
PAMI: A Parallel Active Message Interface for the Blue Gene/Q Supercomputer

Sameer Kumar1, Amith R. Mamidala1, Daniel A. Faraj2, Brian Smith2, Michael Blocksome2, Bob Cernohous2,
Douglas Miller2, Jeff Parker, Joseph Ratterman2, Philip Heidelberger1, Dong Chen1

and Burkhard Steinmacher-Burow3

{sameerk,amithr,philiph,chendong}@us.ibm.com
1IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA

{faraja,smithbr,blocksom,bobc,dougmill,jjparker,jratt}@us.ibm.com

2 IBM Systems and Technology Group
Rochester, MN, 55901

steinmac@de.ibm.com

3 IBM Research and Development
Boeblingen, Germany, 71032

Abstract—The Blue Gene/Q machine is the next generation in the line of IBM massively parallel supercomputers, designed to scale to
262144 nodes and sixteen million threads. With each BG/Q node having 68 hardware threads, hybrid programming paradigms, which
use message passing among nodes and multi-threading within nodes, are ideal and will enable applications to achieve high throughput
on BG/Q. With such unprecedented massive parallelism and scale, this paper is a groundbreaking effort to explore the design
challenges for designing a communication library that can match and exploit such massive parallelism In particular, we present the
Parallel Active Messaging Interface (PAMI) library as our BG/Q library solution to the many challenges that come with a machine at
such scale. PAMI provides (1) novel techniques to partition the application communication overhead into many contexts that can be
accelerated by communication threads; (2) client and context objects to support multiple and different programming paradigms; (3)
lockless algorithms to speed up MPI message rate; and (4) novel techniques leveraging the new BG/Q architectural features such as the
scalable atomic primitives implemented in the L2 cache, the highly parallel hardware messaging unit that supports both point-to-point
and collective operations, and the collective hardware acceleration for operations such as broadcast, reduce, and allreduce. We
experimented with PAMI on 2048 BG/Q nodes and the results show high messaging rates as well as low latencies and high throughputs
for collective communication operations.

I. INTRODUCTION

The Blue Gene/Q supercomputer [1] comprises several
architectural innovations at different levels of the system
architecture. Each BG/Q node contains 18 compute cores,
with each core having four hardware threads. One of the cores
is a spare core, and another is reserved for the Compute Node
Kernel (CNK) lightweight operating system, leaving 16 cores
with up to 64 threads for application processing. These cores
are connected via a crossbar switch to a shared L2 cache
system consisting of 16 L2 cache banks (or slices). Further, to
support this high concurrency on a single node, the L2 cache
also enables atomic transactions on any arbitrary 8 byte
aligned memory address on the node. The BG/Q nodes are
connected via a five dimensional (5D) torus [2] designed to
scale to 256 racks (256x1024 nodes). The 5D torus boosts the
bisection bandwidth of the machine accelerating the
performance of applications that have all-to-all
communication such as FFT. Unlike its predecessors BG/L
[3] and BG/P [4], the collective network on BG/Q is
embedded in the 5D torus. The supported operations over the
collective network are barrier, broadcast, reduce, and
allreduce. Collective communication on contiguous

rectangular subsets of nodes is also accelerated by the
collective network by programming the classroutes of the
hardware tree. These operations are extremely scalable. The
projected Message Passing Interface (MPI) latencies for
barrier and allreduce are expected to be under 9μs and 12μs
respectively on 96 racks (96x1024 nodes) of BG/Q. MPI [5]
will continue to be the primary inter-node communication
mode for applications, while OpenMP is likely to be used
within the nodes.

In this paper we present the Parallel Active Messaging
Interface (PAMI) library that we use as a foundation to
support MPI, and can also be used to efficiently enable other
programming paradigms such as UPC [6] and ARMCI [7], and
the parallel programming language Charm++ [8]. It is a
challenge to design messaging libraries that enable
applications to scale to millions of cores and over 10 million
threads. Our design supports up to 64 processes per node and
sixteen million MPI processes in the largest BG/Q
configuration. However, having a large number of processes
on a BG/Q node could exert pressure on node resources such
as DRAM, network FIFOs and TLB entries, for certain classes
of applications. Therefore, we expect hybrid programming
models that have fewer MPI processes to achieve the best

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.73

763

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.73

763

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

performance on this architecture. However, with fewer
processes per node, several threads can call the messaging
library stressing the thread scalability of the library. MPI and
the messaging libraries must deliver very high message rates
for communicating messages from all threads efficiently. The
MPI community has been progressing towards the next
version of the MPI standard, MPI 3.0. The MPI 3.0 hybrid
working group is exploring new concepts in Hybrid
programming via Endpoints on each process rather than the
processes communicating themselves. We have designed the
PAMI contexts following the developments in the MPI Forum
for fine grained communication among threads. The context
“process-rank” pair is similar to an MPI 3.0 endpoint.

