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Abstract

A number of parallel formulations of dense matriz
multiplication algorithm have been developed. For
arbitrarily large number of processors, any of these
algortthms or their variants can provide near Iinear
speedup for sufficiently lurge matric sizes and none
of the algorithms can be clearly claimed 1o be supe-
rior than the others. In this paper we analyze the
perfoermance and scalability of o number of parallel
formulations of the matrie multiplication algorithm
and predict the conditions under whick each formu-
lation s betfer than the others. Ve present a par-
allel formulation for hypercube end related archilee-
tures that performs betler than any of the schemes
described in the literature so far for ¢ wide range
of matrix sizes and number of processors. The su-
perior performance and the analylical scalability ez-
pressions for this algorithm are verified through ez-
perimenls on the Thinking Machines Corporation’s
CM-5TMY parallel computer for up to 512 proces-
sors.

1 Introduction

Matrix multiplication is widely used in a variety
of applications and is often one of the core compo-
nents of many scientific computations. Since dense
matrix multiplication algorithm is highly computa-
tion intensive, there has been a great deal of interest
in developing parallel formulations of this algorithm
and testing 1ts performance on various parallel ar-
chitectures {1, 2,4, 5, 6, 8, 9, 12, 13, 1§, T}.

Some of the early parallel formulations of ma-
trix multiplication were developed by Cannon {4
Dekel, Nassimi and Sahni (8], and Fox ef. al [9
Variants and improvements of these algorithms have
been presented in [2, 13]. In particular, Berntsen [2]
presents an algorithm which has a strictly smaller
communication overhead than Cannon’s algerithm,
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but has a smaller degree of concurrency [11].

For arbitrarily large number of processors, any of
these algorithms or their variants can provide near
linear speedup for sufficiently large matrix sizes, and
none of the algorithms can be clearly claimed to be
superiot than the others. Scalability analysis is a
an effective tool for predicting the performance of
various algorithm-architecture combinations. Hence
a great deal of research has been done to develop
methods for scalability analysis [15]. In this paper,
we use the isvefficiency metric [10, 15] to analyze the
scalability of a number of parallei formulations of the
matrix multiplication algorithm for hypercube and
related architectures. We analyze the petformance
of various parallel formulations of the matrix mul-
tiplication algorithm for different matrix sizes and
number of processors, and predict the conditions un-
der which each formulation is better than the others.
We present a parallel algorithm for the hypercube
and related architectures that performs better than
any of the previously described schemes for a wide
range of matrix sizes and number of processors. The
superior performance and the analytical scalability
expressions for this algorithm are verified through
experiments on the CM-§ parallel computer for up
to 512 processors.

In this paper we assume that on a message pass-
ing parallel computer, the time required for the com-
plete transfer of a message containing m words be-
tween two adjacent processors is given by ¢, + 1, m,
where {; is the message startup time, and #,, (per-
word communication time) is equal to & where B
is the bandwidth of the communication channel be-
tween the processors in bytes/second and y is the
number of bytes per word. For the sake of sim-
plicity, we assume that each basic arithmetic opera-
tion (1.¢., one floating point multiplication and one
floating point addition in case of matrix multipli-
cation) takes unit time. Therefore, ¢, and t,, are
relative data communication costs normakized w.r.t.
the unit computation time.

2 The Isoefliciency Metric of Scalability

It is well known that given a parallel architecture
and a problem instance of a fixed size, the speedup
of a parallel algorithm does not continue to increase
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with increasing number of processors but tends to
saturate or peak at a certain value. For a fixed prob-
lem size, the speedup saturates either because the
overheads grow with increasing number of proces-
sors or because the number of processors eventually
exceeds the degree of concurrency inherent in the al-
gorithm. For a variety of parallel systems, given any
number of processors p, speedup arbitrarily close to
p can be obtained by simply executing the paral-
lel algorithm on big enough problem instances [15].
The ease with which a parallel algorithm can achieve
speedups proportional to p on a parallel architecture
can serve as a measure of the scalability of the par-
allel system.

