The other operations have �xed overheads aswell, but they are negligible by comparison.Our programs for the CM-2 are written in Connection Machine assembly language (Paris)and high-level microcode (CMIS). In this paper, however, we describe our algorithms in En-glish, and, where more precision is required, in a parallel vector pseudocode. We generally6



assume that the variable n refers to the number of keys to be sorted, and that p is the numberof processors in the machine.In the parallel vector pseudocode, we assume that data is stored in two kinds of variables: n-element vectors and scalars. Vectors are identi�ed by capitalized variable names, whereas scalarvariable names are uncapitalized. Parallel arithmetic operations on vectors are performed inan elementwise fashion. The special vector Self refers to the vector of coordinate addresses(Self [i] = i). Cube swaps along one dimension of the hypercube are performed on a vector Vby an operation Cube-Swap(V; j), which returns a vector whose ith coordinate is V [i + 2j ]if the jth bit of i (in binary) is 0, and V [i� 2j ] if the jth bit of i is 1. Cube swaps along alldimensions simultaneously are described in English. Routing is accomplished by the operationSend(V;Dest), which returns the vector whose ith coordinate is that V [j] such thatDest [j] = i.Scan operations are performed by a procedure Scan(V ) that returns the plus-scan of thevector.3 Batcher's Bitonic SortBatcher's bitonic sort [3] is a parallel merge sort that is based upon an e�cient technique formerging so-called \bitonic" sequences. A bitonic sequence is one that increases monotonicallyand then decreases monotonically, or can be circularly shifted to become so. One of the earliestsorts, bitonic sort was considered to be the most practical parallel sorting algorithm for manyyears. The theoretical running time of the sort is �(lg2 n), where the constant hidden by � issmall. Moreover, bitonic sort makes use of a simple �xed communication pattern that mapsdirectly to the edges of the hypercube; a general routing primitive need not be invoked whenbitonic sort is implemented on the hypercube.In this section, we discuss our implementation of bitonic sort. The basic algorithm runse�ciently on a hypercube architecture, but uses only one dimension of the hypercube wires at atime. The CM-2 hypercube has multiport capability, however, and by pipelining the algorithm,it is possible to make e�cient use of all hypercube wires at once. This optimization resultsin a 5-fold speedup of the communication and over a 2-fold speedup in the total running timeof the algorithm. Even with this optimization, the other two algorithms that we implementedoutperform bitonic sort when the number n=p of keys per processor is large. When n=p issmall, however, bitonic sort is the fastest of the three, and uses considerably less space thanthe other two.Figure 4 illustrates the bitonic sort algorithm. The key step is an operation called a bitonicmerge, which merges pairs of bitonic sequences to form larger bitonic sequences. For eachpair, one bitonic sequence is sorted into ascending order, and the other into descending order.The resulting sequences are then concatenated to form a new, larger, bitonic sequence. Forthe moment, let us assume that we have n input keys to be sorted and that we have p = nprocessors, each with 1 key. For each integer d = 0; 1; . . . ; lgn � 1, the algorithm performsn=2d+1 merges, where each merge produces a bitonic sequence of length 2d+1 from two bitonicsequences of length 2d.The key step of bitonic sort is the merge operation, which is described by the followingpseudocode. 7
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Figure 4: An illustration of the Bitonic-Sort procedure. Each arrow represents a sequence of keys sortedin the direction of the arrow. The unsorted input sequence of n keys is shown at the top, and the sorted outputsequence is shown at the bottom. A bitonic merge operation is shaded. During the dth step of the algorithm,n=2d+1 merges are performed, each producing a bitonic sequence of length 2d+1 from two bitonic sequences oflength 2d.Bitonic-Merge(Key; d)1 for j  d� 1 downto 02 do Opposite  Cube-Swap(Key ; j)3 if Self hji � Self hdi4 then Key  min(Key;Opposite)5 else Key  max(Key ;Opposite)In line 3, the operator � denotes the exclusive-or function, and the expression \Self hji" meansthe jth bit of the integer representing the position of the key in the input vector. Self h0i isthe least signi�cant bit.The operation of this algorithm can be understood with the help of Figure 5, which showshow two sorted sequences are merged into a single ascending sequence. Each vertical line ofthe �gure represents a processor in the hypercube, each of which initially contains one of theinput keys. Time moves downward in the diagram, with the two sorted input sequences at thetop, and the �nal single sorted sequence at the bottom. During a single step of the algorithm,all keys are communicated across a single dimension of the hypercube. After keys have beencommunicated across all the dimensions of the hypercube, the hypercube processors containthe output sorted in ascending order.Each iteration of the loop in Bitonic-Merge is represented by the collection of horizontalline segments in a shaded region of the �gure. Each horizontal line segment represents thecommunication of keys between two processors along a hypercube wire, which correspondsto the Cube-Swap in line 2. In the algorithm, Self hdi tells whether we are producing anascending (0) or descending (1) order, and Self hji tells whether the processor is on the left (0)or right (1) side of a wire. For the example in the �gure, we are sorting into ascending order(Self hdi = 0), and thus for each pair of keys that are swapped, the smaller replaces the key inthe processor on the left and the larger is kept on the right.We shall not prove the correctness of this well-known algorithm; the interested reader is8
