
£prof: a Call Graph E x e c u t i o n P ro f i l e r i

b y
S u s a n L. Graham
P e t e r B. Kess ler

Marshall K McKusiclc

C o m p u t e r S c i e n c e Divis ion
E l e c t r i c a l E n g i n e e r i n g a n d C o m p u t e r S c i e n c e D e p a r t m e n t

U n i v e r s i t y of California, B e r k e l e y
Berke ley , Cal i forn ia 94720

A b s t r a c t

Large complex p rog rams are composed of m a n y
s m a l l rou t ines t ha t i m p l e m e n t abs t r ac t ions for the
rou t ines t ha t call them. To be useful, an execu t ion
profi ler m u s t a t t r i b u t e execu t ion t ime in a way t h a t
is signif icant for the logical s t r u c t u r e of a p r o g r a m
as well as for its t ex tua l decomposi t ion . This da ta
m u s t t hen be displayed to the use r in a conven i en t
and informat ive way. The g p r o f profiler a ccoun t s
• for the r u n n i n g t ime of called rou t ines in the run-
ning t ime of the rou t ines t ha t call them. The design
and use of this profiler is descr ibed.

1. P r o g r a m s t o b e P r o f i l e d

Software r e s e a r c h e n v i r o n m e n t s normal ly
inc lude m a n y large p rog rams both for p r o d u c t i o n
use and for e x p e r i m e n t a l invest igat ion. These pro-
g rams are typical ly modular , in a c c o r d a n c e with
genera l ly a c c e p t e d pr inc ip les of good p r og r a m
design. Often they cons is t of n u m e r o u s smal l rou-
t ines t ha t i m p l e m e n t var ious abs t rac t ions . Some-
t imes such large p rograms are wr i t t en by one pro-
g r a m m e r who has unde r s tood the r e q u i r e m e n t s for
these abs t rac t ions , and has p r o g r a m m e d t h e m
appropr ia te ly . More f requen t ly the p r o g r a m has
had mul t ip le au thors and has evolved over t ime,
changing the d e m a n d s placed on the i m p l e m e n t a -
t ion of the a b s t r a c t i o n s wi thout changing the imple-
m e n t a t i o n itself. Finally, the p r o g r a m may be
a s sembled f rom a l ib ra ry of a b s t r a c t i o n imp l e me n-
ta t ions u n e x a m i n e d by the p r o g r a m m e r .

Once a large p r o g r a m is executable , i t is of ten
d e s i r a b l e to i nc rease its speed, especial ly if smal l
p o r t i o n s of t h e p r o g r a m are found to domina te its

ZThil work was supported by grant MCS80-05144 from the
National S c i e n ~ Foundation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, rcquircs a fcc and/or specific permission.

© 1982 A C M 0 - 8 9 7 9 1 - 0 7 4 - 5 / 8 2 / 0 0 6 / 0 1 2 0 $00 .75

execu t ion t ime. The purpose of the gprof profiling
tool is to help the u se r evaluate a l t e rna t ive imple-
m e n t a t i o n s of abs t rac t ions . We developed this tool
in r e sponse to our efforts to improve a code gene ra -
tor we were writ ing [Graham82].

The gprof des ign takes advantage of the fac t
t ha t the p rog rams to be m e a s u r e d are large, s t ruc -
t u red and h ierarchica l . We provide a profile in
which the execu t ion t ime for a set of rou t ines t h a t
i m p l e m e n t an a b s t r a c t i o n is col lected and charged
to t ha t abs t r ac t ion . The profile can be used to com-
pare and assess the costs of var ious i m p l e m e n t a -
t ions.

The profi ler can be l inked into a p r o g r a m
without special p lanning by the p r o g r a m m e r . The
overhead for using gprof is low; bo th in t e r m s of
added execu t ion t ime and in the volume of profiling
in fo rma t ion recorded .

2. Types of Prof i l ing

There are severa l d i f fe rent uses for p r o g r a m
profiles, and each ma y requ i re different i n f o rma t ion
f rom the profiles, or d i f ferent p r e s e n t a t i o n of the
in format ion . We d is t inguish two broad ca tegor ies of
profiles: those t ha t p r e s e n t coun ts of s t a t e m e n t or
rou t ine invocat ions , and those t h a t display t iming
in fo rma t ion abou t s t a t e m e n t s or rou t ines . Counts
are typical ly p r e s e n t e d in t a bu l a r form, of ten in
para l le l with a l is t ing of the source code. Timing
in fo rma t ion could be s imi lar ly p r e sen t ed ; bu t more
t h a n one m e a s u r e of t ime migh t be assoc ia ted with
each s t a t e m e n t or rou t ine . For example, in the
f ramework used by gprof each profiled s e g m e n t
would display two t imes: one for the t ime used by
the s e g m e n t itself, and a n o t h e r for the t ime inher -
i ted f rom code s e g m e n t s i t invokes.

