
Scaling Applications to Massively Parallel Machines
Using Projections Performance Analysis Tool

Laxmikant V. Kaĺe, Gengbin Zheng, Chee Wai Lee, Sameer Kumar

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract

Some of the most challenging applications to parallelize scalably are the ones that present
a relatively small amount of computation per iteration. Multiple interacting performance
challenges must be identified and solved to attain high parallel efficiency in such cases. We
present case studies involving NAMD, a parallel classic molecular dynamics application
for large biomolecular systems, and CPAIMD, Car-Parrinello ab initio molecular dynamics
application, and efforts to scale them to large number of processors. Both applications are
implemented in Charm++, and the performance analysis was carried out usingProjections,
the performance visualization/analysis tool associated with Charm++. We will showcase a
series of optimizations facilitated by Projections. The resultant performance of NAMD led
to a Gordon Bell award at SC2002 with unprecedented speedup on 3,000 processors with
teraflops level peak performance. We also explore the techniques for applying the perfor-
mance visualization/analysis tool on future generation extreme-scale parallel machines and
discuss the scalability issues with Projections.

1 Introduction

How does one understand and optimize performance of complex applications run-
ning on very large parallel machines? Often multiple competing and interacting
factors are responsible for the limited performance of applications. These factors
tend to mask each other. Further, different factors may dominate as the number
of processors used changes. Therefore, performance problems that manifest on the
largest machine configuration cannot be debugged on smaller configurations — one
must make most of the few runs one can get on the large configuration.

The approach we have pursued for this problem is based on application-level visual
and analytical performance feedback. This is further facilitated by the use of the
Charm++ [1] (and Adaptive MPI [2]) runtime system. This runtime is capable of

Preprint submitted to Future Generation Computer Systems 2 February 2004



automatically recording substantial performance information at a level that makes
sense to the application programmer (Section 2).

We first introduce Charm++ and Projections, the performance analysis tool associ-
ated with Charm++. We then describe utility of Projections, and the performance
optimization methodology it engenders through case study of NAMD, a parallel
classic molecular dynamics application. Each example shows how a problem is
identified (and optimizations suggested) using Projections, and the effect of re-
sultant optimizations. A brief case study of CPAIMD, a Car-Parrinello ab initio
molecular dynamics application is presented next. Finally, we present extensions to
Projections for massively parallel processing on machines like BlueGene/L.

2 Charm++ and Projections

Virtualization [3] is the driving force behind Charm++. The basic idea is to let
the programmer divide the problem into a large number of parts (eg. objects) in-
dependent of the number of processors. The programmer does not think of pro-
cessors explicitly (nor refer to processors in their programs). Instead they program
only in terms of the interaction between these virtual entities. Under the hood,
the Run Time System (RTS) is aware of processors and maps these virtual pro-
cessors (VPs) to real processors, and remap them whenever necessary. Charm++
supports asynchronous method invocations (entry methods), reductions and broad-
casts which work efficiently in the presence of dynamically migrating objects. It
uses the remapping capability to do automatic load balancing.

The Projections Analysis Frameworkconsists of an instrumentation component
and a visualization/analysis tool. This instrumentation can be fully automated since
Charm++ is a message driven system. Specifically, the RTS knows when it is about
to schedule the execution of a particular method of a particular object (in response
to a message being picked up from the scheduler’s queue).

Unlike MPI, in Charm++ we can retrieve the idle time from the RTS. In MPI when
a processor waits at a barrier or a recv, the time spent is considered a part of the
communication overhead. However, this often includes idle time, because another
processor hasn’t arrived at the barrier (or hasn’t sent the message). Charm++ RTS
can cleanly separate communication overhead from such idle time. This prevents
users from making erroneous conclusions that the performance is poor due to “the
slow barrier operations”, when it may be due to load imbalances.

The overhead on the application when NOT tracing is that of an if statement per
event (which is typically associated with a message: so not much overhead in com-
parison). Even this overhead can be eliminated in production runs by linking the
program with an optimized version of the RTS.

2



Different tracing modules can register themselves to the RTS via callbacks. Two
important tracing modules arelog and summary. In the log mode each event is
recorded in full detail (including timestamp) in an internal buffer. Thesummary
module reduces the size of output files and memory overhead. It produces (in the
default mode) a few lines of output data per processor. For each entry-method it
records standard profiling information such as the sum of its execution time over
the whole run, its maximum execution time, its average execution time as well as
the number of times it was called. By default, processor utilization data is recorded
in 1ms interval bins. If the number of intervals exceeds a threshold, the interval size
is doubled and existing data re-mapped into fewer bins. This allows us to keep the
size of recorded data bounded.