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= Q � (n=p)(lg p)(lg p+ 1)=2 + 5A � (n=p)(lgn)(lg n+ 1)=2� 0:5Q � (n=p) lg2 p+ 2:5A � (n=p) lg2 n : (1)Let us examine this formula more closely. The times in Figure 3 indicate that Q is 40 timeslarger than A, and lg n is at most 2 or 3 times larger than lg p for all but enormous volumesof data. Thus, the �rst term in formula (1), corresponding to communication time, dominatesthe arithmetic time for practical values of n and p.The problem with this naive implementation is that it is a single-port algorithm: communi-cation occurs across only one dimension of the hypercube at a time. By using all of the dimen-sions virtually all of the time, we can improve the algorithm's performance signi�cantly. Theidea is to use a multiport version of Bitonic-Merge that pipelines the keys across all dimen-sions of the hypercube. In the multiport version, a call of the form Bitonic-Merge(Key; d)is implemented as follows. On the �rst step, all processors cube swap their �rst keys acrossdimension d. On the second step, they cube swap their �rst keys across dimension d� 1, whilesimultaneously cube swapping their second keys across dimension d. Continuing the pipeliningin this manner, the total number of steps to move all the keys through d � lg(n=p) physicaldimensions is n=p + d � lg(n=p) � 1. This algorithm is essentially equivalent to a pipelinedbitonic merge on a buttery network.Thus, pipelining improves the time for bitonic merging toTmultiport-merge = ( (n=p) � 5A � d if d � lg(n=p) ;Q � (n=p+ d� lg(n=p)� 1) + 5A � (n=p)d if d > lg(n=p) :By summing from d = 1 to lg n, the time for the entire multiport bitonic sort, therefore,becomesTmultiport-bitonic = Q � (lg p)(n=p+ (lg p)=2� 1=2) + 5A � (n=p)(lgn)(lg n+ 1)=2� Q � ((n=p) lg p+ 0:5 lg2 p) + 2:5A � (n=p) lg2 n : (2)Let us compare this formula with the single-port result of equation (1). For n = O(p), thetwo running times do not di�er by more than a constant factor. For n = 
(p log p), however,the coe�cient of Q is �(log p) times smaller in the multiport case. Thus, total communicationtime is considerably reduced by pipelining when n=p is large. The number of arithmeticoperations is not a�ected by pipelining.Figure 6a shows the communication and computation components of the running time forboth the single-port and multiport versions of bitonic sort. These times are generated fromformulas (1) and (2). The computation component is equivalent for both algorithms. Figure 6bshows the predicted total time for the single-port and multiport bitonic, and the measured per-formance of our implementation of the multiport algorithm. The di�erence between predictedand measured times for small values of n=p is mostly due to the fact that our equations ignoreconstant overhead. The di�erence at high n=p is due to some overhead in our implementationcaused by additional memory moves, e�ectively increasing the cost Q of the cube swap. Thisoverhead could be eliminated by an improved implementation, but the resulting algorithmwould still not be competitive with sample sort for large values of n=p.10
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Figure 6: Bitonic sorting 64-bit keys on a 32K CM-2 (p = 1024). (a) The predicted single port communicationis approximately 5 times the predicted multiport communication time. (b) The measured performance ofmultiport bitonic sort closely matches the predicted performance, but contains a �xed overhead.Multiport bitonic sort can be further improved by using a linear-time serial merge insteadof a bitonic merge in order to execute the merges that occur entirely within a processor [4, 14].This variation yields a running time ofTmultiport-bitonic � Q � ((n=p) lg p+ 0:5 lg2 p) + A � (n=p)(2:5lg2 p+ 10 lgn) ;where the constant 10 is an estimate. This constant is large because of the indirect addressingthat would be required by the implementation. For large n=p, this formula reduces the Aterm relative to equation (2). Once again, this improvement would not yield an algorithmthat is close to the performance of the sample sort, and thus we decided not to implementit. Furthermore, the local merges could not be executed in place, so that the algorithm wouldlose one of its major advantages: it would no longer only require a �xed amount of additionalmemory. 11



4 Radix SortThe second algorithm that we implemented is a parallel version of a counting-based radixsort [7, Section 9.3]. In contrast with bitonic sort, radix sort is not a comparison sort: itdoes not use comparisons alone to determine the relative ordering of keys. Instead, it relieson the representation of keys as b-bit integers. (Floating-point numbers can also be sortedusing radix sort. With a few simple bit manipulations, oating point keys can be converted tointeger keys with the same ordering and key size. For example, IEEE double precision oatingpoint numbers can be sorted by inverting the mantissa and exponent bits if the sign bit is1, and then inverting the sign bit. The keys are then sorted as if they were integers.) Ouroptimized version of radix sort is quite fast, and it was the simplest to code of the three sortingalgorithms that we implemented.The basic radix sort algorithm (whether serial or parallel) examines the keys to be sortedr bits at a time, starting with the least signi�cant block of r bits in each key. Each timethrough the loop, it sorts the keys according to the r-bit block currently being considered ineach key. Of fundamental importance is that this intermediate radix-2r sort be stable: theoutput ordering must preserve the input order of any two keys whose r-bit blocks have equalvalues.The most common implementation of the intermediate radix-2r sort is as a counting sort.We �rst count to determine the rank of each key|its position in the output order|and thenwe permute the keys to their respective locations. The following pseudocode describes theimplementation.Radix-Sort(Key)1 for i 0 to b� 1 by r2 do Rank  Counting-Rank(r;Keyhi; . . . ; i+ r � 1i)3 Key  Send(Key ;Rank)Since the algorithm requires b=r passes, the total time for a parallel sort is:Tradix = (b=r) � (R � (n=p) + Trank)where Trank is the time taken by Counting-Rank.The most interesting part of radix sort is the subroutine for computing ranks called in line 2.We �rst consider the simple algorithm underlying the original Connection Machine library sort[5], which was programmed by one of us several years ago. In the following implementation ofCounting-Rank, the vector Block holds the r-bit values on which we are sorting.Simple-Counting-Rank(r;Block)1 o�set  02 for k  0 to 2r � 13 do Flag  04 where Block = k do Flag  15 Index  Scan(Flag)6 where Flag do Rank  o�set + Index7 o�set  o�set + Sum(Flag)8 return Rank 12



In this pseudocode, the where statement executes its body only in those processors for whichthe condition evaluates to true.The Simple-Counting-Rank procedure operates as follows. Consider the ith key, andassume that Block [i] = k. The rank of the ith key is the number o�setk of keys j for whichBlock [j] < k, plus the number Index [i] of keys for which Block [j] = k and j < i. (Here, o�setkis the value of o�set at the begining of the kth iteration of the for loop.) The code iterates overeach of the 2r possible values that can be taken on by the r-bit block on which we are sorting.For each value of k, the algorithm uses a scan to generate the vector Index and updates thevalue of o�set to reect the total number of keys whose Block value is less than or equal to k.To compute the running time of Simple-Counting-Rank, we refer to the running timesof the CM-2 operations in Figure 3. On the CM-2, the Sum function can be computed asa by-product of the Scan function, and thus no additional time is required to compute it.Assuming that we have p processors and n keys, the