Execu t ion counts are used in m a n y d i f fe ren t
contexts . The exact n u m b e r of t imes a rou t ine or
s t a t e m e n t is ac t iva ted can be used to d e t e r m i n e if
an a lgor i thm is pe r fo rming as expected. Cursory
in spec t ion of such coun te r s may show a lgor i thms
whose complexi ty is unsu i t ed to the task a t hand.
Careful i n t e r p r e t a t i o n of coun t e r s can often sugges t
i m p r o v e m e n t s to accep tab le a lgor i thms. Precise
e xa mi na t i on can uncover subt le e r rors in an

120

algorithm. At this level, profiling counters are simi-
lar to debugging statements whose purpose is to
show the number of times a piece of code is exe-
cuted. Another view of such counters is as boolean
values. One may be interested that a portion of
code has executed at all, for exhaustive testing, or
to check that one implementation of an abstraction
completely replaces a previous one.

Execution counts are not necessarily propor-
tional to the amount of time required to execute
the routine or statement. Further, the execution
time of a routine will not be the same for all calls on
the routine. The criteria for establishing execution
time must be decided. If a routine implements an
abstraction by invoking other abstractions, the time
spent in the routine will not accurately reflect the
time required by the abstraction it implements.
Similarly, if an abstraction is implemented by
several routines the time required by the abstrac-
tion will be distributed across those routines.

Given the execution time of individual routines,
gprof accounts to each routine the time spent for it
by the routines it invokes. This accounting is done
by assembl ing a call graph with nodes t ha t are the
rou t ines of the p rog ram and d i rec ted arcs t h a t
r e p r e s e n t calls f rom call s i tes to rout ines . We dis-
t inguish among th ree different call graphs for a pro-
gram. The complete call graph i nco rpora te s all rou-
t ines and all po ten t i a l arcs, inc luding arcs t h a t
r e p r e s e n t calls to func t iona l p a r a m e t e r s or func-
t ional variables. This graph con ta ins the o the r two
graphs as subgraphs . The static call graph inc ludes
all rou t ines and all possible arcs t ha t are no t calls
to func t iona l p a r a m e t e r s or variables . The dynamic
call graph inc ludes only those rou t ines and arcs
t r ave r sed by the profiled execu t ion of the program.
This graph need not include all rou t ines , nor need it
inc lude all po ten t ia l arcs be tween the rou t ines i t
covers. It may, however, inc lude arcs to func t iona l
p a r a m e t e r s or var iables t h a t the s ta t ic call g raph
may omit . The s ta t ic call g raph can be d e t e r m i n e d
f rom the (stat ic) p rog ram text. The dynamic call
g raph is d e t e r m i n e d only by profiling an execu t ion
of the p rogram. The comple te call g raph for a
monol i th ic p rog ram could be d e t e r m i n e d by da ta
flow analysis techniques . The comple te call g raph
for p rog rams tha t change dur ing execut ion, by
modifying themse lves or dynamica l ly loading or
overlaying code, may never be de t e rminab le . Both
the s ta t ic call g raph and the dynamic call g raph are
used by gprof, but it does not search for the com-
plete call graph.

3. Gatherin/~ Profile Data

Routine calls or statement executions can be
measured bY having a compiler augment the code
at strategic points. The additions can be inline
increments to counters [KnuthTl] [Satterthwaite72]
[Joy79] or calls to monitoring routines [Unix]. The
¢ounter increment overhead is low, and is suitable
for profiling statements. A call of the monitoring
routine has an overhead comparable With a call of a
regular routine, and is therefore only suited to
profiling on a routine by routine basis. However,

the monitorin~ routine solution has certain advan-
tages. Whatever counters are needed by the moni-
toring routine can be managed by the monitoring
routine itself, rather than being distributed around
the code. In particular, a monitoring routine can
easily be called from separately compiled pro-
grams. In addition, different monitoring routines
can be linked into the program being measured to
assemble different profiling data without having to
change the compiler or recompile the program. We
have exploited this approach; our compilers for C,
Fortran77, and Pascal can insert calls to a monitor-
ing routine in the prologue for each routine. Use of
the monitoring routine requires no planning on part
of a programmer other than to request that aug-
mented routine prologues be produced during com-
pilation.

