
1 993 International Conference on Parallel Processing

Scalability of Parallel Algorithms for Matrix Multiplication*

Anshul Gupta and Vipjn ICumar

Department of Computer Science,
Uiliversity of Minnesota

Minneapolis, MN - 55455

agupta@cs.umn. edu and kunrardrs. urnn.. edu

Abstract
A number of parallelfornzulations of dense snatriz

m~tliiplecatio?l algorztlim Iiave been developed. For
arbitrurily /urge number o j processors, and of i l lese
ctlgorithms o r their vnr tn l i ts cart provide near h e a r
speedup for suf i c i en t l y 1or.g.e nantrix s i ~ e s and none
o j t he aIgorafhms can be clearly cIui?ned i o be sup+
n o r ihalt the others. In t l ~ z s poper we anulpze the
perfol~rn,lare and scalabalzty of a number of parallel
f o r m u l ~ i l o r ~ s of f h c mrrfnx rnullzplicaiiort alyoralli~n
nad preiirrt thr cond~irvns ulldcr tdiich each fornau-
lu l~o ta 1~ bctirr fhan tlrt o f h f r s . IFe present a pop-
allel ~ O I rrtrrlntion jirr h y p e r c u b e and relafed architec-
Ini-es ihu i performs lr~lter than any of ihe schemes
described zn the Irferafure so fa r for a wzde range
of motrtr S Z Z P S altd ~tvrnber ol processors. The su-
perior performance and ihe analyilcal scalability ex-
pressions for ihzs cllgorithrn are verified through ex-
periments on the Thinkrng hfachtnes Corporalio~a's
Chl-5T"t p a n ~ l t e l c o t ~ i p u l e r j o r u p t o 512 proces-
sors.

1 Introduction
Matrix n~ultiplication is widely used in a variety

of applications and is often one of t11e core compo-
nents of Inany scientific computations. Since dense
matrix multiplication algorithm IS highly computa-
ti011 intetlsive, there has beell a great deal of interest
in developing parallel formulatiol~s of this algclritt~ln
and testing it.s perfonnance on various par allel ar-
chitectures 11, 2, 4, 5 , 6 , 8, 9, 12, 13, I b , 71.

Soine of the early parallel fori~~ulations of ma-
trix multiplication were developed by Cannon 4 ,
Dekel, Nassimi and Salini Is], and Fox el . 0 1 . 1 9 1 .
Variants and improvements of these algorithms have
been presented in 12, 131. In particular, Berntsen 121
presents an algorithm which has a strictly smaller
columunication overhead than Cannon's algorithm,

*This work was supported by IST/SDIO through t l ~ e
Army Research Ofice grant # 28408-MA-SDI to the Ut~iver-
sits. of hlinnesota and by the Universib of hliimesots Army
l l i g l ~ Frrforlnrrnce Computing Research Center under con-
tract # DAAL03-S%C-0038

"31-5 is a hadentark of the Thinking hlnchines
Corporal ion.

but h a a smaller degree of concurrency [ll].
For arbitrarily large number of processors, any of

these alguri thms or their variants call provide near
litlear s eedup for suficiei~tly large nlatris sizes, and
notlz o f the algorithms can be clearly claimed to be
superior Illan the others. Scalability analysis is a
an zlTective tool for predicting the perforn~atlce of
various algoritl~rn-architecture combinations. Hence
a great ileal of research has been done to develop
methods far scalability analysis [15 . In this paper,
we use the isoefficiency metric [lo, 1 5 j to analyze the
scalability of a number of parallel formulationsof the
matrix multiplication algorithm for hypercube and
related architectures. \h7e analyze the performance
of various parallel formulations of the ma t.rix 1~1111-
tiplication algorithm for different matrix sizes and
number of processors, and predict the condibions un-
der which each forlnulat~cln is bct.ber than the others.
We present a parallel a1 gorithm for t.he hypercube
and related architectures that ptrlnrms Letter than
any of the previously described schenws for a N-irk
range of matrix sizes and number of processors. TI19
superior performance and the auslyt icsl scalal~ili ty
expressions for this algorithm are verified tlirougl~
experiments on the ChY-5 parallel computer for 11p
to 512 processors.

In this paper we assume that on a message pass-
ing parallel computer, the time teqiiired for the com-
plete transfer of a message contaiili~ig r n words be-
tween two adjacent processors is giveii by t, + t , m,
where 1, is the message startup time, and t , (per-
word communication time) is eaual to % where B

L1
is the bandwidth of the communication channel be-
tween the processors in byteslsecond and y i s tbe
number of bytes per word. For the sake of sim-
plicity, we assume that each basic arithmetic opera-
tion (t . e . , one floating point multiplication and one
floating point addition in case of matrix multipli-
cation) takes unit time. Therefore, t , and t , are
relative data communication costs normalized w.r.t.
the unit computation time.