total time isTsimple-rank = 2r � (3A � (n=p) + S) + 2r(2A)(n=p)= A � ((2 + 3)2r(n=p)) + S � 2r ; (3)where the coe�cient 2 of A in the last term of the �rst line of this equation was determinedempirically by instrumenting the code.The total time for this version of radix sort|call it Simple-Radix-Sort|which usesSimple-Counting-Rank on r-bit blocks of b-bit keys, is thereforeTsimple-radix = (b=r)(R � (n=p) + Tsimple-rank)= (b=r)(R � (n=p) + 5A � 2r(n=p) + S � 2r) : (4)(The library sort actually runs somewhat slower for small values of n=p, because of a large�xed overhead.) Notice from this formula that increasing r reduces the number of routingsproportionally, but it increases the arithmetic and scans exponentially.We can determine the value of r that minimizes Tsimple-radix by di�erentiating the right-handside of equation (4) with respect to r and setting the result equal to 0, which yieldsr = lg� (n=p)R(n=p)5A+ S�� lg(r ln 2� 1) :For large n=p (i.e., n=p� (S=5A)), the optimal value of r isr � lg(R=5A)� lg(r ln 2� 1)� 3:9:This analysis is borne out in practice by the CM-2 library sort, which runs the fastest for largen=p when r = 4.We now consider an improved version of parallel radix sort. The idea behind this algorithmwas used by Johnsson [14]. We shall describe the new algorithm for counting ranks in termsof the physical processors, rather than in terms of the keys themselves. Thus, we view thelength-n input vector Block as a length-p vector, each element of which is a length-(n=p) arraystored in a single processor. We also maintain a length-p vector Index , each element of which is13



a length-2r array stored in a single processor. We shall describe the operation of the algorithmafter giving the pseudocode:Counting-Rank(r,Block)1 for j  0 to 2r � 12 do Index [j] 03 for j  0 to n=p4 do increment Index [Block [j]]5 o�set  06 for k  0 to 2r � 17 do count  Sum(Index [k])8 Index [k] Scan(Index [k]) + o�set9 o�set  o�set + count10 for j  0 to n=p� 111 do Rank [j] Index [Block [j]]12 increment Index [Block [j]]13 return RankThe basic idea of the algorithm is as follows. For all Block values k = 0; 1; . . . ; 2r � 1,lines 1{4 determine how many times each value k appears in each processor. Now, considerthe ith processor and a particular value k. Lines 5{9 determine the �nal rank of the �rst key, ifany, in processor i that has Block value k. The algorithm calculates this rank by computing thenumber o�setk of keys with Block values less than k to which it adds the number of keys withBlock value equal to k that are in processors 0 through i� 1. These values are placed in thevector Index [k]. Having computed the overall rank of the �rst key in each processor, the �nalphase of the algorithm (lines 10{12) computes the overall rank of every key. This algorithmrequires indirect addressing, since the processors must index their local arrays independently.The total time for Counting-Rank isTrank = A � (2 � 2r + 10(n=p)) + S � 2r;where the constants 2 and 10 were determined empirically. Comparing with the result obtainedfor Simple-Counting-Rank, we �nd that the n=p and 2r terms are now additive rather thanmultiplicative.The time for Radix-Sort isTradix = (b=r)(R � (n=p) + Trank)= (b=r)(R � (n=p) + S � 2r + A � (2 � 2r + 10(n=p)))= (b=r)((n=p) � (R+ 10A) + 2r(S + 2A)) : (5)Figure 7 breaks down the running time of radix sort as a function of r for n=p = 4096. As canbe seen from the �gure, as r increases, the send time diminishes and the scan time grows. Wecan determine the value for r that minimizes the total time of the algorithm by di�erentiatingthe right-hand side of equation (5) with respect to r and setting the result equal to 0. Forlarge numbers of keys per processor, the value for r that we obtain satis�esr = lg((n=p)(R+ 10A)=(S + 2A))� lg(r ln 2� 1) (6)� lg(n=p)� lg lg(n=p) + 1:5 : (7)14
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Figure 9: Bucket expansion for sample sorting n = 106 keys, as a function of oversampling ratio s (p = 1024).The dashed curves are theoretical upper bounds given by inequality (9) when setting the probability of beingwithin the bound to 1� 10�3 (the lower dashed curve) and 1�10�6 (the upper dashed curve). The solid curvesare experimental values for bucket expansion. The upper solid curve shows the maximum bucket expansionfound over 103 trials, and the lower solid curve shows the average bucket expansion over 103 trials. In practice,oversampling ratios of s = 32 or s = 64 yield bucket expansions of less than 2.oversampling ratio s maintains small bucket sizes can be measured as the ratio L=(n=p), whichwill be referred to as the bucket expansion. The bucket expansion gives the ratio of themaximum bucket size to the average bucket size. The expected value of the bucket expansiondepends on the oversampling ratio s and on the total number n of keys, and will be denotedby �(s; n).It is extremely unlikely that the bucket expansion will be signi�cantly greater than itsexpected value. If the oversampling ratio is s, then the probability that the bucket expansionis greater than some factor � > 1 isPr[�(s; n) > �] � ne�(1�1=�)2�s=2 : (9)This bound, which is proved in Appendix B, is graphed in Figure 9. As an example, with anoversampling ratio of s = 64 and n = 106 keys, the probability that the largest bucket is morethan 2:5 times as large as the average bucket is less than 10�6.We shall see shortly that the running time of sample sort depends linearly on both theoversampling ratio and the bucket expansion. As is apparent from Figure 9, as the oversamplingratio s increases, the bucket expansion decreases. Thus, the oversampling ratio s must becarefully adjusted in order to obtain optimal performance.We are now ready to discuss our implementation of the sample sort algorithm. Beforeexecuting Phase 1, however, the algorithm must do a little preprocessing. The reason is thatthe basic sample sort algorithm assumes that all input keys are distinct. If many keys happen17