We are interested in gathering three pieces of
information during program execution: call counts
and execution times for each profiled routine, and
the arcs of the dynamic call graph traversed by this
execution of the program. By post-processing of
this data we can build the dynamic call graph for
this execution of the program and propagate times
along the edges of this graph to attribute times for
routines to the routines that invoke them.

Gathering of the profiling information .should
not greatly interfere with the running of the pro-
gram. Thus, the monitoring routine must not pro-
duce trace output each time it is invoked. The
volume of data thus produced would be unmanage-
ably large, and the time required to record it would
overwhelm the running time of most programs.
Similarly, the monitoring routine can not do the
analysis of the profiling data (e.g. assembling the
call graph, propagating times around it, discovering
cycles, etc.) during program execution. Our solu-
tion is to gather profiling data in memory during
program execution and to condense it to a file as
the profiled program exits. This file is then pro-
cessed by a separate program to produce the listing
of the profile data. An advantage of this approach is
that the profile data for several executions of a pro-
gram can be combined by the post-processing to
provide a profile of many executions.

The execution time monitoring consists of three
parts. The first part allocates and initializes the
runtime monitoring data structures before the pro-
gram begins execution. The second part is the mon-
itorlng routine invoked from the prologue of each
profiled routine. The third part condenses the data
structures and writes them to a file as the program
terminates. The monitoring routine is discussed in
detail in the following sections.

3. I. KmecuUon Counts

The gprof monitoring routine counts the
number of times each profiled routine is called. The
monitoring routine also records the arc in the call
graph that activated the profiled routine. The count
~ ~ssooi~ted with the arc in the call g raph r a t h e r
t h a n with the rou t ine . Call coun t s for rou t ines can
t h e n be d e t e r m i n e d by s u m m i n g the counts on arcs
directed in to t h a t rou t ine . In a m a c h i n e - d e p e n d e n t

121

fashion, the monitoring routine notes its own return
address. This address is in the prologue of some
profiled routine that is the destination of an arc in
the dynamic call graph. The monitoring routine
also discovers the return address for that routine,
thus identifying the call site, or source of the arc.
The source of the arc is in the caller, and the desti-
nation is in the ca/lee. For example, if a routine A
calls a routine B, A is the caller, and B is the callee.
The prologue of B will include a call to the monitor-
ing routine that will note the arc from A to B and
either initialize or increment a counter for that arc.

One can not afford to have the monitoring rou-
tine output tracing information as each arc is
identified. Therefore, the monitoring routine main-
tains a table of all the arcs discovered, with counts
of the numbers of times each is traversed during
execution. This table is accessed once per routine
call. Access to it must be as fast as possible so as
not to overwhelm the time required to execute the
program.

Our solution is to access the table through a
hash table. We use the call site as the primary key
with the callee address being the secondary key.
Since each call site typically calls only one callee,
we can reduce (usually to one) the number of minor
lookups based on the callee. Another alternative
would use the callee as the primary key and the call
site as the secondary key. Such an organization has
the advantage of associating callers with callees, at
the expense of longer lookups in the monitoring
routine. We are fortunate to be running in a virtual
memory environment, and (for the sake of speed)
were able to allocate enough space for the primary
hash table to allow a one-to-one mapping from call
site addresses to the primary hash table. Thus our
hash function is trivial to calculate and collisions
occur only for call sites that call multiple destina-
tions (e.g. functional parameters and functional
variables). A one level hash function using both call
site and callee would result in an unreasonably
large hash table. Further, the number of dynamic
call sites and callees is not known during execution
of the profiled program.

Not all callers and callees can be identified by
the monitoring routine. Routines that were com-
piled without the profiling augmentations will not
call the monitoring routine as part of their prolo-
gue, and thus no arcs will be recorded whose desti-
nations are in these routines. One need not profile
all the routines in a program. Routines that are not
profiled run at full speed. Certain routines, notably
exception handlers, are invoked by non-standard
calling sequences. Thus the monitoring routine may
know the destination of an arc (the callee), but find
it difficult or impossible to determine the source of
the arc (the caller). Often in these cases the
apparent source of the arc is not a call site at all.
Such anomalous invocations are declared "spon-
taneous".