2 The Isoefficiency Metric of Scalability
It is well known that given a parallel architectui'e

and a problem inst.ance of a fixed size, the speedup
of a parallel algorithm does not continue to increase

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

1 993 International Conference on ParalSel Processing

wit11 increasing number of processors but tends to
saturate or peak at a certain value. For afixed prob-
lc~ll size, the speedt~p saturates citl~er because the
overheads grow mi t h irlcreasing number of proces-
sors or because the number of processors eventually
esceeds tlie degree of concurrency inlierent i n the al-
gorithm. For a variety of parallel systems, given any
number of processors p, speedup arbitrarily close to
p can bc obtained by simply executing the paral-
lel algorithm on big enough problem instances j15].
The ease wit11 which a parallel algorithm can achieve
speedups proportional to p oti a parallel architecture
oar1 serve as a measure of the scalability of the par-
allel system.

Let us define the size W of a problem as the time
taken by an optimal (or the best known) sequen-
tial algorithm to solve the given problem on a sin-
gle processor. Let To W, p) be the sum total of all a the overheads incurre by at1 the p processors dur-
iug the parallel execution of the algorithm, Now the
efficiency of a parallel algorithm-architecture combi-
nation (henceforth referred to as a parallel system)

1 is given by = ~ Y + T . (I Y , ~) - i p - y . For a class
of parallel systems called scalable basallel systems,
the efficiency can be maintained at a desired value
(between 0 and 1) for increasing p, provided I t ' is
also increased. In order to maintain a fixed em-
ciency, LV should be proportional ta T,('CV, p) or tlpe
following relation must be satisfied :

where IC = & is a constant depending on the
efficiency to be maintained. The isoefficiency func-
tion [10, 151 of a paralleI system is determined by
abstracting It.' w a ffiinction of p through algebraic
n~anipulat~ons on Equation 1 . If the problem size
needs to grow as fast as fE p to maintain an efi-

I [I ciency E, then f ~ { p is defined as the isoefficiency
function of the para1 el system for eficiency E. The
smaller the isoeficicncy S~lnctinn, the more scalahle
the parallel system i s considered.

The isoefficiency Function of a combination of a
parallel algorithm and a parallel architecture relates
the problem size to the number sf processors nec-
essary to maintain a fixed efficiency or to deliver
speedups increasing proportional ty xvith increasing
number of processors. For a given parallel aIge
ritltrn, for different parallel arcl~itectures, IV may
have to increase at dikrent rates rv.r.t. p i n order
to maintain a fixed eficiency. A small rate or isoef-
ficieilcy function indicates a high scalability. Isoeffi-
ciency analysis has been found to be very useful in
characterizing the scaIability of a variety of parallel
systems [15]. An important feature of ~soeficiency
analysis is that in a single expression, it succinctly
captures the effects of characteristics of the paral-
lel algorithm as well as h e ~ara l le l arcltitectuse on
which it is implemented.

3 Parallel Matrix Multiplication Algo-
rit hms

In this section we briefly describe some xrclE
known parallel matrix rnultipl icatiorl algorithms
give their parallel cxecution times.

3.1 A Simple Algorithm
Consider a logical two dimensional mesh of p pro-
cessors (with Jj? rows and fi columns) on tvhich
two n x n matrices A and B are to be rnultipIied
to yield the product matrix C. Let n > fi. The
matrices are divided into sub-blocks of size 5 x 5
which are mapped naturally on the processor array.
The algorithm can be implemented on a hypercube
by embedding t,his processor mest] into it. In the
first step of the algorithm, each processor acquires
all those elements of both the matrices that are rc-
quired to gentrate the 2 elements of the product

P
matrix which are to reside in that processor. This
involves an all-to-all broadcast of $ elements of ma-
trix A among the fi processors of each row of pro-
cessors and that of the same sized blocks of matrix
B among fi processors of each column which can
be accomplished in 2 t , Iogp + 2 t , $ time. After
each processor gets all the data it heeds, it multi-
plies the fi pairs of sub-blocks of the two matrices
Lo compute i t s share of $ elements of the product
matrix. Assuming that an addition and mnltipli-
cation takes a unit time, the multiplication phase
can be completed in $ units of time. Hence, tlie
parallel execution timer is:

This algorithm is memory-inefficient. The memory
requirement for each procemr is 0($) and thus
the total memory requirement is 0 (n 2 - f i) words as
against O(n2) lor the sequential algorithm.