to have the same value, failure to break ties consistently between them can result in an unevendistribution of keys to buckets. Consequently, before the �rst phase of the sample sort begins,we tag each key with its address, thereby guaranteeing that the tagged keys all have distinctvalues.Phase 1: Selecting the splittersThe �rst phase of sample sort begins with each processor randomly selecting a set of s taggedkeys from among those stored in its local memory. We implement this method by partition-ing each processor's n=p keys into s blocks of n=ps keys, and then we choose one key atrandom from each block. This selection process di�ers from that where each processor se-lects s tagged keys randomly from the entire set, as is done in both the Reif-Valiant [19] andHuang-Chow [13] algorithms. All of these methods yield small bucket expansions. Since theCM-2 is a distributed-memory machine, however, the local-choice method has an advantagein performance over global-choice methods: no global communication is required to select thecandidates. In our implementation, we typically pick s = 32 or s = 64, depending on thenumber of keys per processor in the input.Once the sample of tagged keys has been determined, the keys in it are sorted across themachine using the simple version of radix sort described in Section 4. (Since radix sort isstable, the tags need not be sorted.) Since the sample contains many fewer keys than doesthe input, this step runs signi�cantly faster than sorting all of the keys with radix sort. Thesplitters are now chosen as these tagged keys with ranks s; 2s; 3s; . . . ; (p � 1)s. The actualextraction of the splitters from the sample is implemented as part of Phase 2.The dominant time required by Phase 1 is the time for sorting the candidates:Tcandidates = RS(ps; p) ; (10)where RS (ps; p) is the time required to radix sort ps keys on p processors. Using the radixsort from the original CM-2 PARIS library, we have Tcandidates � 7000A � s.Notice that the time for Phase 1 is independent of the total number n of keys, since duringthe selection process, a processor need not look at all of its n=p keys in order to randomlyselect from them. Notice also that if we had implemented a global-choice sampling strategy,we would have had a term containing R � s in the expression.Phase 2: Distributing the keys to bucketsExcept for our local-choice method of picking a sample and the choice of algorithm used tosort the oversampled keys, Phase 1 follows both the Reif-Valiant and Huang-Chow algorithms.In Phase 2, however, we follow Huang-Chow more closely.Each key can determine the bucket to which it belongs by performing a binary search of thesorted array of splitters. We implemented this part of the phase in a straightforward fashion:the front end reads the splitters one by one and broadcasts them to each processor. Then, eachprocessor determines the bucket for each of its keys by performing a binary search of the arrayof splitters stored separately in each processor. Once we have determined to which bucket akey belongs, we throw away the tagging information used to make each key unique and routethe keys directly to their appropriate buckets. We allocate enough memory for the buckets to18



guarantee a very high probability of accommodating the maximum bucket size. In the unlikelyevent of a bucket overow, excess keys are discarded during the route and the algorithm isrestarted with a new random seed.The time required by Phase 2 can be separated into the time for the broadcast, the timefor the binary search, and the time for the send:Tbroadcast = 50A � p ;Tbin-search = 6:5A � (n=p) lg p ;Tsend = R � (n=p) ;where the constants 50 and 6:5 were determined empirically by instrumenting the code.As is evident by our description and also by inspection of the formula for Tbroadcast, thereading and broadcasting of splitters by the front end is a serial bottleneck for the algorithm.Our sample sort is really only a reasonable sort when n=p is large, however. In particular, thecosts due to binary search outweigh the costs due to reading and broadcasting the splitterswhen 6:5(n=p) lg p > 50p, or equivalently, when n=p > (50=6:5)p= lg p. For a 64K CM-2, wehave p = 2048, and the preceding inequality holds when the number n=p of input keys perprocessor is at least 1432. This number is not particularly large, since each processor on theCM-2 has a full megabyte of memory even when the machine is con�gured with only 1-megabitDRAM's.Phase 3: Sorting keys within processorsThe third phase sorts the keys locally within each bucket. The time taken by this phase isequal to the time taken by the processor with the most keys in its bucket. If the expectedbucket expansion is �(s; n), the largest bucket has expected size (n=p)�(s; n).We use a standard serial radix sort in which each pass is implemented using several passes ofa counting sort (see, for example, [7, Section 9.3]). Radix sort was used, since it is signi�cantlyfaster than comparison sorts such as quicksort. The serial radix sort requires timeTlocal-sort = (b=r)A � ((1:3)2r + 10(n=p)�(s; n)) ; (11)where b is the number of bits in a key and 2r is the radix of the sort. The �rst term in thecoe�cient of A corresponds to the b=r (serial) scan computations on a histogram of key values,and the second term corresponds to the work needed to put the keys in their �nal destinations.We can determine the value of r that minimizes Tlocal-sort by di�erentiating the right-hand side of equation (11) with respect to r and setting the result equal to 0. This yieldsr � lg(n=p)�1 for large n=p. With this selection of r, the cost of the �rst term in the equationis small relative to the second term. Typically, b=r � 6, and �(s; n) � 2, which yieldsTlocal-sort � A � 10 � 6(n=p) � 2= 120A � (n=p) : (12)DiscussionThe main parameter to choose in the algorithm is the oversampling ratio s. A larger s dis-tributes the keys more evenly within the buckets, thereby speeding up Phase 3 of the algo-rithm. A larger s also means a larger sample to be sorted, however, thereby causing Phase 119
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would be to execute two passes of phases 1 and 2. In the �rst pass, we can generate pp � 1splitters and assign a group of pp processors to each bucket. Each key can then be sent to arandom processor within the processor group corresponding to its bucket. In the second pass,each group generates pp splitters which are locally broadcast within the subcubes, and thenkeys are sent to their �nal destinations. With this algorithm, many fewer splitters need to bedistributed to each processor, but twice the number of sends are required. This variation wasnot implemented, because we felt that it would not outperform bitonic sort for small values ofn=p.Load balancing. When the three phases of the algorithm are complete, not all processorshave the same number of keys. Although some applications of sorting|such as implementinga combining send or heuristic clustering|do not require that the processor loads be exactlybalanced, many do. Load balancing can be performed by �rst scanning to determine thedestination of each sorted key and then routing the keys to their �nal destinations. Thedominant cost in load balancing is the extra send. We implemented a version of sample sortwith load balancing. With large numbers of keys per processor, the additional cost was only30 percent, and the algorithm still outperforms the other sorts.Key distribution. The randomized sample sort algorithm is insensitive to the distributionof keys, but unfortunately, the CM-2 message router is not, as was mentioned in Section 2. Infact, for certain patterns, routing can take up to two and a half times longer than normallyexpected. This di�culty can be overcome, however, by randomizing the location of buckets.For algorithms