3.2. E x e c u t i o n T i m e s

The e x e c u t i o n t i m e s for rout ines can be gath-
ered in at least two ways. One method measures

the execu t ion t ime of a rou t ine by me a su r ing the
e lapsed t ime f rom rou t ine e n t r y to rou t ine exit.
Unfor tuna te ly , t ime m e a s u r e m e n t is compl ica ted
on t ime-sha r ing sys t ems by the t ime-s l ic ing of the
program. A second m e t h o d samples the value of
the p r o g r a m c o u n t e r at some in terval , and infers
execu t ion t ime f rom the d i s t r i bu t ion of the samples
within the p rogram. This t e chn ique is pa r t i cu la r ly
su i ted to t ime- sha r ing sys tems , where the t ime-
slicing can serve as the basis for sampl ing the pro-
g r am counte r . Notice tha t , whereas the f irst
me thod could provide exac t t imings , the second is
i nhe ren t l y a s t a t i s t i ca l approximat ion .

The sampl ing m e t h o d need no t requi re suppo r t
f rom the opera t ing sys tem: all t ha t is needed is the
abil i ty to set and re spond to " a l a r m clock" in te r -
r up t s t ha t r u n re la t ive to p r o g r a m t ime. It is
impera t ive tha t the in te rva l s be un i f o r m since the
sahapling of the p r o g r a m c o u n t e r r a t h e r t h a n the
du ra t ion of the in te rva l is the basis of the d i s t r ibu-
t ion. If sampl ing is done too often, the i n t e r r u p -
t ions to sample the p r o g r a m c o u n t e r will overwhelm
the r u n n i n g of the profiled p rogram. On the o the r
hand, the p r og r a m m u s t r u n for enough sampled
in terva ls t ha t the d i s t r i bu t ion of the samples accu-
ra te ly r e p r e s e n t s the d i s t r i bu t i on of t ime for the
execu t ion of the p rogram. As with rou t ine call t rac-
ing, the mon i to r ing rou t ine c a n not afford to o u t p u t
i n fo rma t ion for each p r og r a m c o u n t e r sample. In
our compu t ing e n v i r o n m e n t , the opera t ing s y s t e m
can provide a h i s tog ram of the locat ion of the pro-
g r am c o u n t e r at the end of each clock t ick (1 /60 th
of a second) in which a p r o g r a m runs . The histo-
g r a m is a s sembled in m e m o r y as the p r o g r a m runs .
This facili ty is enab led by our mon i to r ing rou t ine .
We have ad jus ted the g ranu la r i t y of the h i s tog ram
so t ha t p r o g r a m c o u n t e r values ma p one- to-one
onto the h i s togram. We make the simplifying
a s s u m p t i o n t ha t all calls to a specific rou t ine
requi re the same a m o u n t of t ime to execute . This
a s s u m p t i o n may disguise t h a t some calls (or worse,
some call si tes) always invoke a rou t ine such t h a t
its execu t ion is fas te r (or slower) t h a n the average
t ime for t h a t rou t ine .

When the profiled p r o g r a m t e r m i n a t e s , the arc
table and the h i s tog ram of p r og r a m c oun t e r sam-
ples are wr i t t en to a file. The arc tab le is c ondensed
to cons is t of the source and des t i na t i on addresses
of the arc and the c oun t of the n u m b e r of t imes the
arc was t r a ve r s e d by this execu t ion of the p rogram.
The r eco rded h i s tog ram cons is t s of c o u n t e r s of the
n u m b e r of t imes the p r og r a m c o u n t e r was found to
be in each of the ranges covered by the h i s togram.
The ranges themse lves are s u m m a r i z e d as a lower
and uppe r bound and a s tep size.

4. Post Processing

Having gathered the arcs of the call graph and
timing information for an execution of the program,
we are interested in attributing the time for each
routine to the routines that call it. We build a
dynamic call graph with arcs from caller to callee,
and propagate time from descendants to ancestors
by topologically sorting the call graph. Time

122

propaga t ion is pe r fo rmed f rom the leaves of the call
g raph toward the roots, according to the order
assigned by a topological n u m b e r i n g algori thm. The
topological n u m b e r i n g ensu re s tha t all edges in the
graph go f rom higher n u m b e r e d nodes to lower
n u m b e r e d nodes. An example is given in Figure 1.
If we propagate t ime f rom nodes in the order
assigned by the algori thm, execut ion t ime can be
p ropaga ted f rom descendan t s to ances to r s af ter a
single t raversa l of each arc in the call graph. Each
p a r e n t receives some f rac t ion of a child 's t ime.
Thus t ime is charged to the cal ler in addi t ion to
being charged to the callee.