3.2 Cannon's Algorithm
A parallel algorithm that is memory efficient and is
frequently used is due to Cannorr [4, 1 . Again the
two n x n matrices A and B are divide d into square
submatrices of size % x 5 among the p processors
of a wrap-around mesh which can be embedded in
a hypercube). The sub- ' b locks of A and Ll residing
with the processor (i, j) are denoted by A" and D')
respectively, where 0 5 a' < fi and 0 < j < fi. In
the first phase of the execution of the algorithm, cbe
data in the two input matrices is aligned in such a
manner that the corresponding square submatrices
at each processor can be multiplied together locally.
This is done by sending the block A" to processor

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

1 993 International Conference on Parallel Processing

(5 , (j + i)mod&, and the block ~ ' j to processor
((i + j) m o d f i , j). The copied sub-blocks are then
multiplied together. Vow the -4 sub-blacks are rolled
one step to the left and the B sub-blocks are rolled
one step upward and the newly copied sub-blocks
are multiplied and the results added to the partial
results in the C sub-blocks. The multiplication of A
aitd B is complete after fi such steps. On a hyper-
cube mi t11 cut-tllrough routing, tlie time spent in the
initial alignment step car1 be ignored w.r.t . t o the 4 sl~ifl operations during; the rnultiplicatior~ phase,
as Ihe formel. is: a simple one-to-one cornn~unication
along non-conflicting paths. Since each sub-block
movement in t h e second phase takes 1 , + t, $ kirne,
t,he total parallel execution time Tor al l the move-
ment.~ of the sub-blocks of both the matrices is given
by t.he following equation:

3.3 Berntsen's Algorithm
Due to nearest neighbor commuilications on the 4 x fi wrap-around array of processors, Can-
non's algorithm's performance is the same on both
mesh and hypercube architectures. In [Z], Berntsen
describes an algorithm which exploits greater con-
nectivity provided by a hypercube. The algorithm
uses P = 23q processors with the restriction that
p j i312 for miltiplying two n x n matrices A and
B. hfatrix A is split by columns and 3 by rows
into 29 parts. The hypercube is split into 2'1 sub-
cubes, each performing a submatrix multiplication
between submatrices of A of size 5 x & and sub-
matrices of B of size + x $ using Cannon's algo-
rithm. I t is shown in [2] that the time spent in data
con~munication by this algorithm on a hypercube
is 2tap' j3 + i t , l o g p + 3 t i &, and hence the to- - l'-

tal parallel execution time is given by the following
equatiotl:

The t e r~ns associated with both t , and t, are smalIer
in this algorithm than the algorithms discussed in
Sectifins 3.1 to 3.2. It should also be noted that this
algorithm, like the one in Section 3.1 is not memory
efficient as it requires storage of 2 5 + -$ matrix
elements per processor.

3.4 The DNS Algorithm
3.4.1 One Element Per Processor Version
An algorithm that uses a hypercube wit11 y = n3 =
Z34 processors to multiply two n x n matrices was
proposed by Dekel, Nassin~i and Sahni in [8, 171.

The p processors can be visualized as being arranged
in an 2 9 x 29 x 29 array. In this array, processor p, oc-
cupies position (i , j, k) where P = i22q + j2Q + k and
0 5 i, j, k < 24. Thus if the binary representation of
r is rsg- 1 r3,-2...ro, then the binary representations
of i, 3 and k are P ~ ~ - I ~ + ~ ~ - Z . . . T Z ~ , ~ 2 ~ - 1 r 2 ~ - 2 . . . r ~
and r,, 1 r TO respectively. Each processor pr
has three &ta registers a,, b, and c,, respectively.
Initially, processor p, in position (0 j ,k) contains the
element ~ (j , kj and b (j , k) in a, and 6, respectively.
The computation is accomplished in three stages. In
the first stage, the elements of the matrices A and B
are distributed over the p processors. As a result, a,

b(i , k). In the second stage,
are computed and stored in

each c,. In the final s&e, the sums ~:c:ci,~,k are
computed and stored in c ~ , j , k .

The above algorithm accomplishes the O(n3) task
of matrix multiplication in O(logn) time using n3
processors. Since the processor-t~me product of
this parallel algorithm exceeds the sequent id time
complexit,y of the algorithm, it is not cost-optimal.
In the following sub-sect ions we p r w n t two cost-
optimal variat.ions of this algorithm wllich use fewer
than n3 processors

3.4.2 Variant With More Than One Ele-
ment Per Processor

This variant proposed in [8, 151 can work wilh n2r
processors, where 1 < r < n, t.hus using one pro-
cessor for more than one element of each of the two
n x n matrices. The a lgo r i t , h~~ is s~milar to the one
above except that a logical processor array of r3
(instead of n3) superprocessors is used, each super-
processor comprising of (n / ~) ~ hypercube proces-
sors. I11 the second step, m~ltiplicat~ion of blocks of
(n/r) x (n/r) elements instead of individual elements
is performed. This multiplication of (n r) x (n/r)
blocks is performed according to the a i gorithm in
Section 3.2 on 3 x subarrays (each such subarray
is actually a subcuhe) of processors using Cannon's
algorithm for one element per processor. This step
will require a commuriication time of 2(t , + t,) 3.