that require the output keys in the canonical order of processors, an extra sendis required, as well as a small amount of additional routing so that the scan for load balancingis performed in the canonical order. This same send can also be used for load balancing.6 ConclusionsOur goal in this project was to develop a system sort for the Connection Machine. Becauseof this goal, raw speed was not our only concern. Other issues included, space, stability,portability, and simplicity. Radix sort has several notable advantages with respect to thesecriteria. Radix sort is stable, easy to code and maintain, performs reasonably well over theentire range of n=p, requires less memory than sample sort, and performs well on short keys.Although the other two sorts have domains of applicability, we concluded that the radix sortwas most suitable as a system sort.Figure 12 compares the three sorting algorithms. In the following paragraphs, we examinesome of the quantitative di�erences between the algorithms.Running Time. A graph of the actual running times of all three sorts along with the timeof the original system sort was given in Figure 1. With many keys per processor, the samplesort is approximately three times faster than the other two sorts and therefore, based on pureperformance, sample sort is the clear winner.More informative than the raw running times are the equations for the running times, sincethey show how the running time is a�ected by the number of keys, the number of processors,22



Alg. Stable Load Time/(n=p) Mem. RankBal. n=p = 64 n=p = 16KBitonic no yes 1600�sec 2200�sec 1.0 1.5Radix yes yes 2400�sec 950�sec 2.1 1.0Sample no no 5500�sec 330�sec 3.2 1.5Figure 12: Summary of the three sorting algorithms assuming 64-bit keys. The load balanced column speci�eswhether the �nal result is balanced across the processors. The time column is the time to sort on a 1024-processormachine (32K CM-2). The memory column is the ratio, for large n=p, of the space taken by the algorithm tothe space taken by the original data. The rank column is an approximate ratio of the time of a rank to the timeof a sort. The rank operation returns to each key the rank it would attain if the vector were sorted.and various machine parameters. If we assume that n=p is large, we can approximate theequations for the three algorithms asTbitonic � (n=p)(Q � (lg p) + A � 2:5(lg2 n))Tradix � (n=p)(R � 6 + A � 80)Tsample � (n=p)(R + A � (5 lg p+ 120)) :If Q, R and A are known, these equations can be used to give rough estimates of running timesfor the algorithms on other machines. We caution, however, that running times predicted inthis fashion could err by as much as a factor of 2. The A terms in the equations are likely tobe the least accurate since the constants were all derived empirically for the CM-2, and theydepend highly on the local capabilities of the processors.The equations can also give an idea of how much would be gained in each sorting algo-rithm by improving various aspects of the CM-2. For example, we could analyze the e�ect ofimproving the time for a send. Based on the equations, we see that radix sort would bene�tthe most, since its running time is dominated by the send (currently on the CM-2, R = 130A).Space. A second important concern is the space required by each sorting algorithm. Bitonicsort executes in place and therefore requires only a small constant amount of additional memoryfor storing certain temporary variables. Our radix sort, using n keys, each consisting of w 32-bit words, requires 2w(n=p) + 2r 32-bit words of space per processor. The �rst term is neededfor storing the keys before and after the send (the send cannot be executed in place), andthe second term is needed for holding the bucket sums. Because of the �rst term, the spacerequired by the sort is at least twice that required by the original data. The number inFigure 12 corresponds to the case w = 2 (64-bits) and r = lg(n=p) � 2 (set to minimize therunning time). Our sample sort requires a maximum of 2w(n=p)�(s; n) + 2r + (w+ 1)p 32-bitwords of space in any processor. The �rst and second terms are needed for local radix sorting,and the third term is needed for storing the splitters within each processor. The number inFigure 12 corresponds to the case w = 2, r = lg(n=p)� 1 (set to minimize the running time),and �(s; n) � 1:5 (determined from experimental values).23



Ranking. Often, in practice, a \rank" is a more useful operation than a sort. For a vectorof keys, the rank operation returns to each key the rank it would attain if the vector weresorted. This operation allows the user to rank the keys and then send a much larger blockof auxiliary information associated with each key to the �nal sorted position. For each of thethree algorithms that we implemented, we also implemented a version which generates theranks instead of the �nal sorted order. To implement a rank operation in terms of a sort,the original index in the vector is tagged onto each key and is then carried around duringthe sort. Once sorted, the �nal index is sent back to the location speci�ed by the tag (thekey's original position). In a radix-sort-based implementation of the rank operation, the costof the additional send can be avoided by omitting the last send of radix sort, and sending therank directly back to the index speci�ed by the tag. Furthermore, as each block of the key isused by radix sort, that block can be thrown away, thereby shortening the message length ofsubsequent sends. Because of this, the time of \radix-rank" is only marginally more expensivethan that of radix sort. For sample sort and bitonic sort, carrying the tag around slows downthe algorithm by a factor of between 1.3 and 1.5.Stability. Radix sort is stable, but the other two sorts are not. Bitonic sort and sample sortcan be made stable by tagging each key with its initial index, as is done for the rank. In thiscase, however, not only must the tag be carried around during the sends, it must also be usedin the comparisons. Sorting the extra tag can cause a slowdown of up to a factor of 1:5.Key Length. Another issue is sorting short keys|keys with perhaps 10, 16, or 24 signi�cantbits. Sorting short keys is a problem that arises reasonably often in CM-2 applications. Forshort keys, the time required by bitonic sort is not at all improved over the 32-bit time. Thetime required by the sample sort is marginally improved, since the cost of the local radix sortis reduced. The time required by radix sort, however, is essentially proportional to the keylength. Since r is typically in the range 10 � r < 16, sorting 20 bits requires 2 passes insteadof 3 to 4 for 32 bits and 5 to 7 for 64 bits.A Other Sorts of SortsMany algorithms have been developed for sorting on the hypercube and related networks suchas the buttery, cube-connected cycles, and shu�e-exchange. We considered a number of thesealgorithms before deciding to implement bitonic sort, radix sort, and sample sort. The purposeof this section is to discuss some of the other sorting algorithms considered and, in particular,to indicate why these alternatives were not selected for implementation.Quicksort. It is relatively easy to implement a parallel version of quicksort on the CM-2using segmented scans. First, a pivot is chosen at random and broadcast using scans. Thepivot partitions the keys into small keys and large keys. Next, using scans, each small key islabeled with the number of small keys that precede it in the linear order, and each large keyis labeled with the number of large keys that precede it, plus the total number of small keys.The keys are then routed to the locations speci�ed by their labels. The new linear order isbroken into two segments, the small keys and the large keys, and the algorithm is recursively24