Let C, be the n u m b e r of calls to some rout ine ,
e, and C~, be the n u m b e r of calls f rom a cal ler r to a
callee e. Since we are assuming each call to a rou-
t ine takes the average a m o u n t of t ime for all calls
to tha t rout ine , the cal ler is accoun tab le for C~e/C,
of the t ime spen t by the callee. Let the S e be the
self time of a rout ine , e. The self t ime of a rou t ine
can be d e t e r m i n e d from the t iming in fo rma t ion
ga the red dur ing profiled p rog ram execut ion. The
tota l t ime, Tr, we wish to accoun t to a rou t ine r , is
t hen given by the r e c u r r e n c e equat ion:

TT=S,+ Z r,x
r CALLS e Ci

where r CALLS e is a relation showing all routines e
called by a routine r. This relation is easily avail-
able from the call graph.

However, if the execution contains recursive
calls, the call graph has cycles that cannot be topo-
logically sorted. In these cases, we discover
strongly-connected components in the call graph,
treat each such component as a single node, and
then sort the resulting graph. We use a variation of
Tarjan's strongly-connected components Mgorithm
that discovers strongly-connected components as it
is assigning topological order numbers [Tarjan72].

Time propagation within strongly connected
components is a problem. For example, a self-
recursive routine (a trivial cycle in the call graph) is
accountable for all the time it uses in all its recur-
sive instantiations. In our scheme, this time should
be shared among it: call graph parents. The arcs
from a routine tv itself are of interest, but do not
participate iz~ time propagation. Thus the simple

equation for time propagation does not work within
strongly connected components. Time is not pro-
pagated from one member of a cycle to another,
since, by definition, this involves propagating time
from a routine to itself. In addition, children of one
member of a cycle must be considered children of
all members of the cycle. Similarly, parents of one
member of the cycle must inherit all members of
the cycle as descendants. It is for these reasons
that we collapse connected components. Our solu-
tion collects all members of a cycle together, sum-
ming the time and call counts for all members. All
calls into the cycle are made to share the total time
of the cycle, and all descendants of the cycle pro-
pagate time into the cycle as a whole. Calls among
the members of the cycle do not propagate any
time, though they are listed in the call graph
profile.

Figure 2 shows a modified version of the call
graph of Figure i, in which the nodes labelled 3 and
7 in Figure 1 are mutually recursive. The topologi-
cally sorted graph after the cycle is collapsed is
given in Figure 3.

Since the technique described above only col-
lects the dynamic call graph, and the program typi-
cally does not call every routine on each execution,
different executions can introduce different cycles
in the dynamic call graph. Since cycles often have
a significant effect on time propagation, it is desir-
able to incorporate the static call graph so that
cycles will have the same members regardless of
how the program runs.

Cycle to be collapsed.
Figure 2.

Topological ordering
Figure I.

Topological numbering after cycle collapsing.
Figure 3.

123

The static call graph can be constructed from
the source text of the program. However, discover-
ing the static call graph from the source text would
require two moderately difficult steps: finding the
source text for the program (which may not be
available), and scanning and parsing that text,
which may be in any one of several languages.

In our programming system, the static calling
information is also contained in the executable ver-
sion of the program, which we already have avail-
able, and which is in language-independent form.
One can examine the instructions in the object pro-
gram, looking for calls to routines, and note which
routines can be called. This technique allows us to
add arcs to those already in the dynamic call graph.
If a statically discovered arc already exists in the
dynamic call graph, no action is required. Statically
discovered arcs that do not exist in the dynamic
call graph are added to the graph with a traversal
count of zero. Thus they are never responsible for
any time propagation. However, they may affect
the structure of the graph. Since they may com-
plete strongly connected components, the static
call graph construction is done before topological
ordering.

5. Data Presentation

The data is presented to the user in two
different formats. The first presentation simply
lists the routines without regard to the amount of
time their descendants use. The second presenta-
tion incorporates the call graph of the program.

5.1. The Flat Profile
The fiat profi le cons i s t s of a l is t of all t h e rou-

t ines t h a t a r e ca l led dur ing execu t ion of t he p ro -
g r a m , wi th t he c o u n t of t he n u m b e r of t i m e s t h e y
a r e ca l led and the n u m b e r of s e c o n d s of e x e c u t i o n
t i m e for which t h e y a re t h e m s e l v e s a c c o u n t a b l e .
The r o u t i n e s a re l i s t ed in d e c r e a s i n g o r d e r of execu-
t ion t ime . A l is t of the r o u t i n e s t h a t a r e n e v e r
ca l l ed dur ing e x e c u t i o n of t he p r o g r a m is also ava i l -
ab le to ver i fy t h a t no th ing i m p o r t a n t is o m i t t e d by
th is execu t ion . The fiat prof i le g ives a quick over-
view of the r o u t i n e s t h a t a r e used , and shows the
r o u t i n e s t h a t a re t h e m s e l v e s r e s p o n s i b l e for l a rge
f r ac t i ons of the e x e c u t i o n t ime . In p r a c t i c e , th i s
profi le usua l ly shows t h a t no single func t ion is
overwhe lming ly r e s p o n s i b l e for t he t o t a l t i m e 'of t h e
p r o g r a m . Notice t h a t for th is profi le , t he ind iv idua l
t i m e s sum to t he t o t a l execu t ion t ime .