Let us define the size W of a problem as the time
taken by an optimal (or the best known) sequen-
tial algorithm to solve the given problem on a sin-
gle processor. Let TOSW, p) be the sum total of all
the overheads incurred by all the p processors dur-
ing the parallel execution of the algorithm. Now the
efficiency of a parallel algorithm-architecture combi-

nation (henceforth referred to as a parallel system)
1

15 given b}' E= ﬁmj = m For a class
of parallel systems called scalable parallel systems,
the efficiency can be maintained at a desired value
(between 0 and 1) for increasing p, provided W is
also increased. In order to maintain a fixed effi-
ciency, W should be proportional to T,(W, p) or the
following relation must be satisfied :

W = KT,(W,p), (1)

where K = Tf—g is a constant depending on the

efficiency to be maintained. The isoefficiency func-
tion [10, 15] of a parallel system is determined by
abstracting W as a function of p through algebraic
manipulations on Equation (1). If the problem size
needs to grow as fast as fg Epg to maintain an effi-
ciency E, then fs(p? is defined as the isoefficiency
function of the parallel system for efficiency E. The
smaller the isoefficiency function, the more scalable
the parallel system is considered.

The isoefficiency function of a combination of a
parallel algorithm and a parallel architecture relates
the problem size to the number of processors nec-
essary to maintain a fixed efficiency or to deliver
speedups increasing proportionally with increasing
number of processors. For a given parallel algo-
rithm, for different parallel architectures, W may
have to increase at different rates w.r.t. p in order
to maintain a fixed efficiency. A small rate or isoef-
ficiency function indicates a high scalability. Isoeffi-
ciency analysis has been found to be very useful in
characterizing the scalability of a variety of parallel
systems [15]. An important feature of isoefficiency
analysis 1s that in a single expression, it succinctly
captures the effects of characteristics of the paral-
lel algorithm as well as the parallel architecture on
which it is implemented.

3 Parallel Matrix Multiplication Algo-
rithms

In this section we briefly describe some well
known parallel matrix multiplication algorithms
give their parallel execution times.

3.1 A Simple Algorithm

Consider a logical two dimensional mesh of p pro-
cessors (with /p rows and /p columns) on which
two n X n matrices A and B are to be multiplied
to yield the product matrix C. Let n > \/p. The

. o . ’ = S =
matrices are divided into sub-blocks of size FXE
which are mapped naturally on the processor array.
The algorithm can be implemented on a hypercube
by embedding this processor mesh into it. In the
first step of the algorithm, each processor acquires
all those elements of both the matrices that are re-

quired to generate the ’:T’ elements of the product

matrix which are to reside in that processor. This
involves an all-to-all broadcast of 2= elements of ma-
trix A among the ,/p processors of each row of pro-
cessors and that of the same sized blocks of matrix
B among ,/p processors of each column which can
be accomplished in 2¢, logp + Qtw% time. After

each processor gets all the data it needs, it multi-
plies the /p pairs of sub-blocks of the two matrices

to compute 1its share of 5'5: elements of the product
matrix. Assuming that an addition and multipli-
cation takes a unit time, the multiplication phase
can be completed in '—'P: units of time. Hence, the
parallel execution time is:

= | na
-_—— 2t 0 2t T 2
Tp = — + 2, logp + v /5 (2)

This algorithm is memory-inefficient. The memory
requirement for each processor is O(:"T;) and thus
the total memory requirement is O(n?,/p) words as
against O(n?) for the sequential algorithm.

3.2 Cannon’s Algorithm

A parallel algorithm that is memory efficient and is
frequently used is due to Cannon [4, 1(1. Again the
two n x n matrices A and B are divided into square