applied to each segment. The expected number of levels of recursion is close to lgn, and, ateach level, the algorithm performs 1 route and approximately 7 scans. This algorithm has beenimplemented in a high level language (*Lisp) and runs about 2 times slower than the originalsystem sort. We believed that we could not speed it up signi�cantly, since the scan and routeoperations are already performed in hardware.Hyperquicksort. The hyperquicksort algorithm [23] can be outlined as follows. First, eachhypercube node sorts its n=p keys locally. Then, one of the hypercube nodes broadcasts itsmedian key, m, to all of the other nodes. This key is used as a pivot. Each node partitions itskeys into those smaller than m, and those larger. Next, the hypercube nodes exchange keysalong the dimension-0 edges of the hypercube. A node whose address begins with 0 sends allof its keys that are larger than m to its neighbor whose address begins with 1. The neighborsends back all of its keys that are smaller than m. As keys arrive at a node, they are mergedinto the sorted sequence of keys that were not sent by that node. Finally, the algorithm isrecursively applied to the p=2-node subcubes whose addresses begin with 0 and 1, respectively.The communication cost of hyperquicksort is comparable to that of the fully-pipelinedversion of bitonic sort. The expected cost is at least Qn lg p=2p since the algorithm uses thelg p dimensions one at a time and, for each dimension, every node expects to send half of itsn=p keys to its neighbor. The cost of bitonic sort is always Q � (lg p)(n=p+ (lg p)=2� 1=2) (seeSection 3).The main advantage of bitonic sort over hyperquicksort is that its performance is nota�ected by the initial distribution of the keys to be sorted. Hyperquicksort relies on a randominitial distribution to ensure that the work each processor has to do is reasonably balanced.Although hyperquicksort may perform less arithmetic than bitonic sort in the best case, it usesindirect addressing, which is relatively expensive on the CM-2.Sparse enumeration sort. The Nassimi-Sahni sorting algorithm [17], which will be referredto as sparse enumeration sort, is used when the number n of items to be sorted is smaller thanthe number p of processors. In the special case n = pp, sparse enumeration sort is a verysimple algorithm indeed. The n records are initially stored one-per-processor in the n lowest-numbered processors; viewing the processors of the hypercube as forming a two-dimensionaln � n array, the input records occupy the �rst row of the array. Sparse enumeration sortproceeds by performing a set of n parallel column broadcasts (from the topmost entry ineach column) followed by n parallel row broadcasts (from the diagonal positions), so that theprocessor at row i and column j of the array contains a copy of the ith and jth items. Atthis point, all pairs of items can be simultaneously compared in constant time, and pre�xoperations over the rows can be used to compute the overall rank of each item. The ith row isthen used to route a copy of item i to the column corresponding to its output rank. Finally, aset of n parallel column routes is used to move each item to its sorted output position in the�rst row. For values of n strictly less than pp, sparse enumeration sort proceeds in exactlythe same fashion: n2 processors are used, and the remaining p� n2 processors are idle. Thus,sparse enumeration sort runs in O(lgn) time when n � pp.Sparse enumeration sort generalizes the preceding algorithm in an elegant manner to obtaina smooth tradeo� between O(lg n) performance at n = pp and O(lg2 n) performance at n = p(the performance of bitonic sort). In this range, sparse enumeration sort is structured as a25



(p=n)-way merge sort. After the ith set of parallel merges, the n items are organized inton(n=p)i sorted lists of length (p=n)i. The ith set of merges is performed in O(i lg(p=n)) timeusing a constant number of bitonic merges, pre�x operations, and monotone routes. Monotoneroutes are a special class of routing operations that can be performed deterministically, on-line in a collision-free manner. On the CM-2, monotone routes would be implemented usingcube swaps; the entire implementation of sparse enumeration sort would not make use of theCM-2 router. A straightforward computation shows that the overall time complexity of sparseenumeration sort is O(lg2 n= lg(p=n)) time.For su�ciently large values of the ratio p=n > 1, one would expect sparse enumerationsort would perform better than the other sorts we looked at. It is unclear, however, that onewould need a parallel computer to solve such small problems and one might get better timesby solving the problem on a single processor, or by reducing p.Column sort. Column sort [15] is an elegant parallel sorting technique that has found manytheoretical applications. Column sort sorts n keys using two primitive operations. The �rstprimitive operation is to sort n1=3 separate sets (called columns) of n2=3 keys each. Dependingon the particular application, this sorting primitive may either be accomplished by a recursivecall or, more typically, by some other sorting algorithm. The second primitive operation isto route all n keys according to a �xed permutation. Alternating between sorts and routes 4times su�ces to sort all n elements.If n � p3, then column sort runs quite e�ciently. The sorting primitive is executed as a localsort, and all of the �xed permutations required by column sort are straightforward to implementin a greedy, collision-free manner. In terms of the CM-2, they can be implemented with asimple sequence of cube swaps rather than by invoking the router. As another implementationoptimization, we remark that the \standard" column sort algorithm is not pipelined and wouldonly make use of a 1= lg p fraction of the CM-2 wires at any given time. A �(lg p) speedup canbe achieved by pipelining, and there are at least two approaches worthy of consideration. The�rst approach is to partition the data at