5.'b-. The Call Graph Profile
Ideal ly , we would l ike to p r i n t t h e cal l g r a p h of

the p r o g r a m , b u t we a re l imi t ed by the two-
d i m e n s i o n a l n a t u r e of our o u t p u t dev ices . We can -
no t a s s u m e t h a t a call g r a p h is p lanar , and even if i t
is, t h a t we can p r i n t a p l a n a r vers ion-of it . I n s t ead ,
we choose to l i s t e a c h rou t ine , t o g e t h e r With infor-
'ma t i on a b o u t t h e r o u t i n e s t h a t a r e i t s d i r e c t
p a r e n t s and ch i ld ren . This l is t ing p r e s e n t s a win-
dow into the ca l l g raph . Based o n Our e x p e r i e n c e ,
b o t h p a r e n t i n f o r m a t i o n and ch i ld i n i o r m a t i 0 n is
i m p o r t a n t , and should be avai lab le wi thou t

s ea r ch ing t h r o u g h the ou tpu t .

The m a j o r e n t r i e s of the cal l g r a p h profi le a re
t he e n t r i e s f rom the fiat profi le , a u g m e n t e d by the
t ime p r o p a g a t e d to e a c h rou t i ne f rom i ts d e s c e n -
dan t s . This prof i le is s o r t e d by the s u m of t h e t ime
for t h e rou t i ne i tself p lus the t i m e i n h e r i t e d f rom
i ts d e s c e n d a n t s . The prof i le shows which of the
h ighe r level r o u t i n e s spend la rge p o r t i o n s of the
t o t a l execu t ion t i m e in the r o u t i n e s t h a t t h e y call .
F o r each rou t ine , we show the a m o u n t of t i m e
p a s s e d by e a c h chi ld to t h e rou t ine , which i nc ludes
t i m e for the chi ld i t se l f and for t he d e s c e n d a n t s of
t h e chi ld (and t hus t he d e s c e n d a n t s of t h e rou t ine) .
We also show t h e p e r c e n t a g e t h e s e t i m e s r e p r e s e n t
of t he t o t a l t ime a c c o u n t e d to t he chi ld. S imi la r ly ,
t he p a r e n t s of e ach r o u t i n e a re l i s ted , along with
t ime , and p e r c e n t a g e of t o t a l r o u t i n e t i m e , p ro -
p a g a t e d to e a c h one.

Cycles a re h a n d l e d as s ingle en t i t i e s . The cycle
as a whole is shown as t h o u g h i t were a s ingle rou-
t ine , e x c e p t t h a t m e m b e r s of the cyc le a r e l i s t ed in
p l ace of t he ch i ld ren . Al though the n u m b e r of ca l ls
of e a c h m e m b e r f rom within the c y c l e a re shown,
t h e y do no t a f fec t t i m e p r o p a g a t i o n . When a chi ld is
a m e m b e r of a cyc le , t he t ime shown is the
a p p r o p r i a t e f r a c t i o n of the t ime for t he whole cycle .
Se l f - r ecurs ive r o u t i n e s have t h e i r ca l ls b r o k e n down
into cal ls f rom the ou t s ide and s e l f - r ecu r s ive cal ls .
Only the ou t s ide ca l l s a f fec t t he p r o p a g a t i o n of
t ime .

The following e x a m p l e is a t y p i c a l f r a g m e n t of a
cal l g raph .

The en ' t ry in the cal l g r a p h prof i le l i s t ing for th is
e x a m p l e is shown in F igure 4.