The Projections visualization componentsupports multiple views: i) aSummary
Graph view is quickly loaded at Projections startup which shows a sketch of av-
erage processor utilization over the entire run. Time interval granularity is limited
to whatever is provided by the summary module; ii) anOverview graph shows
slightly more detail, displaying utilization as a color-intensity value in a plot of
processors against time intervals; iii) theGraph view shows more detail with var-
ious attributes, such as the execution time of specific entry methods or processor
utilization as a function of time divided into uniform intervals over a user-specified
set of processors. Data is read from log files, which provides up to microsecond
resolution on the time axis; iv) theProfile view shows a stacked column bar for
each selected processor, for a selected time interval. The time spent by each pro-
cessor in various activities is shown within each bar. This view clearly separates
idle time and communication overhead; v) ourHistogram views are very useful
for revealing grainsize issues for computation units as well as communication. One
such view shows the frequency of entry method calls binned according to that par-
ticular call’s execution time. It also shows the frequency of messages sent binned
according to the size of the message; vi) theTimeline view, which is supported
with log data only, displays a sequence ofentry methodsfor each processor and is
similar to other timeline tools such as Upshot [5], and Paragraph [6]. However, it
is a highly sophisticated view which presents additional detailed information about
events (not normally available in other MPI-based tools) via simple mouse clicks;
vii) a Multiple Run view takes multiple runs of an application at different proces-
sor scales and performs a side-by-side comparison using an area graph. It automat-
ically categorizes the information, showing significantly large entry methods that
do not scale. The growth of overheads and idle time are also displayed in this view.
Entry methods that are insignificant to the size of the entire run are amalgamated
into a single entry. This helps us focus on badly behaved entry methods that matter
to the overall scheme of things.

We typically begin our analysis approach by conducting a quick look for unexpect-
edly poor utilization in thesummary graphview (or if summary files are unavail-
able, a low-resolutiongraph view may be used). The spread of utilization across
processors provided byoverviewandprofile graphs allow us to determine if there

3



is a load balance issue as well as the time intervals and entry methods responsible
for the load imbalance.Histogramsof entry method execution times allow us to
determine if grain size is a possible cause of load imbalance. Finally,timelinegives
us all the details necessary to identify specific causes or more subtle performance
issues.

3 Performance Optimization of NAMD with Projections

NAMD is a molecular dynamics program designed for high performance simula-
tion of large biomolecular systems [7]. Each simulated timestep involves computing
forces on each atom, and “integrating” them to update their positions. The forces
are due to bonds, and electrostatic forces between atoms within a cut-off radius.

NAMD is parallelized using Charm++ via a novel combination of force and spatial
decomposition to generate enough parallelism for parallel machines with a large
number of processors. Atoms are partitioned into cubes whose dimensions are
slightly larger than the cutoff radius. For each pair of neighboring cubes, we as-
sign a non-bonded force computation object, which can be independently mapped
to any processor. The number of such objects is therefore 14 times (26/2 + 1 self-
interaction) the number of cubes.

The cubes described above are represented in NAMD by objects calledhome patches.
Each home patch is responsible for distributing coordinate data, retrieving forces,
and integrating the equations of motion for all of the atoms in the cube of space
owned by the patch. The forces used by the patches are computed by a variety of
compute objects. There are several varieties of compute objects, responsible for
computing the different types of forces (bond, electrostatic, constraint, etc.). On a
given processor, there may be multiple “compute objects” that all need the coor-
dinates from the same home patch. To eliminate duplication of communication, a
“proxy” of the home patch is created on every processor where its coordinates are
needed. The parallel structure of NAMD is shown in Fig. 1.

Reductions
Asynchronous

Compute Objects
Angle

Transposes

PME

Compute Objects
Pairwise

Patches : Integration

Patches : Integration

Point to Point
Multicast

Point to Point

Fig. 1. Parallel structure of NAMD

NAMD employs Charm++’s measurement-based load balancing. When a simula-
tion begins, patches are distributed according to a recursive coordinate bisection

4



scheme, so that each processor receives a number of neighboring patches. All com-
pute objects are then distributed to a processor owning at least one home patch.
The framework measures the execution time of each compute object (the object
loads), and records other (non-migratable) patch work as “background load.” Af-
ter the simulation runs for several time-steps (typically several seconds to several
minutes), the program suspends the simulation to trigger the initial load balancing.
The strategy retrieves the object times and background load from the framework,
computes an improved load distribution, and redistributes the migratable compute
objects.