each processor into lg p equal-sized sets, interleavelg p column sorts, and then merge the resulting lg p sorted lists. The second approach is topipeline each of the routing operations in a single application of column sort.The main drawback of column sort is that, for n < p3, some degree (depending on theratio n=p) of recursion is necessary in order to perform the sorting primitive; sets of n2=3items occupy more than a single processor. We chose not to implement column sort becauseit appeared that the condition n � p3 would not be satis�ed in many cases of interest, anda close analysis of critical sections of the potential code indicated that a recursive version ofcolumn sort would provide little, if any, improvement over either radix sort or sample sort.Furthermore, the relative performance of column sort would tend to degrade quite severely forsmall values of the ratio n=p.The asymptotic performance of column sort is best understood by considering arithmeticand communication costs separately. Let us assume that n � p1+�, where � denotes an arbitrarypositive constant, which implies a bounded depth of recursion. Under this assumption, thetotal arithmetic cost of column sort is �((n=p) lg n), which is optimal for any comparison-basedsort. With pipelining, the communication cost of column sort is �(n=p), which is optimal forany sorting algorithm.To summarize, although we felt that column sort might turn out to be competitive at26



unusually high loads (n � p3), its mediocre performance at high loads (p2 � n < p3), and poorperformance at low to moderate loads (p � n < p2) made other alternatives more attractive.Column sort might well be a useful component of a hybrid sorting scheme that automaticallyselects an appropriate algorithm depending upon the values of n and p.Cubesort. Like Leighton's column sort, the cubesort algorithm of Cypher and Sanz [9]gives a scheme for sorting n items in a number of \rounds", where in each round the data ispartitioned into n=s sets of size s (for some s, 2 � s � n), and each set is sorted. (Successivepartitions of the data are determined by simple �xed permutations that can be routed just ase�ciently as those used by column sort.) The main advantage of cubesort over column sort isthat, for a wide range of values of s, cubesort requires asymptotically fewer rounds than columnsort. In particular, for 2 � s � n, column sort (applied recursively) uses �((lgn= lg s)�) roundsfor � = 2=(lg 3 � 1) � 3:419, whereas cubesort uses only O((25)lg� n�lg� s(lg n= lg s)2) rounds.(The cost of implementing a round is essentially the same in each case.) For n � p3, cubesortcan be implemented without recursion, but requires 7 rounds as opposed to 4 for column sort.For n < p3, both cubesort and column sort are applied recursively. For n su�ciently smallerthan p3 (and p su�ciently large), the aforementioned asymptotic bounds imply that cubesortwill eventually outperform column sort. However, for practical values of n and p, if such acrossover in performance ever occurs, it appears likely to occur at a point where both cubesortand column sort have poor performance relative to other algorithms (e.g., at low to moderateloads).Nonadaptive smoothsort. There are several variants of the smoothsort algorithm, all ofwhich are described in [18]. The most practical variant, and the one of interest to us here,is the nonadaptive version of smoothsort algorithm. The structure of this algorithm, here-inafter referred to simply as \smoothsort," is similar to that of column sort. Both algorithmsmake progress by ensuring that under a certain partitioning of the data into subcubes, thedistribution of ranks of the items within each subcube is similar. The bene�t of performingsuch a \balancing" operation is that after the subcubes have been recursively sorted, all ofthe items can immediately be routed close to their correct position in the �nal sorted order(i.e., the subcubes can be approximately merged in an oblivious fashion). The e�ectivenessof the algorithm is determined by how close (in terms of number of processors) every item isguaranteed to come to its correct sorted position. It turns out that for both column sort aswell as smoothsort, the amount of error decreases as n=p, the load per processor, is increased.As noted in the preceding section, for n � p3, column sort can be applied without recursion.This is due to the fact that after merging the balanced subcubes, every item has either beenrouted to the correct processor i, or it has been routed to one of processors i�1 and i+1. Thus,the sort can be completed by performing local sorts followed by merge-and-split operationsbetween odd and even pairs of adjacent processors. As a simple optimization, it is moree�cient to sort the ith largest set of n=p items to the processor with the ith largest standardGray code instead of processor i. This permits the merge-and-split operations to be performedbetween adjacent processors.The main di�erence between column sort and smoothsort is that the \balancing" operationperformed by smoothsort (the cost of which is related to that of column sort by a small constantfactor) guarantees an asymptotically smaller degree of error. For this reason, smoothsortcan be applied without recursion over a larger range of values of n and p, namely, for n �27



p2 lg p. Interestingly, the balancing operation of smoothsort is based upon a simple variant ofmerge-and-split: the \merge-and-unshu�e" operation. Essentially, the best way to guaranteesimilarity between the distribution of ranks of the items at a given pair A and B of adjacentprocessors is to merge the two sets of items, assign the odd-ranked items in the resulting sortedlist to processor A (say), and the even-ranked items to processor B. This e�ect is preciselythat of a merge-and-unshu�e operation. The balancing operation of smoothsort amounts toperforming lg p sets of such merge-and-unshu�e operations, one over each of the hypercubedimensions. As in the case of column sort, there are at least two ways to pipeline the balancingoperation in order to take advantage of the CM-2's ability to communicate across all of thehypercube wires at once.At high loads (p2 � n < p3), we felt that smoothsort might turn out to be competitive withsample-sort. Like column sort, however, the performance of smoothsort degrades (relative tothat of other algorithms) at low to moderate loads (p � n < p2), which was the overridingfactor in our decision not to implement smoothsort. For unusually high loads (n � p3), itis likely that column sort would slightly outperform smoothsort because of a small constantfactor advantage in the running time of its balancing operation on the CM-2. It should bementioned that for n � p1+�, the asymptotic performance of smoothsort is the same as that ofcolumn sort, both in terms of arithmetic as well as communication. Smoothsort outperformscolumn sort for smaller