submatrices of size 7"; X 7"5 among the p processors

of a wrap-around mesh (which can be embedded in
a hypercube). The sub-blocks of A and B residing
with the processor (i, j) are denoted by A"/ and B
respectively, where 0 <i<,/pand 0 < j < /p. In
the first phase of the execution of the algorithm, the
data in the two input matrices is aligned in such a
manner that the corresponding square submatrices
at each processor can be multiplied together locally.
This is done by sending the block A" to processor
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(¢, (j + ©ymod,/p}, and the block B* to processor
((i + jymod,/p, 7). The copied sub-blocks are then
multiplied together. Now the 4 sub-blacks are rolled
ohe step to the left and the B sub-blacks are rolled
one step upward and the newly copied sub-blocks
are multiplied and the results added to the partial
results in the € sub-blocks. The multiplication of A
and B is complete after ,/p such steps. On a hyper-
cube with cut-through routing, the time spent in the
initial alignment step can be ignored w.r.t. to the
/P shift operations during the multiplication phase,
as the former is a simple one-to-one communication
along non-conflicting paths. Since each sub-block
movement in the second phase takes {, + 1, 22 time,
the total parallel execution time for all the move-
ments of the sub-blocks of both the matrices is given
by the following equation:

n2

VP

3.3 Berntsen’s Algorithm

3
T, = "? +2t,/B + 2t @)

Due to nearest neighbor communications on the
VP » /P wrap-around array of processors, Can-
non’s algorithm’s performance is the same on both
mesh and hypercube architectures. In [2], Berntsen
describes an algorithm which exploits greater con-
nectivity provided by a hypercube. The algorithm
uses p = 237 processors with the restriction that
p < n®? for multiplying two n x n matrices A and
B. Matrix A is split by columns and B by rows
into 2¢ parts. The hypercube is split into 29 sub-
cttbes, each performing a submatrix multiplication
between submatrices of A of size 7- X 5% and sub-

matrices of B of size g3; x 77 using Cannon’s algo-
rithm. It is shown in [2] that the time spent in data
communication by this algorithm on a hypercube
- 2

is 2t,pt/3 + Lt logp + 3tw 375, and hence the to-

tal parallel execution time is given by the following
equation:

2

3
- a1 i
L= +2p 74 gtilogpStu g (1)

The terms associated with both ¢, and ¢, are smaller
in this algorithm than the algorithms discussed in
Sections 3.1 10 3.2. It should also be noted that this
algorithm, like the one in Section 3.1 is not memory

. . . 2 2 .
efficient as it requires storage of 25+ P%T mateix
elements per processor.

3.4 The DNS Algorithm

3.4.1 One Element Per Processor Version

An algorithm that uses a hypercube with p = r® =
2% processors to multiply two n x n matrices was
proposed by Dekel, Nassimi and Sahni in (8§, 17).

The p processors can be visualized as being arranged
in an 29 x 29 x 29 array. In this array, processor p, oc-
cupies position (i, j, k) where r = {229 4 j29 + % and
0 <4,k < 2% Thus if the binary representation of
T 18 P3g—173¢—2.-7'0s then the binary representations
of ¢, 7 and k are raj_1Tagm2...T2¢ Pag-1T2g-2...7
and 74.1r¢_2...rg respectively. Each processor p,
has three data registers a,, b, and c,, respectively.
Initially, processor p, in position (0,j,k} contains the
element a(j, k) and 3(j, &) in a, and b, respectively.
The computation is accornplished in three stages. In
the first stage, the elements of the matrices A and B
are distributed over the p processors. As aresult, a,
gets ald, 3? and b, gets d(¢, k). In the second stage,
product elements ¢{j, k) are computed and stored in
each ¢,. In the final stage, the sums I 'cijx are
computed and stored in ¢q; &.

The above algorithm accomplishes the O(n?) task
of matrix multiplication in O(logn) time using n?
processors. Since the processor-time product of
this parallel algorithm exceeds the sequential time
complexity of the algorithm, it is not cost-optimal.
In the following sub-sections we present two cost-
optimal variations of this algorithm which use fewer
than n3 processors.

3.4.2 Variant With More Than One Ele-
ment Per Processor . -

This variant proposed in [8, 17) can work with n%r
processors, where 1 < r < n, thus using one pro-
cessor for more than one element of each of the two
n x n matrices. The algorithm is similar to the one
above except that a logical processor array of 72
(instead of n3) superprocessors is used, each super-
processor comprising of (n/r)? hypercube proces-
sors. In the second step, multiplication of blocks of
(n/r)x(n/r) elements instead of individual elements
is performed. This multiplication of (n{r) x (nfr)
blocks is performed according to the algorithm in
Section 3.2 on 2 x 2 subarrays (each such subarray
is actually a subcube) of processors using Cannon'’s
algorithm for one element per processor. This step
will require a communication time of 2{t, + {w)2.