The initial load balancer is aggressive, starting from the set of required proxies
and assigning compute objects in order from larger to smaller, avoiding the need
to create new proxies unless necessary. Once a good balance is achieved, atom
migration changes very slowly. Another load balance is only needed after several
thousand steps.

We will present the performance optimizations we carried out with the help of
Projections in a series of examples. The first two examples involve runs on the
ASCI Red machine, while the rest are on PSC Lemieux [8].

3.1 Grainsize Analysis

Fig. 2. Grainsize Distribution on ASCI Red

The benchmark application we used on ASCI Red machine was a 92,000 atom
simulation, which took 57 seconds on one processor. Although it scaled reasonable
well for few hundred processors, initial performance improvements stalled beyond
1,000 processors. One of the analysis using Projections logs we performed identi-
fied a cause. Most of the computation time was spent in force-computation objects.
However, as shown in Figure 2, the execution time of computational objects was
not uniform: it ranged from 1 to 41 msecs. The variation itself is not a problem
(after all, Charm++’s load balancers are expected to handle that). However, having
single objects with execution time of 40+ msecs, in a computation that should ide-
ally run in 28 msecs on 2000 processors was clearly infeasible! This observation,

5



and especially the bimodal distribution of execution times, led us to examine the
set of computational objects. We found the culprits to be those objects that corre-
spond to electrostatic force computations between cubes that have a common face.
If cubes touch only at corners, only a small fraction of atom-pairs will be within
the cut-off distance and need to be evaluated. In contrast, those touching at faces
have most within-cutoff pairs. Splitting these objects into multiple pieces led to a
much improved grainsize distribution as shown in Fig. 2b.

3.2 Load Balancing

Fig. 3. Processor Utilization against Time on (a) 128 (b) 1024 processors

Dynamic load balancing was an important performance challenge for this appli-
cation. The distribution of atoms over space is relatively non-uniform, and (as
seen in the grainsize analysis above) the computational work is distributed quite
non-uniformly among the objects. We used a measurement-based load balancing
framework, which supports runtime load and communication tracing. The RTS ad-
mits different strategies (even during a single run) as plug-ins, which use the trace
data. We used a specific greedy strategy[9]. For a 128-processor run, Projections
visualization of the utilization graph (Fig. 3(a) ) confirmed that the load balancer
worked very well: Prior to load balancing (at 82 seconds) relatively bad load im-
balance led to utilization averaging to 65-70% in each cycle. However after load
balancing, the next 16 steps ran at over 95% utilization.

However, when the same strategy was used on 1024 processors, the results were not
as satisfying (Fig. 3 (a)). In particular, (via a profile view not shown here) it became
clear that the load on many processors was substantially different than what the load
balancer had predicted. Since the greedy strategy used ignored existing placements
of objects entirely (in order to create an unconstrained close-to-optimal mapping), it
was surmised that the assumptions about background load (due to communication,
for example) as well as cache performance were substantially different in the new
context after the massive object migration induced by load balancer. Since the new
mapping was expected to be close to optimal, we didn’t want to discard it. Instead,
we added another load balancing phase immediately after the greedy reallocation,

6



Fig. 4. Processor Utilization after (a) greedy load balancing and (b) refining

which used a simpler “refinement” strategy: objects were moved only from the
processors that were well above (say 5%) the average load. This ensured that the
overall performance context (and communication behavior) was not perturbed sig-
nificantly after refinement, and so the load-balancer predictions were in line with
what happened. In Fig. 3(b), initial greedy balancer works from 157 through 160
seconds, leading to some increase in average utilization. Further, after the refine-
ment strategy finished (within about .7 seconds) at around 161.6 seconds, we can
see that utilization is significantly improved. Another view in Projections (Fig. 4),
showing utilization as a function of processors for the time intervals before and
after refinement, shows this effect clearly.