The e n t r y is for r ou t i ne EXAMPLE, which has the
Cal ler r o u t i n e s as i t s p a r e n t s , and the Sub r o u t i n e s
as i ts ch i ld ren . The r e a d e r should k e e p in m i n d
t h a t all i n f o r m a t i o n is g iven w i t h r e s p e c t to EXAM-
PLE. The index in t he f i rs t co lumn shows t h a t EXAM-
PLE is t he s econd e n t r y in t he profi le l is t ing. The
EXAMPLE r o u t i n e is Called t e n t imes , four t i m e s by
CALLER1, and six t i m e s b y CALLER2. Consequen t ly
4 0 ~ of EXAmPLE's t i m e is p r o p a g a t e d to CALLER1, a n d
60~ of EXAMPLE'S t ime is p r d p a g a t e d %o CALLER2.
The self 'and d e s c e n d a n t f ie lds o'f t he p a r e n t s show
the a m o u n t o'f self and d e s c e n d a n t t i m e EXAMPLE
p r o p a g a t e s to ' t hem '(but no t t h e ' t ime u s e d by the
p a r e n t s d i rec t ly) . Note t h a t EXAMPLE cal ls i~tself
r ecu i ' s ive ly four t imes . The rou t i ne EXAMPLE cal ls
r ou t i ne SUB1 twen ty t imes , SUB2 once, and n e v e r
cal ls SUB3. S ince sUB2 ~s ca l led a ' total of five t imes ,
20~ of i ts self and d e s c e n d a n t ' t ime is p r o p a g a t e d to
EXAMPLE's d e s c e n d a n t t ime field. Because SUB1 is a

124

called/total parents
index ~time self descendants called+self name index

eaUed/toted children
0.20 1.20 4/10 CALLER1 [7]
0.30 I.B0 0/I0 CALLER2 [1]

[2] 41.5 0.50 3.00 104-4 E'XAMPLE [2]
1.50 1.00 20/40 SUB1 <cycle1> L4]
o.oo o.so 1/5 SUB2 [9]
0.00 0.00 O/S SUB3 [11]

Profile entry for EXAMPLE.
Figure 4.

member of cycle 1, the self and descendant times
and call count fraction are those for the cycle as a
whole. Since cycle i is called a total of forty times
(not counting calls among members of the cycle), it
propagates 5DZ of the cycle's self and descendant
time to EXAMPLE's descendant time field. Finally
each name is followed by an index that shows where
on the listing to find the entry for that routine.

6. Using the Profiles

The profiler is a useful tool for improving a set
of routines that implement an abstraction. It can
be helpful in identifying poorly coded routines, and
in evaluating the new algorithms and code that
replace them. Taking full advantage of the profiler
requires a careful examination of the call graph
profile, and a thorough knowledge of the abstrac-
tions underlying the program.

The easiest optimization that can be performed
is a small change to a control construct or data
structure that improves the running time of the
program. An obvious starting point is a routine that
is called many times. For example, suppose an out-
put routine is the only parent of a routine that for-
mats the data. If this format routine is expanded
inline in the output routine, the overhead of a func-
tion ca]] and return can be saved for each datum
that needs to be formatted.

The drawback to inline expansion is that the
data abstractions in the program may become less
parameterized, hence less clearly defined. The
profiling will also become less useful since the loss
of routines will make its output more granular. For
example, if the symbol table functions "lookup",
"insert", and "delete" are all merged into a single
parameterized routine, it will be impossible to
determine the costs of any one of these individual
functions from the profile.

Further potential for optimization lies in rou-
tines that implement data abstractions whose total
execution time is long. For example, a lookup rou-
tine might be called only a few times, but use an
inefficient linear search algorithm, that might be
replaced with a binary search. Alternately, the
discovery that a rehashing function is being called
excessively, can lead to a different hash function or
a larger hash table. If the data abstraction function
cannot easily be speeded up, it may be advanta-
geous to cache its results, and eliminate the need to
rerun it for identical inputs. These and other ideas
for program improvement are discussed in [Bent-
ley81].

This tool is best used in an iterative approach:
profiling the program, eliminating one bottleneck,
then finding some other part of the program that
begins to dominate execution time. For instance,
we have used gprof on itself; eliminating, rewriting,
and inline expanding routines, until reading data
files (hardly a target for optimization!) represents
the dominating factor in its execution time.

Certain types of programs are not easily
analyzed by gprof. They are typified by programs
that exhibit a large degree of recursion, such as
recursive descent compilers. The problem is that
most of the major routines are grouped into a single
monolithic cycle. As in the symbol table abstrac-
tion that is placed in one routine, it is impossible to
distinguish which members of the cycle are respon-
.sible for the execution time. Unfortunately there
are no easy modifications to these programs that
make them amenable to analysis.

A completely different use of the profiler is to
analyze the control flow of an unfamiliar program.
If you reeeive a program from another user that you
need to modify in some small way, it is often
unclear where the changes need to be made. By
running the program on an example and then using
gprof, you can get a view of the structure of the
program.