In the first stage of the algorithm, each data
element is broadcast over r processors. In order
to place the elements of matrix A in their respec-
tive positions, first the buffer ag ;) is sent to
ax j &) in logr steps and then ag; ; 1y is broadcast to
ak,j iy, 9 £ L < r, again in logr steps. By following
a similar procedure, the elements of matrix B can
be transmitted to their respective processors. In
the second stage, groups of (n/r)? processors multi-
ply blocks of {n 1-% % (n/fr) elements each processor
performing n/r computations and 2n/r communi-
cations. In the final step, the elements of matrix C
are restored to their designated processors in logr
steps. The communication time can thus be shown
to be equal to (£, +1.){5]ogr + 2£) resulting in the
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parallel run time given by the following equation:

n? p n?
Tp = ?-F(f, +fw](510g(;;§]+2?) (5)

3
Ifp = 1.;:;;: Processors are used., then the parallel ex-
ecution time of the DNS algorithm is Q(logn). The
processor-time product is now O{n?}, which is same

as the sequential time complexity of the algorithm.

3.5 Our Variant of the DNS Algo-
rithim

Here we present another scheme to adapt the sin-
gle element per processor version of the DNS algo-
rithmn to be able to use fewer than n® processors on
a hypercube. In the rest of the paper we shall re-
fer to this algorithm as the GK variant of the DNS
algorithm. As shown later in Section 5, this algo-
rithm petforms better than the DNS algoritlun for
a wide range of n and p. Also, unlike the DNS al-
gorithm which works only for n? < p < »3, Lhis
algorithm can use any number of processors from 1
to =, In this variant, we use p = 239 processors
where ¢ < 3logn. The matrices are divided into
sub-blocks of Z; x 3% elements and the sub-blocks
are numbered just the way the single elements weye
numbered in the algorithm of Section 3.4.1. Now,
all the single element operations of the algorithm
of Section 3.4.1 are replaced by sub-block opera-
tions; i.e., matrix sub-blocks are multiplied, com-
municated and added.

Let t,,u1: and £,4¢ 15 the time to perform a sin-
gle floating point multiplication and addition re-
spectively, and t,un + tada = 1. In the firsi stage

of this algorithm, P—’Z—;g data elements are broadcast
over p'/? processors for each matrix. In order to
place the elements of matrix A in their respective
positions, first the buffer ¢ ;1) is sent to ag ;1
in logp'/3 steps and then Ak jxy 18 broadeast to
a0 <1 < p!/3, again in log p!/3 steps. By
following a similar procedure, the elements of ma-
trix B can be sent to the processors where they

are 1o be utilized in 2logp!/3 steps. 1In the sec-

ond stage of the algorithm, each processor perforins
A - . . .

P,%_P = ’:—, multiplications. In the third step,

the corresponding elements of p!/® groups of p%;g

elements each are added in a tree fashion. The
first stage takes 42, log p'/® + 4twp%=; log p!/3 time.
The second stage contributes tmu;,"?a to the par-
allel execution time and the third stage involves
tylogpt P+t ;’;;; log p'/? communication time and
tqdd-%i computation time for calculating the sums.
Tle total parallel execution time is therefore given

by the following equation:

“a

n® 5 5 n-
T, = ? + gts log p -+ giwmlog}" (6)

This execution time can be further reduced by using
a more sophisticated scheme for one-to-all broadcast
an a hypercube [14]. This is discussed in detail in