values of n=p, however. For a detailed analysis of the running time ofsmoothsort, the reader is referred to [18].Theoretical results. This subsection summarizes several \theoretical" sorting results|algorithms with optimal or near-optimal asymptotic performance but which remain impracticaldue to large constant factors and/or nonconstant costs that are not accounted for by the modelof computation. In certain instances, a signi�cant additional penalty must be paid in order to\port" the algorithm to the particular architecture provided by the CM-2.Many algorithms have been developed for sorting on Parallel Random Access Machines(PRAMs). The fastest comparison-based sort is Cole's parallel merge sort [6]. This algorithmrequires optimal O(lgn) time to sort n items on an n-node exclusive-read exclusive-write(EREW) PRAM. Another way to sort in O(lgn) time is to emulate the AKS sorting circuit[1]. The constants hidden by the O-notation are large, however.If one is interested in emulating a PRAM algorithm on a �xed interconnection network suchas the hypercube or buttery, the cost of the emulation must be taken into account. Sinceemulation schemes tend to be based on routing, and the cost of routing seems to be intimatelyrelated to that of sorting, it is perhaps unlikely that any sorting algorithm developed for thePRAM model will lead to an optimal solution in the �xed interconnection network model.For the hypercube and related networks such as the buttery, cube-connected cycles, andshu�e-exchange, there have been recent asymptotic improvements in both the deterministicand randomized settings. A deterministic, O(lg n(lg lg n)2)-time algorithm for the case n = p isdescribed in [8]. An O(lgn)-time algorithm that admits an e�cient bit-serial implementationand also improves upon the asymptotic failure probability of the Reif-Valiant ashsort algo-rithm is presented in [16]. Unfortunately, both of these algorithms are quite impractical. Thereader interested in theoretical bounds should consult the aforementioned papers for furtherreferences to previous work. 28



B Probabilistic Analysis of Sample SortThis appendix analyzes the sizes of the buckets created by the sample sort algorithm fromSection 5. Recall how buckets are created, a method we'll call Method P. First, each of the pprocessors partitions its n=p keys into s groups of n=ps and selects one candidate at randomfrom each group. Thus, there are a total of exactly ps candidates. Next, the candidates aresorted, and every sth candidate in the sorted order is chosen to be a splitter. The keys lyingbetween two successive splitters form a bucket. Theorem B.4 will show that it is unlikely thatthis method assigns many more keys than average to any one bucket.The proof of Theorem B.4 uses three lemmas, the �rst two of which are well known in theliterature. The �rst is due to Hoe�ding.Lemma B.1 Let Xi be a random variable that is equal to 1 with probability qi and to 0 withprobability 1 � qi, for i = 1; 2; . . . ; n. Let W = Pni=1Xi, which implies that E[W ] = Pni=1 qi.Let q = E[W ]=n, and let Z be the sum of n random variables, each equal to 1 with probabilityq and to 0 with probability 1� q. (Note that E[W ] = E[Z] = qn.) If k � qn� 1 is an integer,then Pr[W � k] � Pr[Z � k] :Our second lemma is a \Cherno�" bound due to Angluin and Valiant [11].Lemma B.2 Consider a sequence of r Bernoulli trials, where success occurs in each trial withprobability q. Let Y be the random variable denoting the total number of successes. Then for0 �  � 1, we have Pr[Y � rq] � e�(1�)2rq=2 :Our third lemma shows that Method P can be analyzed in terms of another simpler methodwe call Method I. In Method I, each key of the n keys independently chooses to be a candidatewith probability ps=n. For this method, the expected number of candidates is ps. The followinglemma shows that upper bounds for Method I apply to Method P.Lemma B.3 Let S be a set of n keys, and let T denote an arbitrary subset of S. Let YP andYI denote the number of candidates chosen from T by Methods P and I, respectively. Then forany integer k � (jT jps=n)� 1, we havePr[YP � k] � Pr[YI � k] :Proof: Let fSig be the partition of keys used by Method P, that is, S = Spsi=1 Si and jSij =n=ps. De�ne Ti = Si \ T , for i = 1; 2; . . . ; ps. Since jTij � jSij = n=ps, each set Ti contributes1 candidate with probability jTijps=n , and 0 candidates otherwise.Now, de�ne jT j 0-1 random variables as follows. For each nonempty Ti, de�ne jTij ran-dom variables, where the �rst random variable is equal to 1 with probability jTijps=n and 0otherwise, and the remaining jTij � 1 random variables are always 0.29



Call the resulting set of jT j random variables X1; . . . ; XjT j (order is unimportant), and letYP be the random variable de�ned by YP =PjT ji=1Xi. Consequently,E[YP ] = psXi=1 jTijps=n = jT jps=n ;and thus, YP is the random variable corresponding to the number of candidates chosen fromthe set T by Method P.De�ne YI to be the sum of jT j ps=n-biased Bernoulli trials. Note that YI is the randomvariable corresponding to the number of candidates chosen from the set T by Method I. Hence,by substituting W = YP and Z = YI into Hoe�ding's inequality, we havePr[YP � k] � Pr[YI � k]for k � E[YP ]� 1 = E[YI ]� 1 = (jT jps=n)� 1.With Lemmas B.1 and B.3 in hand, we are prepared to prove the bound given by inequal-ity 9.Theorem B.4 Let n be the number of keys in a sample sort algorithm, let p be the numberof processors, and let s be the oversampling ratio. Then for any � > 1, the probability thatMethod P causes any bucket to contain more than �n=p keys is at most ne�(1�1=�)2�s=2.Proof: To prove that no bucket receives more than �n=p keys, it su�ces to show that thedistance l from any key to the next splitter in the sorted order is at most �n=p. We begin bylooking at a single key. We have l > �n=p only if fewer than s of the next �n=p keys in thesorted order are candidates. Let T denote this set of �n=p keys. Let YP denote the number ofcandidates in T , which are chosen according to Method P. Thus, Pr[l > �n=p] � Pr[YP < s].We can obtain an upper bound on Pr[YP < s] by analyzing Method I instead of Method P,since by Lemma B.3, any upper bound derived for Pr[YI � s] also applies to Pr[YP � s], aslong as s � (jT jps=n)�1. If the candidates are chosen according to Method I, then the numberof candidates in the set T of �n=p keys has a binomial distribution, that is,Pr[YI = k] =  rk!qk(1� q)r�k ;where r = �n=p is the number of independent Bernoulli trials, q = ps=n is the probability ofsuccess in each trial, and YI is the number of successes. The probability that fewer successesoccur than expected can be bounded using the \Cherno�" boundPr[YI � rq] � e�(1�)2rq=2 ;which holds for 0 �  � 1. Substituting r = �n=p, q = ps=n, and  = 1=�, we havePr[l > �n=p] � Pr[YP � s]� Pr[YI � s]� e�(1�1=�)2�s=2:30
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