In the first stage of the algorithm, each data
element is broadcast over r processors. In order
to place the elements of matrix A in their respec-
tive positions, first the buffer a (o , j , k) is sent to
a (k 4 j , k) in log r steps and then a(k, j ,kl- i~ broadcast to
~ (k , , , , ~ , 0 5 1 < r, agaiti in logr steps. By following
a similar procedure, the elerrierlts of matrix B can
he transmitted to their resoective wrocessors. In
the second stage ruups of (n / r) 2 PEOC~SSO~S multi-

Y x (n/r) elements each processor ply blocks of (n/ f
performing n / r cornputations and 2n/r communi-
cations. In the final step, the elerl~ents of matrix C
are restored to their designated processors in logr
steps. T h e colnmunicatiot~ time can thus be shown
t,o be equal to (t , +1,)(5logr + 2:) resulting in the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

1993 International Conference on Parallel Processing

parallrl rut1 time givm by the Follrswing er41iation: by the foIlorviizg equation:

If p = & pracersors are used, then t be parallel ex-
ecutiort time of the DNS algoritl~rn is Q(log n). The
processor- time+ product is t~ow O(n3) , which is same
as the sequent~al ti me csmpler i ty of the algorithm.

3.5 Our Variant of tlie DNS Algo-
rithm

Here we present another scheme to adapt the sin-
gle element per processor version of tbe DNS olgo-
rithm to bc able to use fewer than n3 processors on
a hypercube. I11 tlie rest of the paper we sl-)all rc-
ier to this algorithill as the GK variant of the DNS
algorithm. As sl~ou,n later in Sectioil 5, this a l p
ri thm performs better than the DNS algorillkrn f ~ r
a wide range of n and p. Also, unlike tlie DNS al-
gorithm whidi rvorlts oilly for n2 5 p 5 n3, Ihis
alaoritbm call use atlv number of Drocessors from 1 -
to n3. In this variant, we use p = 23q processors
where q < log n. The matrices are divided into
sub-blocks of 5 x 6 elements and the sut-blocks
are numbered just the way the single elenlents were
i~umbered in the algorithm of Section 3.4.1. Now,
aH tlze single element operations of the algorithm
of Section 3.4.1 are replaced by sub-block opera-
tions; i . e . , matrix sub-blocks are multiplied, com-
municated and added.

Let t,,,,lt and tadd is tbe time to perform a sin-
gle floating point mult ipl icat ion and addition re-
spectively, ailrl tmult + tadd = 1. In the first stage
of this algorithm, & data elements are broadcast
over processors for each matrix In ordcr to
place t!le elei~~ents of matrix A in their respective
positions, first the buffer u(o, j ,n) is sent to ayr,j,tj
in logp1l3 steps aild then a (k ~ , k) is broadcast to
a(k,,,,), 0 5 1 < again in logp'/3 steps. By
following a similar procedure, the elements of ma-
trix B can be sent t o the processors w l ~ e r e they
are to be utilized in 2 1ogp'I3 steps. I n the sec-
ond stage of the algorithm, each processor performs

= "1 multiplkatio~~s. 111 the third step,
I'

the correspclllding elei~~ents of groups of $&
elements each are added in a treq fashion. ?he
first. stage tahea 4t, fogp1/3 + 4 t , + log time.
Tile second stage contributes t,,lt < to the par-

r
alIel execution time and the third stage irivolves
1 , I?& p1/3 + tw $ log communication time and
tndd $ coi~~putatioil time for calculating the su~ns.
T l ~ e total paralle1 execution time is therefore give11

This executio11 time can be furtber reduced by using
a more sophisticated scl~eme for one-to-all broadcast
on a hypercube [14]. This is discussed in detail in
[Ill .

4 Scalability Analysis
Recall from Section 2 that the isoeficjency func-

tion for a certain efficiency E can be obtained by
equating W with &To (Equation (1)) and the11
solving this equation to determine W as a function
of p. In most of the parallel algorithms described in
Section 3, the cominunication overhead has two dif-
ferent terms due tot, and t,. When there are inulti-
ple terms in To of different order, it is often not pos-
sihle to obtain the isoefficiency function as a closed
form function of p. As p and W increase in a par-
dlel system, efficiency is guaranteed not to drop if
nonp of t.he terms of To grows faster than W . There-
fore, if To has mult.iple terms, we balance W aga.inst
each i~~dividual term of T, t.o compute the respective
imeficiency iui~r.t.ion. The component of To that re-
quires the prob1r.m size to grow at the fast.est. rate
w.r.t. 11 det.ern1ines the overall isoefficiency f~unct.ion
of (lie ent.ire comput,ation. So~net imes, the isoeffi-
cieacy iu11r':9n for a parallel algorit,hm is due t.o the
limit on t,be coiicurrrncy of the algorit.hm. For in-
stance, iffor a problem size I r t ' , an algorit.hm can not
use more than h(1T') processors, then as tile number
ti pr0cessl.i-s is increased, eventually W has to be in-
creased as h - ' (p) in order t,u keep al l the proc-rs
busy and to avoid the efficiency [[om falling due to
idle processors. If h"(p) is greater than any of the
isoeficiency terms due to conirnunication over heads,
t h e n h-I (p) is the overall isoefficiency function and
determines the scalability of the paraIlel algorithm.
Thus i t is possible for an algorithm to have little
commu~~ica t i a~~ overhead, hut still a had scalability
due to limited concurrency.

iC7e tlow determit~e the isoefficiency func t ioas for
all tile algori t h111s discuss~d in Section 3. The prob-
le111 sine 11' is talcen as n3 for all the algoritl~ms.