4 Scalability Analysis

Recall from Section 2 that the isoefficiency func-
tion for a certain efficiency E can be obtained hy
equating W with {£-T, (Equation (1}) and then
solving this equation to determine W as a function
of p. In most of the parallel algorithms described in
Section 3, the communication overhead has two dif-
ferent terms due to 1, and {,. When there are multi-
ple terms in T, of different order, it is often not pos-
sible to obtain the isoefliciency function as a closed
form function of p. As p and W increase in a par-
allel system, efficiency is guaranteed not to drop if
none of the terms of T, grows faster than W. There-
fore, if T, has multiple terms, we balance W against
each individual term of T, to compute the respective
isoefficiency function. The component of T, that re-
quires the problem size to grow at the fastest rate
w.r.t. p determines the overall isoefficiency function
of Lhe entire computation. Sometimes, the isceffi-
ciency fune’*on for a parallel algorithm is due to the
limit on the concurrency of the algorithm. For ia-
stance, if for a problem size W, an algorithm can not
use more than A(¥) processors, then as the number
of processors is increased, eventually W has to be in-
creased as A~ 1(p) in order to keep all the processors
busy and to avoid the efficiency from falling due to
idle processors, If h=1(p) is greater than any of the
isoefliciency terms due to communication overheads,
then h=(p) is the overall isoefficiency function and
determines the scalability of the parallel algorithm.
Thus it is possible for an algorithm to have little
communication overhead, but still a bad scalability
due to limited concurrency.

We now determine the isoefficiency functions for
all the algorithms discussed in Section 3. The prob-
lem size 1’ is taken as n® for all the algorithms.

4.1 Isoefficiency Analysis of Can-
non’s Algorithm

From Equation (3), it follows that the total over-
head over all the processars for this algorithm is
2,p/P+ 2ty,n®/p. In order ta determine the isoef-
ficiency term due to #,, ' has to be proportional to
2Kt,p/P (see Equation (1)), where A = 1 and
E is the desired efficiency that has to be maintained.
Hence the following isoefficiency relation resulis:

n®= W o 2Kt,p/p - (7)
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Similarly, to determine the isoefficiency term due to
tw, n° has to proportional to 2K¢,, nz\/;'). Therefore,

n® « 2Kt,n* /P

=> nx QKiw\/;;
=> n®=W 8K p!® (8)

According to both Equations (7) and (8), the
asymptotic isoefficiency function of Cannon’s algo-
rithm is O(p'®). Also, since the maximum num-
ber of processors that can be used by this algorithm
is n?, the isoefficiency due to concurrency! is also
O(p'®). Thus Cannon’s algorithm is as scalable on
a hypercube as any matrix multiplication algorithm
using O(n?) processors can be on any architecture.

The above analysis also applies to the simple al-
gorithm because both the degree of concurrency and
the communication overheads (due to the 2, term
which determines the overall isoefficiency function)
are the same for these two algorithms.

4.2 Isoefficiency Analysis of
Berntsen’s Algorithm

The overall overhead function for this algorithm can
be determined from the expression of the paral-
lel execution time in Equation (4) to be 2t,p*/3 +
3t,plog p+3t,n?p!/3. By an analysis similar to that
in Section 4.1, it can be shown that the isoefficiency
terms due to 2, and i, for this algorithm are given
by the following equations:

n® = W o« 2Kt,pY3 9)

nd =W x27TK33p (10)

Recall from Section 3.3 that for this algorithm,
p < n®2. This means that n® = W o p? as the
number of processors is increased. Thus the isoeffi-
ciency function due to concurrency is O(p?), which
is worse than any of the isoefficiency terms due to
the communication overhead. Thus this algorithm
has a poor scalability despite little communication
cost due to its limited concurrency.

4.3 Isoefliciency Analysis of the DNS
Algorithm

It can be shown that the overhead function 7T, for
this algorithm is (¢, + t )(3plog p + 2n®). Since W
is O(n®), the terms 2(¢, + ¢y, )n® will always be bal-
anced w.r.t. W. This term is independent of p and
does not contribute to the isoefficiency function. It
does however impose an upper limit on the efficiency
that this algorithm can achieve. Since, for this algo-

. — ] - .
rithm, F = TR 1) an efficiency higher

2 xp => n? =W pld.

than H-_z(tl-i-_t..,) can not be attained, no matter how

big the problem size is. Since ¢, is usually a large
constant for most practical MIMD computers, the
achievable efficiency of this algorithm is quite lim-
ited on such machines. The other term in 7, yields
the following isoefficiency function for the algorithm:

=W x gKtsplogp (11)

The above equation shows that the asymptotic iso-
efficiency function of the DNS algorithm on a hy-
percube is O(plogp). It can easily be shown that
an O(plogp) scalability is the best any parallel for-

mulation of the conventional O(nai algorithm can
achieve on any parallel architecture [3] and the DNS
algorithm achieves this lower bound on a hypercube.