PAMI contexts can also enable background communication
threads to accelerate communication processing. For example,
with one MPI process per node (PPN) we can have up to
sixteen contexts and sixteen acceleration communication
threads. PAMI leverages hardware features of BG/Q nodes
such as a low overhead wakeup mechanism to awaken the
communication threads. The main application threads can
hand off work to the communication threads via a
PAMI_context_post function call to maximize messaging
parallelism and drive high message rates even with MPI 2.2
style point to point communication. The parallelism extracted
via PAMI needs to adhere to the MPI ordering rules which
dictate the matching of a MPI send with that of the receive.
Wildcard matching tags present an additional challenge which
has to be dealt with carefully. In this paper, we explore
strategies to map the MPI thread level support to PAMI
endpoint parallelism. A hybrid MPI+OpenMP application,
where typically the master thread initiates the communication
calls, can benefit from the increased message rate.

This paper makes the following contributions:
• We present the Parallel Active Messaging Interface

(PAMI) library, through which we answer many
challenges in meeting BG/Q massive parallelism

• While PAMI is used as a foundation to support MPI, it
can also be used to efficiently enable other programming
paradigms such as UPC [6] and ARMCI [7], and the
parallel programming language Charm++ [8]. This is
done with PAMI client and context objects. A PAMI
Client that is an independent network instance, while
contexts provide independent communication channels
that can be accessed from multiple threads

• We describe lockless algorithms to accelerate MPI
message rate

• Novel techniques, that leverage the new architectural
features in BG/Q such as the wakeup unit and the
collective network, to optimize point to point and
collective communication interfaces in PAMI

• This is the first effort that presents performance results on
2048 BG/Q nodes with 128K threads

A. Related Work

Active messages have also been explored in the runtimes for
Myrinet such as GM and MX [17,18], LAPI over IBM/SP
[21], and DCMF over BG/P[9]. The Common Communication
Interface (CCI) [19] is similar to PAMI as it uses endpoints.
PAMI differs from the above as the highest abstraction of a
network instance is a Client that encapsulates all the resources
associated with that network instance. PAMI supports multiple
clients that can enable simultaneous co-existence of multiple
programming model runtimes. This feature can be used to a
mixed programming model, like the one explored by
researchers in [22], where UPC and MPI were used to scale a
memory bound application. In [16], the authors use parallel
communication channels to speedup MPI message rate. PAMI
extends and generalizes this notion of communication
parallelism using PAMI Contexts and uses a new message
handoff technique to accelerate message rate. Finally, lockless
queues using atomic primitives have been studied by many
researchers including [20]. PAMI uses the very scalable L2
atomic constructs described below for the high concurrency
messaging operations.

II. BACKGROUND

A. BG/Q Overview

Each BG/Q node is comprised of 18 Power ISA A2 64-bit
embedded low power processor cores running at 1.6 GHz.
Each core has four hardware threads. The hardware threads
have their own register files but share other resources such as
the L1 and L2 caches. The A2 core can issue two concurrent
instructions per cycle, one fixed and one floating point, but
each thread can issue only one instruction per cycle. It
implements in-order dispatch and execution of the instruction
pipeline. The L1 total cache size is 32KB with the instruction
and data caches of 16KB each. The L2 cache size is 32MB
and is divided into sixteen slices and interconnected to the A2
cores by a crossbar switch. Moreover, each core has a local
L1 prefetch unit that can prefetch cache lines from L2 ahead
of time.

Scalable Atomic support in L2: BG/Q nodes support different
atomic operations such as load-increment, store-update, etc for
64-bit integer words in DDR memory. These are implemented
by special atomic addresses that are aliases to the L2/DDR
memory. L2 atomics have significantly lower overheads than
traditional mutexes. The L2 atomics are scalable with only a
few extra cycles for each additional atomic request. L2
atomics are used in several places including lock-less queues
and messaging counters that are used to track communication
progress.

Wakeup unit: The main purpose of the wakeup unit is to
increase application performance by avoiding software polling
in A2. The wakeup unit can be programmed to track and
recognize memory addresses written by any of the A2 cores,
messaging unit, or other devices. It can also be configured to

764764

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

recognize signals from the network and the A2 cores. The
thread can be put into a wait via a special instruction until a
desired event occurs. The thread is suspended until it receives
a wakeup signal. While the thread is suspended, it does not
use core resources such as pipeline slots, arithmetic units, and
load/store resources.