Note that due to some quirks in the background load, several processors in the
range between 500 and 600 were left underloaded by the greedy algorithm. The
refinement algorithm did not change the load on those, since it focuses (correctly)
only on overloaded processors: having a few underloaded processors doesn’t im-
pact the performance much, but having even one overloaded processor slows the
overall execution time. Here, we see that 4 overloaded processors (e.g, processor
508) were significantly overloaded before the refinement step, whereas the load is
much much closer to the average after refinement. As a result, overall utilization
across all processor rises from 45 to 60%.

3.3 Managing Stretches in Entry Methods

We successfully isolated and fixed thestretched(prolonged) entry method (handler)
problem by the use of the timeline. This problem occured while running NAMD on
a large number of processors on Lemieux. Figure 5 shows the timeline of NAMD
on 1536 processors. Observe that processors 900 (processor 6 from the top) and
933 (processor 7) have handlers that last about 20-30 ms. This is clearly shown by
the long superscript bar (colored in light grey) on top of the handler, which shows
a send operation. Both the stretched handlers here block on a send operation. Nor-

7



mally these handlers should take about 2-3ms to finish, as shown by the remaining
rectangles. Observe that the other superscript bars are just dots. We also noticed
other stretches in the middle of entry methods (not shown in the figure). We be-
lieve these stretches were caused by a mis-tuned Elan library and operating system
daemon interference. We now describe how we overcame this stretching problem.

Fig. 5. NAMD Run on 1536 processors

(a) Timeline showing Blocking Receives (b) Profile View

Fig. 6. Namd on 3000 processors

Stretched Sends:The Charm/Converse [10] runtime system only makes calls to
elan tportTxStart (equivalent of MPIIsend in Elan) which should be a short call [11,12].
But the entry methods were blocked in the send operations for tens of milliseconds.

On looking at the Elan library source (and also working with Quadrics [13]), we
found that this was a side effect of Elan software’s implementation of MPI message
ordering. MPI message ordering requires that messages between two processors be
ordered . In order to implement this ordering, the Elan system made a processor
block on an elantportTxStart if the rendezvous of any previous message had not
been acknowledged, irrespective of the destination of that previous message. So in
the presence of a hot-spot in the network, all processors that sent a message to the
hot-spot would freeze. This could cascade leading to long stretches of even tens of
milliseconds. We reported this to Quadrics, and obtained a fix for this problem. In
the new Elan software, a message send only blocks if the previous rendezvous to
its destination is unacknowledged, thus eliminating the stretched sends.

8



OS Daemon Stretches:Fixing the Elan software did not completely eliminate
stretches, when applications used four processors on each node. NAMD simula-
tion of the ATPase system takes about 12ms on 3000 processors. This time step
is very close to the 10ms time quanta of the operating system. So if on any of the
3000 processors a file system daemon is scheduled, NAMD step time could become
22ms. Petrini et al. [14] have studied this issue of operating system interference in
great detail. They present substantial performance gains for the SAGE application
on ASCI-Q (a QsNet-Alpha [12] system similar to Lemieux) after certain file sys-
tem daemons have been shutdown.

We did not have control over the machine to do the system level experiments carried
out by Petrini et al. However, we were still able to reduce and mitigate the impact of
such interference with two mechanisms. First, NAMD uses a reduction in every step
to compute the total energies. With Charm++, it was able to use an asynchronous
reduction, whereby the next timestep doesn’t have to wait for the completion of
the reduction. This gives the processors that were lagging behind due to a stretch
an opportunity to catch up. Second, when a processor becomes idle, thereceive
modulein the Converse communication layerblockson a receive, instead of busy-
waiting. This enables the operating system to schedule daemons while the processor
is sleeping. On receiving a message, there is an interrupt from the network interface
which wakes the sleeping process up. The new timeline is presented in Figure 6(a),
where there are no stretched entry methods. The dark-grey superscripted bars on
top of the idle time implies that a processor is blocked on a receive.

The profile view of selected 200 processors (0-49, 1000-1099, 2950-2999) is shown
in Figure 6(b). The white area at the top represents idle time, which is quite sub-
stantial (25% or so). Timeline views (Figure 6(a)) show that load balance is still a
possible issue (Processor 1039 appears overloaded as identified by profile view).
Meanwhile, the communication subsystem still shows minor, but significant hic-
cups (a message sent from processor 1076 is not available on processor 1075 for
over 10 msec after it is sent). These observations indicate that further performance
improvement may be possible!