4.4 TIsoefficiency Analysis of the GK
Algorithm

The total overhead T, for this algorithm is equal to
%ts plogp + giw n2pl/ 3 log p and the following equa-
tions give the isoefficiency terms due to ?, and %,
respectively for this algorithm:

nd =W« -zvf(t,plogp (12)
nd =W« %Katfup(log p)? (13)

5 Relative Performance of the Four Al-
gorithms on a Hypercube

Subsections 4.1 through 4.4 give the overall iso-
efficiency functions of the four algorithms on a hy-
percube architecture. The asymptotic scalabilities
and the range of applicability of these algorithms is
summarized in Table 1.

Note that Table 1 gives only the asymptotic scal-
abilities of the four algorithms. In practice, none
of the algorithms is strictly better than the others
for all possible problem sizes and number of pro-
cessors. Further analysis is required to determine
the best algorithm for a given problem size and a
certain parallel machine depending on the number
of processors being used and the hardware parame-
ters of the machine. A detailed comparison of these
algorithms based on their respective total overhead
functions is presented in the next section.

We compare a pair of algorithms by comparing
their total overhead functions (7,) as given in Table
1. For instance, while comparing the GK algorithm
with Cannon’s algorithm, it is clear that the ¢, term
for the GK algorithm will always be less than that
for Cannon’s algorithm. Even if ¢, = 0, the t,, term
of the GK algorithm becomes smaller than that of
Cannon’s algorithm for p > 130 million. Thus, p =
130 million is the cut-off point beyond which the
GK algorithm will perform better than Cannon’s
algorithm irrespective of the values of n. For p <
130 million, the performance of the GK algorithm
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Algorithm Total Overhead Asymptotic Range of
Function, To Isoeff. Function | Applicability
Berntsen’s | 2t,p°7° + 1t.plogp + 3L, npl? O(p®) 1<p<n’?
Cannon’s 2,p°% 4 20’ /P O(p"®) 1<p<n’
GK 2t,plogp + 3t.n’p P log p O(p(log p)*) 1<p<n®
DNS {t: +tu)(Fplogp + 2n°) O(plog p) n°<p<n

Table 1: Communication overkead, scalability and range of application of the four algorithms on a hypercube.

250

200
t 180
100

[ ! -

GK vs Berntsen’s
DNS vs GK —

GK vs Cannon's ==
p= n3/2 O -

p=n2 N R

p= na = N

40 5 60 70 80
n —) Cous . .f;_l.’:_.

Figure 1: A comparison of the four algorithms for t, = 3 end t, = 150.

will be better than that of Cannon’s algorithm for
values of n less than a certain threshold value which
18 a function of p and the ration of ¢, and ¢,,. A
hundred and thirty million processors is clearly too
large, but we show that for reasonable values of t,,
the GK algorithm performs better than Cannon’s
algorithm for very practical values of p and n.

In order to determine ranges of p and n where
the GK algorithm performs better than Cannon’s
algorithm, we equate their respective overhead func-
tions and compute n as a function of p. We call
this ngguai-7,(p) because this value of n is the
threshold at which the overheads of the two al-
gorithms will be identical for a given p. If n >
nEgual-T,(p), Cannon’s algorithm will perform bet-
ter and if n < nggua-7,(p), the GK algorithm will
perform better. If we equate T, for the two al-

EOIGiIf;{hms, then TiConrom) - 2,p%% + A,m% fp =

TSF) = 3t,plogp + $t,n2p*/® log p. Therefore,
3 3 g

(2P — 5/3p/3log p)te

Similarly, equal overhead conditions can be deter-
mined for other pairs of algorithms too and the val-

nEqual—T.,(p) =

ues of ¢, and ¢, can be plugged in depending upon
the machine in question to %etermine the best al-
gorithm for a give problem size and number of pro-
cessors. We have performed this analysis for three
practical sets of values of t,, and ¢,. In the rest of
the section we demonstrate the practical importance
of this analysis by showing how any of the four algo-
rithms can be useful depending on the problem size
and the parallel machine available.