4.1 Isoefficiency Analysis of Can-
tlotl's Algorithm

From Equatiot~ (31, it follows that the total over-
head over all the processors for this algorithm is
2 t , p J i i + 2t,nz&. I n order to determine the isoef-
ficiency term due to t,, 1.t' has to be proportional to
2ICt,p& (see Equation (I)), where li = 1- and ! - E
E i s the desired efficiency that has to be ma~ntained.
Hence the foltowiilg isoefficiency relation rclsul ts:

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

According to both Equations (7) and (8), the
asymptotic isoefficiency function of Cannon's algo-
rithm is O{p15). Also, since the maximum num-
ber of processors that can be used by this algorithm
is n2, the isoefficiency due to concurrency1 is also
O{p15). Thus Cannon's algorithm is as scalable on
a hypercube as any matrix multiplication algorithm
using O{n2) processors can be on any architecture.

The above analysis also applies to the simple al-
gorithm because both the degree of concurrency and
the communication overheads (due to the tw term
which determines the overall isoefficiency function)
are the same for these two algorithms.

4.2 Isoefficiency Analysis of
Berntsen 's Algori thm

The overall overhead function for this algorithm can
be determined from the expression of the paral-
lel execution time in Equation (4) to be 2tsp4'3 +
^tsp\ogp-\-2>twn2pll3. By an analysis similar to that
in Section 4.1, it can be shown that the isoefficiency
terms due to t, and tw for this algorithm are given
by the following equations:

Recall from Section 3.3 that for this algorithm,
p < n3!2. This means that n3 = W oc p2 as the
number of processors is increased. Thus the isoeffi-
ciency function due to concurrency is O{p2), which
is worse than any of the isoefficiency terms due to
the communication overhead. Thus this algorithm
has a poor scalability despite little communication
cost due to its limited concurrency.

4.3 Isoefficiency Analysis of the DNS
Algori thm

It can be shown that the overhead function T0 for
this algorithm is (t, + tw){^p\ogp + 2n3). Since W
is O{n3), the terms 2{ts + tw)n3 will always be bal-
anced w.r.t. W. This term is independent of p and
does not contribute to the isoefficiency function. It
does however impose an upper limit on the efficiency
that this algorithm can achieve. Since, for this algo-
rithm, E = , , s/3rx„tl , „ , . , , N, an efficiency higher

I T 3 T ^ V ' s T ' u f ^

than , , 0 , , 1 , . ^ can not be attained, no matter how
big the problem size is. Since ts is usually a large
constant for most practical MIMD computers, the
achievable efficiency of this algorithm is quite lim-
ited on such machines. The other term in T0 yields
the following isoefficiency function for the algorithm:

The above equation shows that the asymptotic iso-
efficiency function of the DNS algorithm on a hy-
percube is O{p log p). It can easily be shown that
an O{plogp) scalability is the best any parallel for-
mulation of the conventional O{n3) algorithm can
achieve on any parallel architecture [3] and the DNS
algorithm achieves this lower bound on a hypercube.

4.4 Isoefficiency Analysis of the GK
Algori thm

The total overhead T0 for this algorithm is equal to
| ^ p l o g p + ^twn2pll3\ogp and the following equa-
tions give the isoefficiency terms due to ts and tw
respectively for this algorithm:

5 Relative Performance of the Four Al-
gorithms on a Hypercube

Subsections 4.1 through 4.4 give the overall iso-
efficiency functions of the four algorithms on a hy-
percube architecture. The asymptotic scalabilities
and the range of applicability of these algorithms is
summarized in Table 1.

Note that Table 1 gives only the asymptotic scal-
abilities of the four algorithms. In practice, none
of the algorithms is strictly better than the others
for all possible problem sizes and number of pro-
cessors. Further analysis is required to determine
the best algorithm for a given problem size and a
certain parallel machine depending on the number
of processors being used and the hardware parame-
ters of the machine. A detailed comparison of these
algorithms based on their respective total overhead
functions is presented in the next section.

We compare a pair of algorithms by comparing
their total overhead functions (T0) as given in Table
1. For instance, while comparing the GK algorithm
with Cannon's algorithm, it is clear that the ts term
for the GK algorithm will always be less than that
for Cannon's algorithm. Even if t, = 0, the tw term
of the GK algorithm becomes smaller than that of
Cannon's algorithm for p > 130 million. Thus, p =
130 million is the cut-off point beyond which the
GK algorithm will perform better than Cannon's
algorithm irrespective of the values of n. For p <
130 million, the performance of the GK algorithm

HI-119

Similarly, to determine the isoefficiency term due to
tw, n3 has to proportional to 2Ktwn2y/p. Therefore,

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

Table 1: Communication overhead, scalability and range of application of the four algorithms on a hypercube.