4 Performance Optimization of CPAIMD with Projections

Car-Parrinelloab initio molecular dynamics (CPAIMD) ([15–17]) can be used to
study key chemical and biological processes. The CPAIMD methodology numeri-
cally solves Newton’s equations using forces derived from electronic structure cal-
culations performed “on the fly” as the simulation proceeds.

The parallelization of CPAIMD method is quite challenging. The parallelism of
current implementations is restricted to the number of states, which is not enough
to scale the problem to thousands of processors. This program also involves mul-

9



tiple parallel 3-D FFTs, which are known to be communication intensive due to
the all-to-all nature of the communication they require. There are several other
phases in the method that involve potentially large data movements, with relatively
little computation. Parallelization of these phases necessitates complex trade-offs
between memory, load balance, and communication costs. Such issues make scal-
ability of the code a non-trivial problem to solve.

The basic objects in the appliation are electron orbitals (or states), each of which
represents fourier coefficients in 3D g-space (or reciprocal space). We parallelized
this application using processor-virtualization, with each virtual processor being a
plane of the g-space state. The g-space is however not very dense and only a fraction
of the cube is non-zero. The initial mapping mapped the virtual processors for the
planes uniformly among the processors. This initial mapping, generated a load-
imbalance problem as highlighted by the “Overview” graph feature in Projections
(Figure 7(a)) with 900 milliseconds per simulation step.

(a) Load imbalance in phases I and IX (b) Final result with load-vectors

Fig. 7. Solving the problem of load imbalance on 1024 processors

A better mapping was then conceived by explicitly considering the load caused by
each plane. This takes into account the number of non-zeroes in each plane, which
is a more accurate estimate of the real work involved. The resulting performance
gain is highlighted in Figure 7(b) with 480 milliseconds step time.

5 Performance Analysis on Next Generation Supercomputers

Parallel machines with an extremely large number of processors are now being de-
signed and built. For example, the BlueGene (BG/L) machine being built by IBM
will have 64,000 dual-processor nodes with 360 teraflops peak performance. An-
other more radical design from IBM, code-named Cyclops (BlueGene/C), had over
one million floating point units, fed by 8 million instructions streams supported by
individual thread units, targeting 1 petaflops of peak performance.

10



It is a significant challenge and require qualitative changes to the way we write
parallel programs in order to exploit the enormous compute power, as well as the
way we analyze the performance.

5.1 Experience of Projections on Extremely Large Parallel Machines

In order to evaluate both parallel applications and performance analysis tools on
such supercomputers that are not even built yet, we have built a performance mod-
eling and programming environment for petaflops-class supercomputers and the
BlueGene machine [18]. It consists of a parallel simulatorBigSim [19] that is ca-
pable of predicting parallel performance of applications on machines with a very
large number of processors such as 64,000 processor BlueGene/L.

We have employed essentially the same Projections framework for the BigSim sim-
ulator. The system can be used for 64K processors, but our experience with runs
using Projections exposed a number of bottlenecks and limitations. For example,
it is almost impractical to generate 64,000 trace log files. Reading and writing this
large number of log files were expensive in terms of both I/O system overheads and
the memory cost.

We have implemented several schemes to extend current Projections capabilities to
enhance it’s usefulness on such extremely large scale parallel machines.

(1) Explore the more insightful information captured with more compact trace
data representation insummarymode. For example, to understand the over-
all utilization over time, a sum of all utilizations per bin(interval) across all
processors gives good information. An example is shown in Figure 8(a).

(2) Instead of generating an unmanageable number of log files, a program can,
at the end of its execution, perform a global reduction which collects and
combines all trace data on all processors into one data file.

(3) Generating detailed Projections log for every processor is infeasible but is
desirable in some cases. We allow a user to specify a range of processors
in interest and only trace logs of these subset of processors are generated.
Further, at the time of visualizing the log files, only a subset of trace logs
needs to be loaded into memory, other log files can be loaded on demand
to reduce the memory cost and improve the speed. Similarly, users can start
and stop instrumentation during specific phases of the program. This helps in
reducing the log size.

Case Study with MD on Extremely Large Machines:It is clearly quite challeng-
ing for molecular dynamics simulation to exploit the enormous compute power of
next generation supercomputers. Applications need to face the grain size challenge
that is much more significant than the one described in Section 3.1. For example,
for a typical system simulation that takes about 6 seconds for one timestep on a sin-

11



gle processor, assuming perfect speedup, one would expect only 6 microseconds for
each timestep on a 1 million processor machine.