Figures 1, 2 and 3 show the regions of applicabii-
ity and superiority of different algorithms.

The plain lines represent equal overhead condi-
tions for pairs of algorithms. For a curve marked “X
vs Y” in a figure, algorithm X has a smaller value
of communication overhead to the left of the curve,
algorithm ¥ has smaller communication overhead
to the right side of the curve, while the two algo-
rithms have the same value of 7, along the curve.
The lines with symbols ©, + and O plot the func-
tions p = n®2, p = n? and p = n>, respectively.
These lines demarcate the regions of applicabilities
of the four algorithms (see Table 1) and are impor-
tant because an algorithm might not be applicable
in the region where its overhead function 7, is math-
ematically superior than others. In all the figures in
this section, the region marked with an x is the one
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T T -]
250 GK vs Berntsen’s —
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200 GK vg Cannon'’s =
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150 p=rl b
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T o 77 °
P 100 .
50 .
0 I 1
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Figute 2: A comparison of the four algorithms for t, = 3 and 4, = 10.

where p > n® and none of the algorithms is applica-
ble, the region marked with an a is the one where
the GK algorithm is the best choice, the symbol b
represents the region where Berntsen’s algorithm is
superior to the others, the region marked with a c
is the one where Cannon’s algorithm should be used
and the region marked with a d is the one where the
DNS algorithm is the best.

Figure 1 compares the four algorithms for ¢, = 3
and ¢, = 150. These parameters are very close to
that of a currently available parallel computer like
the nCUBE27M*_ In this figure, since the ng -7,
curve for the DNS algorithm and the GK algorithm
lies in the x region, and the DNS algorithm is better
than the GK algorithm only for values of n smaller
than ngguei-71,(p). Hence the DNS algerithm will
always? perform worse than the GK algorithm for
this set of values of ¢, and ¢, and the latter is the
best overall choice for p > n® as Berntsen’s algo-
rithm and Cannon’s algorithm are not applicable
in this range of p. Since the ngguar—71, curve for
GK and Cannon’s algorithm lies below the p = n3/?
curve, the G algorithm is the best choice even for
n%? < p < n® For p < n%/? Berntsen’s algorithm
is always better than Cannon’s algorithm, and for
this set of t, and i,,, also than the GI algorithm.
Hence it is the best choice in that region in Figure
1.

In Figure 2, we compare the four algorithms for a
hypercube with t,, = 3 and ¢, = 10. Such a machine
could easily be developed in the near future by using
faster CPU’s (¢, and , represent relative communi-

*nCUBE? is a trademark of the Ncube corporation.

2 Actually, the n Equal~T, curve for DNS vs GK algorithms
will cross the p = n? curve for p = 2.6 x 1018, but clearly this
region has no practical importance.

cation costs w.r.t. the unit computation time) and
reducing the message startup time. By observing
the ng uai-7, curves and the regions of applicabil-
ity of these ajgorithms, the regions of superiority of
each of the algorithms can be determined just as in
case of Figure 1. It is noteworthy that in Figure 2
each of the four algorithms performs better than the
rest in some region and all the four regions a, b, ¢
and d contain practical values of p and n.