P

III-120

Figure 1: A comparison of the four algorithms for tw = 3 and t, — 150.
will be better than that of Cannon's algorithm for
values of n less than a certain threshold value which
is a function of p and the ration of ts and tw. A
hundred and thirty million processors is clearly too
large, but we show that for reasonable values of ts,
the GK algorithm performs better than Cannon's
algorithm for very practical values of p and n.

In order to determine ranges of p and n where
the GK algorithm performs better than Cannon's
algorithm, we equate their respective overhead func-
tions and compute n as a function of p. We call
this riEquai-T0(p) because this value of n is the
threshold at which the overheads of the two al-
gorithms will be identical for a given p. If n >
n•Equai-To{p}> Cannon's algorithm will perform bet-
ter and if n < riEquai-‰{p), the GK algorithm will
perform better. If we equate T0 for the two al-
gorithms, then T^Cannon) = 2tspzl2 + 2twn2y/p =
T0

(Gƒ° = | f , p l o g p + | < „ , n V / 3 l o g p . Therefore,

ues of tw and ts can be plugged in depending upon
the machine in question to determine the best al-
gorithm for a give problem size and number of pro-
cessors. We have performed this analysis for three
practical sets of values of tw and ts. In the rest of
the section we demonstrate the practical importance
of this analysis by showing how any of the four algo-
rithms can be useful depending on the problem size
and the parallel machine available.

Figures 1, 2 and 3 show the regions of applicabil-
ity and superiority of different algorithms.

The plain lines represent equal overhead condi-
tions for pairs of algorithms. For a curve marked "X
vs Y" in a figure, algorithm X has a smaller value
of communication overhead to the left of the curve,
algorithm Y has smaller communication overhead
to the right side of the curve, while the two algo-
rithms have the same value of T0 along the curve.
The lines with symbols <>, + and • plot the func-
tions p = n3'2, p = n2 and p = n3, respectively.
These lines demarcate the regions of applicabilities
of the four algorithms (see Table 1) and are impor-
tant because an algorithm might not be applicable
in the region where its overhead function T0 is math-
ematically superior than others. In all the figures in
this section, the region marked with an x is the one

Similarly, equal overhead conditions can be deter-
mined for other pairs of algorithms too and the val-

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

1993 International Conference on Parallel Processing

1 7 -
GK va Berntstn's -

DNS vn GK -
GK vs Cannon's - -

= -312 .Oh .
p = n2 ++. +

p = n a -0 .+
+ .o

d - ,

-
I 1

Figure 2: A cornpurlson of the four algo7dihms for t , = 3 and f , = 10.
where p > n3 and none of the algoritbttu is applica- cation costs w.r.t. the unit computation time) and
ble, the region marked with an a is the one where reducing the message startup time. By observing
the GK algorithm is the best choice, the syntbol b the pa= u a l - ~ curves and the regions of applicabil-
represents the region where Be in t~n ' s algorithm is ity of tkese agorithms, the regions of superiority of
superior to the others, the region marked wit11 a c each of the algorithms can be determined just as in
is the one where Cannon's algorithn~should be used case of Figure 1 It is noteworthy that in Figure 2
and the region marked with a d is the one whete the each of the four algorithms performs better than the
DNS algorithm is the best. rest in some region and all the four regions a, b, c

Figure 1 compares the four algorithms for t , = 3 and d contain practical values of p and n.
and f , = 150. These parameters are very clilse to In Figure 3, we present a comparison of the four
that of a currently available parallel computer like algorithms for t , = 3 and t , = 0.5. These parame-
the nCUBEZTMP' . In this figure, since the nE,,ua,-T, ters are close to what one can expect to observe on a
curvef~rt11eDNSalgorithmandtheC;Kalgorithm t~~icalSlMDmachineliketheCM-2-Fortherange
lies in the x region, and the DNS algorithn~ is better of Processors shown in the figure, the GK algorithm
than the G K a1 orithrn only for values of n smaller is inferior to the others3. Hence it is best to use
than 71E,,a,-~0 b). Hence the DNS algorithm rill the DNS algorithm for n2 < p 5 n3, Cannon's algo-
always2 periorm worse than the GI< algorithm for rithm for n3I2 5 p 5 n2 and Berntsen's algorithm
this set oi values of 2 , and t, and the latter is the for p < n3I2.
best overall choice for p > n2 as Berntsen's algc-
rithm and Cannon's algorithm are not applicable 6 Experimental Results
in this range of p. Since the nEpual-T. curve for We verified a part of the analysis of this paper
GK and Cannon's algorithm lies below the p = n3t2 through experiments of the CM-5 arallel computer.