In the face of such extreme-scale supercomputers, NAMD, although shown to be
able to scale to 3000 processors, is not ready due to its relatively coarse grained
parallelism exploited. Given ER-GRE benchmark as an example, which is a sys-
tem that contains 36,573 atoms, we calculate the number of cell-to-cell interactions
(compute objects) using NAMD’s “one-away” decomposition strategy as described
in Section 3. Considering a simulation space of 92x92x92Å3, we have 8x8x8 num-
ber of Cells given the cutoff of 12̊A, which leads to only 7,168 cell-to-cell inter-
actions 1 to calculate. Considering that the BlueGene/L machine is about 64,000
nodes, the division would leave nodes idle even if interactions were delegated to a
single node.

To experiment with new parallelization strategy, we have developed an experimen-
tal prototype program calledLeanMD that models the essential cutoff computa-
tions. In LeanMD, the “one-away” strategy is replaced with a “k-away” strategy.
Instead of one cell representing the cutoff distance, in LeanMD three cells would
span the cutoff distance. Therefore, in order to do the cutoff calculation, a cell must
compute its interactions with every cell that is “three-away” in this scenario. Given
the simulation example above, a three-away strategy would produce 13,824 cells
and more than 2 million cell-to-cell interactions, a number of objects that is easily
distributed across the 64,000 nodes of BlueGene/L.

(a) Average utilization per interval
for LeanMD on 32,000 processors

(b) Distribution of processors based
on load in ms

Fig. 8. LeanMD Projections Views

We have run LeanMD on our simulator on PSC Lemieux using the same ER-GRE
benchmark, simulating the BlueGene/L of node size from 1K to 64K (full machine
size). The simulation data can be used to carry out more detailed performance anal-
ysis using Projections. Figure 8(a) shows the average processor utilization as it

1 (8*8*8)*(26/2+1), since cell-to-cell forces are symmetric.

12



varies with time for a simulation on 32k simulated processors. The utilization sta-
bilizes at about 50%, but rises and falls within each timestep. To further understand
the scalability of LeanMD, we ran LeanMD from 1K to 64K simulated processors.
The first row in Table 1 is the predicted speedup, normalized based on the 1000
processor time. The speedup saturates starting from 16k simulated processors. This
could be due to either communication latencies, critical paths or load imbalance. To
understand the saturation of the speedup we used the performance data to calculate
the CPU load on each individual processor. Figure 8(b) shows a histogram of this
data in the case of 16k simulated processors. Although about 6000 out of 16000
processors have a load of about 2ms, a few are seen to have a load as high as 11ms.
This suggests that load balance is a major performance issue. To understand what
portion of performance loss is explained by load imbalance alone, we calculate the
estimated speedup (P × avgLoad

maxLoad
) based on load imbalance loss alone (second row

in Table 1) and compare it with simulated speedup. The closeness of both numbers
confirms that load imbalance is the primary cause of performance loss. Only at
64K processors do the numbers deviate, indicating influence of other factors such
as communication overhead or critical paths. Such detailed performance analysis is
possible because of the rich performance trace data produced by the simulator.

Processors 2000 4000 8000 16000 32000 64000

Predicted Speedup1845 3384 6015 8658 14178 18180

Expected Speedup1865 3412 6242 8635 13916 19936
Table 1
Predicted vs. expected speedup, normalized based on 1000

6 Conclusion and Future Work

We introducedProjections, a performance analysis tool used in conjunction with
the Charm++ parallel programming system. The Projections tracing system auto-
matically creates execution traces, in a compact but useful “summary” mode, or
a detailed “log” mode. We showed how the analysis system, and various views
it presents, were used in scaling a production quality application NAMD to 3,000
processors and 1 TF, and an ongoing CPAIMD project to 1,500 processors. This ex-
perience has helped us identify and add additional capabilities Projections in order
to respond to the challenges of extremely large machines.

We now plan to further extend the Projections framework to allow users to add
such capabilities by expressing simple queries or predicates they want evaluated.
The relatively large number and size of trace files in thelog mode has led us to cre-
ate an intermediate summary mode that preserves as much useful information as
possible while reducing the amount of data significantly. Linking the performance
visualization system’s views to source code information, as done in SvPablo [20],

13



will also be another useful extension. We have already added preliminary features
that use performance counters which will be used in an integrated automatic anal-
ysis system. We are currently also in the process of extending these features to
AMPI. We also continue to seek methods to improve the scalability of Projections,
allowing it to visualize logs from a very large number of processors.