In Figure 3, we present a comparison of the four
algorithms for ¢,, = 3 and ¢, = 0.5. These parame-
ters are close to what one can expect to observe on a
typical SIMD machine like the CM-2. For the range
of processors shown in the figure, the GK algorithm
is inferior to the others®. Hence it is best to use
the DNS algorithm for n? € p < n3, Cannon’s algo-
rithm for n%? < p < n? and Berntsen’s algorithm
for p < n?/2. " o

6 Experimental Results

We verified a part of the analysis of this paper
through experiments of the CM-5 parallel computer.
On this machine, the fat-tree [16] like communica-
tion network on the CM-5 provides simultanecus
paths for communication between all pairs of pro-
cessors. Hence the CM-5 can be viewed as a fully
connected architecture which can simulate a hyper-
cube connected network. We implemented Cannon’s
algorithm described in Section 3.2 and the algorithm
described in Section 3.5.

Since the CM-5 can be considered as a fully con-
nected network of processors, the expression for the
parallel execution time for the algorithm of Section
3.5 will have to be modified slightly. The first part

®The GK algorithm does begin to perform better than the
other algorithms for p > 1.3 x 10®, but again we consider this
range of p to be impractical. Cae e :
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Figure 3: A comparison of the four algorithms fort,, = 3 and t, = 0.5.

of the procedure to place the elements of matrix A
in their respective positions, requires sending the
buffer aco,jxy t0 @k jx)- This can be done in one

step on the CM-5 instead of log(p'/3) steps on a
conventicnal hypercube. The same is true for ma-
trix B as well. It can be shown that the following
modified expression gives the parallel execution time
for this algorithm on the CM-5:

nd n? .
T =5 +tlogp+2) +tugm(logp+2) (15)

Computing the condition for equal T, for this
and Cannon’s algorithm by deriving the respective
values of T, from Equations (15) and (3), it can
be shown that for 512 processors, Cannon’s algo-
rithin should perform better that our algorithm for
n > 295. Since the number of processors has to be
a perfect square for Cannon’s algorithm on square
matrices, in Figure 4, we draw the efficiency vs n
curve for p = 484 for Cannon’s algorithm and for p
= 512 for the GK algorithm®. The cross-over point
closely matches the predicted value. These experi-
ments suggest that the algorithm of Section 3.5 can
outperform the classical algorithms like Cannon’s
for a wide range of problem sizes and number of pro-
cessors. Moreover, as the number of processors is in-
creased, the cross-over point of the efficiency curves
of the GK algorithm and Cannon’s algorithm corre-
sponds to a very high efficiency. As seen in Figure
4, the cross-over happens at £ =~ (.93 and Cannon’s
algorithm can not outperform the GK algorithm by
a wide margin at such high efficiencies. On the other
hand, the GI{ algorithm achieves an efficiency of 0.5

4 This is not an unfair comparison because the afficiency

can only be better for smaller number of processors.

for a matrix size of 112 x 112, whereas Cannon’s al-
gorithm operates at an efficiency of only 0.28 on 484
processors on 110 x 110 matrices. In other words,
n the region where the GK algorithm is better than
Cannon’s algorithm, the difference in the efficiencies
is quite sig, ificant.

7 Concluding Remarks

In this paper we have presented the scalability
analysis of a number of matrix multiplication algo-
rithms described in the literature [4, 8, 2, 13]. Be-
sides analyzing these classical algorithms, we show
that the GK algorithm that we present in this pa-
per outperforms all the well known algorithms for a
significant range of number of processors and matrix
sizes. The scalability analysis of all these algorithms
provides several important insights regarding their
relative superiority under different conditions. None
of the algorithms discussed in this paper is clearly
superior to the others because there are a number of
factors that determine the algorithm that performs
the best. In this paper we predict the precise con-
ditions under which each formulation is better than
the others. It may be unreasonable to expect a pro-
grammer to code different algorithms for different
machines, different number of processors and differ-
ent matrix sizes. But all the algorithms can stored
in a library and the best algorithm can be pulled
out by a smart preprocessor/compiler depending on
the various parameters.

We show that an algorithm with a seeminfly
small expression for the communication overhead is
not necessarily the best one because it may not scale
well as the number of processors is increased. For
instance, the best algorithm in terms of communi-
cation overheads (Berntsen’s algorithm described in
Section 3.3) turns out to he the least scalable one

with an isoefficiency function of O(p*) due its lim-
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