the algorjthm is best even for On this machine, the fat-tree [I ~ p l i k e carnrnunica-
tion network on the Chi-5 provides simultaneous 2 p 5 n 2 For p < nS'2, Berntsen's paths for communica~ion betwePn all pairs of pro- is always Letter than Cannon's algorithm, and for
cessors+ Hence the CM-S be viewed m a fully this set of t* and ' W * a'so than 'I' architecture which can silllulate a. hyper- Hence it is the best choice in that region in Figure cube connected network, We implemented Cannon,s

1. algorithm described in Section 3:2 and the algorithm In Figure 2, we compare the four algorithms for a described in section 3.5.
hypercube with t , = 3 and t , = 10. Suck a machine Since the CM-5 can be considered as a fully con- could easily be developed in the near future by using nected network of proc-rs, the exprmion for the faster C P U ' ~ (t ~ and t a represent communi- parallel execution time for the alp;orit.hm of Section

3.5 will have to be modified slighYtly. The first, part
*nCUBE2 is a trademark of the Ncube corporation.

~ c t u a l l y , the nEq,,l ,re curve for DNS vs G K algorithms 3 ~ h e GK algorithm does begin to performbetter than the
will cross the p =: n3 curve for p = 2.6 x 10", but clearly this other algorithms for p > 1.3 x lo8, but again we consider this
region h a no practical importance. range of p to be impractical. . ,. - .

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

1993 International Conference on Parallel Processing

250 I C . R -
0'

X . -
-

GK vs Berntsen's -
DNS vs GK - -

GK vs Cannon's -
= ,3/2 .o. . -
p = n2 -+. .
p = n 3 .a ..

I I

Figure 3: A comparison of the f o w algorathms for t, = 3 and t, = 0.5.
of the procedure to place the elements of matrix A for a matrix size of 112 x 1 12, whereas Cannon's al-
in their respective positions, requires sending the gorithm operates at an efficiency of only 0.28 on 484
buffer Q(o,j ,t) to a (k j , k j . This can be done in one processors on 110 x 110 matrices. In other words,
step on the CM-5 instead of log(pl/3) steps on a in the region where the GK algorithm is better than
conventional hypercube+ ~h~ same is true for ma- Cannon's algorithm, the difference in the efficiencies
trix B as well. It can be shown that the folIowin~ is quite sig,.ificant+
modified expression gives the parallel execution time
for this algorithm on the CM-5:

Cornputiilg the condition for equal To for this
and Cannon's algorithm by deriving the respective
values of To from Equations (15) and (3), it can
be shown that for 512 processors, Cannon's algo-
rithin should perform better that our algorithm for
n > 295. Since the number of processors has to be
a perfect square for Cannon's algorithm on square
matrices, in Figure 4, we draw the efficiency vs n
curve for p = 484 for Cannon's algorithm and for p
= 512 for the GK algorithm4. The cross-over point
closely matches the predicted value. These experi-
ments suggest that the algorithm of Section 3.5 can
outperform the classical algorithms like Cannon's
for a wide range of problem sizes and number of pro-
cessors. hloreover, as the number of processors is in-
creased, the cross-over point of the eficiency curves
of the GK algorithm and Cannon's algorithm corre-
sponds to a very high efficiency. As seen in Figure
4, the crm-over happens at E x 0.93 and Cannon's
algorithm can not outperform the GK algorithm by
a wide margin at such high efficiencies. On the other
hand, the GK algorithm achieves an efficiency of 0.5

'This is not an unfair comparison because the efficiency
can only be better for smaller number of processors.

7 Concluding Remarks
In this paper we have presented the scalability

analysis of a number of matrix multiplication algo-
rithms described in the literature [4, 8, 2, 131. Be-
sides analyzing these classical algorithms, we show
that the GK aIgorithm that we present in this pa-
per outperforms all the well known algorithms for a
significant range of number of processors and matrix
sizes. The scalability analysis of all these algorithms
provides several important insights regarding their
relative superiority under different conditions. None
of the algorithms discussed in this paper is clearly
superior to the others because there are a number of
factors that determine the algorithm that performs
the best. In this paper we predict the precise con-
ditions under which each formulation is better than
the others. It may be unreasonable to expect a pro-
grammer to code different algorithms for different
machines, different number of processors and differ-
ent matrix sizes. But all the algorithms can stored
in a library and the best algorithm can be pulled
out by a smart preprocessor/compiler depending on
the various parameters.

We show that an algorithm with a seemin ly
small expression for the communication overhea 8 is
not necessarily the best one because it may not scale
well as the number of processors is increased. For
instance, the best algorithm in terms of communi-
cation overheads (Berntsen's algorithm described in
Section 3.3) turns out to be the least scalable one
with an isoefficiency function of O(p2) due i ts lim-

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

1993 International Conference on Parallel Processing

-
- -
-
-
-
-
-

GK -
Cannon's - -

Figure 4: E f i c i ~ n c ~ 11s matrix size for Ca?iaon's algo
ited degree of concurrellcy
References
[l] S. G. Akl. The D t ~ t g n and Ano ly s i s PJ Paralltl AIgo-

~ilhms. Prentice-Hall. 1989.