References

[1] L. V. Kale, S. Krishnan, Charm++: Parallel Programming with Message-Driven
Objects, in: G. V. Wilson, P. Lu (Eds.), Parallel Programming using C++, MIT Press,
1996, pp. 175–213.

[2] C. Huang, O. Lawlor, L. V. Kaĺe, Adaptive MPI, in: Proceedings of the 16th
International Workshop on Languages and Compilers for Parallel Computing (LCPC
03), College Station, Texas, 2003.

[3] L. V. Kal é, The virtualization model of parallel programming : Runtime optimizations
and the state of art, in: LACSI 2002, Albuquerque, 2002.

[4] O. S. Lawlor, L. V. Kaĺe, Supporting dynamic parallel object arrays, Concurrency and
Computation: Practice and Experience 15 (2003) 371–393.

[5] Upshot, http://www-fp.mcs.anl.gov/ lusk/upshot.

[6] M. Heath, J. Etheridge, Visualizing the Performance of Parallel Programs, IEEE
Software.

[7] J. C. Phillips, G. Zheng, S. Kumar, L. V. Kalé, NAMD: Biomolecular simulation on
thousands of processors, in: Proceedings of SC 2002, Baltimore, MD, 2002.

[8] Lemieux, http://www.psc.edu/machines/tcs/lemieux.html.

[9] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips,
A. Shinozaki, K. Varadarajan, K. Schulten, NAMD2: Greater scalability for parallel
molecular dynamics, Journal of Computational Physics 151 (1999) 283–312.

[10] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, J. Yelon, Converse: An
Interoperable Framework for Parallel Programming, in: Proceedings of the 10th
International Parallel Processing Symposium, 1996, pp. 212–217.

[11] S. Kumar, L. V. Kale, Opportunities and Challenges of Modern Communication
Architectures: Case Study with QsNet, Tech. Rep. 03-15, Parallel Programming
Laboratory, Department of Computer Science, University of Illinois at Urbana-
Champaign (2003).

[12] F. Petrini, S. Coll, E. Frachtenberg, A. Hoisie, Performance Evaluation of the Quadrics
Interconnection Network, to appear, Journal of Cluster Computing (2002).
URL citeseer.nj.nec.com/petrini01performance.html

[13] Quadrics Ltd., http://www.quadrics.com.

14



[14] S. P. Darren J. Kerbyson, Fabrizio Petrini, The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q, in:
Supercomputing 2003, 2003.

[15] G. Galli, M. Parrinello, Ab-initio molecular dynamics: Principles and practical
inplementation, Computer simulation in chemical physics, NATO ASI Series C 397
(1993) 261.

[16] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod.
Phys. 64 (1992) 1045.

[17] M. E. Tuckerman, Ab initio molecular dynamics: Basic concepts, current trends and
novel applications, J. Phys. Condensed Matter 14 (2002) R1297.

[18] G. Zheng, T. Wilmarth, O. S. Lawlor, L. V. Kalé, S. Adve, D. Padua, Performance
modeling and programming environments for petaflops computers and the blue gene
machine, in: NSF Next Generation Systems Program Workshop, 18th International
Parallel and Distributed Processing Symposium(IPDPS), Santa Fe, New Mexico,
2004.

[19] G. Zheng, G. Kakulapati, L. V. Kalé, Bigsim: A parallel simulator for performance
prediction of extremely large parallel machines, in: 18th International Parallel and
Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, 2004.

[20] L. DeRose, D. A. Reed, Svpablo: A multi-language architecture-independent
performance analysis system, in: Proceedings of the International Conference on
Parallel Processing (ICPP), 1999.

[21] M. Bhandarkar, L. V. Kale, E. de Sturler, J. Hoeflinger, Object-Based Adaptive Load
Balancing for MPI Programs, in: Proceedings of the International Conference on
Computational Science, San Francisco, CA, LNCS 2074, 2001, pp. 108–117.

[22] V. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy, J.-C. Wang, D. Reed, An
Integrated Compilation and Performance Analysis Environment for Data Parallel
Programs, in: Proceedings of Supercomputing’95, 1995.

[23] A. Sinha, L. V. Kale, Towards Automatic Peformance Analysis, in: Proceedings of
International Conference on Parallel Processing, Vol. III, 1996, pp. 53–60.

15