Consider an example in which you need to
change the output format of the program. For pur-
poses of this example suppose that the call graph of
the output portion of the program has the following
structure:

Initially you look through the gprof output for the
system call "WRITE". The format routine you will
need to change is probably among the parents o(
the "WRITE" procedure. The next step is tc look at
the profile entry for each of parents of "WRITE", in
this example either "FORMATI" or "FORMAT2", to
determine which one to change. Each format rou-
tine will have one or more parents, in this example
"CALCI", "CALC2", and "CALC3". By inspecting the
source code ~or each of these routines you can

125

d e t e r m i n e which f o r m a t rou t ine g e n e r a t e s the out-
p u t t h a t you wish to modify. Since the gprof e n t r y
shows all the p o t e n t i a l cal ls to the f o r m a t r ou t i ne
you i n t end to change , you can d e t e r m i n e if your
modi f i ca t ions will a f fec t o u t p u t t h a t should be le f t
a lone. If you des i r e to change the o u t p u t of
"CALC2", but not "CALC3", then formatting routine
"FORMAT2" needs to be split into two separate rou-
tines, one of which implements the new format.
You can then retarget just the call by "CALC2" that
needs the new format. It should be noted that the
static call information is particularly useful here
since the test case you run probably will not exer-
cise the e n t i r e p r o g r a m .

7. C o n c l u s i o n s

We have c r e a t e d a prof i le r t h a t a ids in the
eva lua t ion of m o d u l a r p r o g r a m s . For each rou t i ne
in t he p r o g r a m , the profi le shows the e x t e n t to
which t h a t r ou t i ne he lps s u p p o r t va r ious a b s t r a c -
t ions , and how t h a t r ou t i ne uses o t h e r a b s t r a c t i o n s .
The profi le a c c u r a t e l y a s s e s s e s the cos t of r o u t i n e s
a t all levels of the p r o g r a m decompos i t i on . The
prof i l e r is eas i ly used , and can be c o m p i l e d into the
p r o g r a m wi thou t any p r io r p lanning by the p ro-
g r a m m e r . I t adds only five to t h i r t y p e r c e n t execu-
t ion o v e r h e a d to t he p r o g r a m being prof i led, p ro-
duces no add i t i ona l o u t p u t unt i l a f t e r t he p r o g r a m
finishes, and allows the p r o g r a m to be m e a s u r e d in
i ts a c t u a l e n v i r o n m e n t . Final ly , t he p rof i l e r r uns on
a t i m e - s h a r i n g s y s t e m using only the n o r m a l se r -
v ices p rov ided by the o p e r a t i n g s y s t e m and com-
p i le rs .

8. R e f e r e n c e s

[Bent ley8 I]
Bent ley , J. L., "Writ ing Efficient Code" , Depa r t -
m e n t of C o m p u t e r Sc ience , Carnegie-Mel lon
Univers i ty , P i t t s b u r g h , Pennsy lvan ia , CMU-CS-
81-116, 1981.

[GrahamB2]
Graham, S. L., Henry, R. R., Sehu lman , R. A.,
"An E x p e r i m e n t in Table Driven Code Gene ra -
t ion" , SIGPLAN '82 S y m p o s i u m on Compi l e r
Cons t ruc t ion , June, 1982.

[Joy79]
Joy, W. N., Graham, S. L., Haley, C. B. " B e r k e l e y
P a s c a l Use r ' s Manual" , Vers ion 1.1, C o m p u t e r
Sc ience Division Unive r s i ty of California, Be rke -
ley, CA. Apri l 1979.

[Knuth71]
Knuth, D. E. "An e m p i r i c a l s t u d y of FORTRAN
p r o g r a m s " , Sof tware - P r a c t i c e and Expe r i ence ,
1, 105-133. 1971

[S a t t e r t h w a i t e 7 2]
S a t t e r t h w a i t e , E. "Debugging Tools for High
Level Languages" , Sof tware - P r a c t i c e and
Expe r i ence , 2, 197-217, 1972

[Tar jan72]
Tar jan, R. E., " D e p t h f i rs t s e a r c h and l i nea r
g r a p h a l g o r i t h m , " SIAM J. Comp'a~ing 1:2, 146-
160, 1972.

[Umx]
Unix P r o g r a m m e r ' s Manual, " p r o f c o m m a n d " ,
s e c t i o n 1, Bell L a b o r a t o r i e s , Murray Hill, NJ.
J a n u a r y 1979.

126