[2] Jarle Berntsen. Communication efficient malrix muhi-
plication on I~ypercubcs. P ~ r o l l ~ l C'ornputing, 12335 -
342, 1989.

131 Dimitri P. Bertsekas and John N. T~itsiklis. PuraiIel and
D i s l ~ i b u l e d Computu i i on . Prentice Hall, 1989.

[4] L. E. Cannon. A cellular computer to i~nplement t.hr
Kdman Filter Algorithm. Technical report, PI>.D. The-
sis, Montana Staie Univtrsity, 1989.

[5] V. Cherkassky and R. Smith. Efficient mapping and
implementations of matrix irlgorillrms on a hypercube.
The Journal o j S t l p t r c ~ m p u i ~ ~ g , V01. 2 : f - 27, 1968.

[6] N. P. Chrisopchoid=, M. Abotlaze, E. N. Houstis, and
C. E. Houstis. Tht parallelizaiion of stmt lirvel 2 and
3 BLAS operations on distributtd memory machines.
In Proccedingr of t h e !at I ~ i e t n a i i o n a l C o n j c r r q c c PJ

the Austrian Center of Parallel Compuiuiion. Spvinger-
Verlag Series Lacturt Nolea in Computer Science, 1991.

I71 Eric F. Van de Velde. Multicompu ler matrix computa.
tions: Tlretry and practice. In Proctcdingr of t i c 1989
Conjerece on Hgrptrcubes, Concutrcnl Compulers, and
 application^, pages 1303 - 1308, 198'4.

[8] Eliezer Dektl, Ijacid N ~ s i m i , and Sartaj Sdmi. Psrallel
matrix and graph algorithms. 51.4 h l Jo umui 01 Corn-
p t d i n g , 10:657 - 673, 1981.

[9] G .C. Fox, S.W. Otto, and A.J.G. Hey. hfatrix algori tllrns
on a hypercube I : Matris rr~ultiylisalia~~. Pardllel Com-
pui ing , 4:17 - 31, 1987.

[lo] Anhnth Grarna, Anshul Gupta, and Vipin Iiunlsr. Isoef-
ficitncy iuuctio~l: A scalability lnetris for parallel algu-
rihrns and atcl~itectures. Technical repart, Conlputer
Science Department, University of hlinnesota, April
1993.

d h n a (P = 484) and the GK algorithm (p = 512).
ill] Anshul Gupta and Vipin Kumar. The scalability of M*

trix Multiplication Algorithms on parallel computers.
Technical Report TR 91-54, Computer Science Depart-
ment, University of Minnesota, Minneapolis, MN 55455,
1991.

[12] Pad G. Hipes. Matrix multiplication on the
JPi./Caltech h4ark IIIip hypercube. Technical Report
C3P 746, Concurrent Computation Program, Calif~rnia
Insliiute ot Technology, Pasadena, C A - 91 125, t 989.

1131 Cliing-Tien HF, S. Lennart Johnsson, and Alan Edel-
man. hlatris nlultiplication on hypercubes using full
bandwidth and constant slorage. In Proceedings of the
1 gpl In t rrnaliow al CnlJrrenct on Para1 l c l Processing,
pages 4.17 - 4.51. 1991.

[l . ~] 5. Lennart Johnsson and Ching-Tien Ho. Optimum
broadcad ing and personalized communication in hyper-
cubes. IEEE Transaciionr on Cnmprlera, 38(9):1240 -
1268. September 1989.

[IS] Vipin Kumar and Anshul Gupta. Analyzing scalabil-
ity of parallel algorithms and architectures. Technical
report, TR-91-18, Computer Science Department, Uni-
versity of Minnesota, June 1991. A short version of the
paper appears in the Proceedings of the 1991 Intern*
tional Conference on Supercomputing, Germany, and as
an invited paper in the Proc. of 29th Annual Allerton
Confercnceon Communication, Control and Computing,
Urbana,IL, October 1991.

[l6] Charles E. Leiseraon. Fat-trees : Universal networks for
hardware efici-nt supercornputing. In Procrediag~ of the
1985 Inlcrnalional Conference on Parallel Processing,
pagcs 333 - 402, Augllst 20 - 23, 1985.

[17] S. Ranka and 5. Sahni. Hypercube Algorithms for Image
Procer~ing and Pattern Recognition. Springer-Verlag,
New York, 1990.

(181 i Irdter F. Tict~y. ParalIel matrix multiplication on
the cotmection machine. Technical Report RIACS TR
83.41, Research Institute Ior Advanced Computer Sci-
ence, NASA Ames Research Center, Ames, Iowa, 1088.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2021 at 03:34:10 UTC from IEEE Xplore. Restrictions apply.