B. BG/Q Network Architecture

Each link/port in the BG/Q 5D torus network [2] is capable of
simultaneously sending and receiving data at a raw speed of
2GB/sec. As each packet has a 32 byte header and up to 512
bytes of payload, in 32B increments. With other overhead
such as packet consistency checks and protocol packets, the
maximum achievable throughput for application payload is
1.8GB/sec. Not only is the bidirectional bandwidth increased
in BG/Q network compared to a lower dimensional torus with
the same number of nodes, but also the 5 torus dimensions
reduces the maximum number of hops to reach the farthest
node. The five dimensions are labeled A, B, C, D and E with
opposing directions indicated by “+” and “-“. Each node in
the torus has multiple injection and reception FIFOS, enough
so that user point-to-point, user collective, system point-to-
point and system collectives all have their own FIFOS. Unlike
BG/P, on BG/Q the point-to-point network, the collective
network and the Global Interrupt (GI) network all share the
same torus network. The BG/Q network supports hardware
acceleration for collectives such as barrier, broadcast, reduce,
and allreduce for both MPI_COMM_WORLD as well as
rectangular subcommunicators. This is provided via a
classroute that allows the user to program the routes of the
collective tree. Each classroute specifies the links that are the
down tree inputs to the router and the uptree output. The local
contribution is also included, and the tree can skip the
contribution from a node depending on whether this bit is
on/off. The number of classroutes in which a node can
participate is 16; however some are reserved for system use.
The collective network supports both integer and floating
point operations such as add, min and max.

C. BG/Q Message Unit (MU) Architecture

The BG/Q MU is responsible for moving data between the
memory and the 5D torus network. It supports three different
point-to-point packet types: memory FIFO, RDMA read, and
RDMA write. For all such packet types, the data transfer is
initiated by writing a 64B descriptor into one of the MU
injection FIFOs. Depending on the type of the packet, the data
is either delivered into a MU reception FIFO or is directly
written into the memory address included in the packet. BG/Q
architecture provides an extensive array of 544 MU injection
FIFOs (32 per core) and 272 MU reception FIFOs (16 per
core). Also, there multiple message engines, compared to only
two on BG/P, that operate in parallel for sending and receiving
network packets. Together, all these capabilities of the BG/Q
MU provide a high degree of communication parallelism for
the application to use. Also, compared to BG/P, the

collectives on BG/Q are RDMA capable. For example, an
allreduce is performed by the MU sending RDMA write
packets that are summed on the network and the result stored
in destination buffers on the nodes, also via RDMA writes.

D. Compute Node Kernel Overview

The Compute Node Kernel (CNK) is a light weight kernel on
BG/Q providing system interfaces to support efficient message
passing operations.

Communication Thread (commthread): In addition to
conventional pthreads, CNK provides a special pthread (one
per hardware thread) having extended low and high priority
levels. This special pthread known as commthread is used to
make progress on the various communication operations of the
messaging libraries. The extended priorities allow the
commthread to perform low-level communications operations
without risk of being preempted (at highest priority) and also
ensure the commthread is completely out of the way the rest of
the time (at lowest priority). Commthreads are reserved for
use by BG/Q messaging software.

CNK Support for Shared Address space: To aid message
passing within the node, CNK provides global virtual
addresses within the node. These addresses are aliases to the
virtual addresses of the processes and can be used by any
process on the node to read the memory locations of its peers.
CNK provides a separate global virtual to physical address
translation table containing the global addresses of all the
processes on the node. This capability eliminates extra copies
in the message passing operations between processes on the
same node, both for point-to-point and collective operations.

III. PARALLEL ACTIVE MESSAGING INTERFACE

In this section, we explain the challenges involved in
designing efficient communication libraries for meeting the
requirements of the high level programming models, such as
MPI. Parallel Active Messaging Interface (PAMI) builds upon
the techniques used in the DCMF library on BG/P [9] and
LAPI [10] on PowerPC systems. In addition, it also enables
concurrency in messaging operations by taking advantage of
the novel features of the BG/Q architecture.

A. Supporting multiple programming models

PAMI Client: A client can be thought of as an independent
network interface with its own set of network and
communication resources. It encapsulates all communication
data structures, such as contexts and endpoints,
communication progress models, and the network/messaging
unit resources such as access to the collective tree. Each
programming language runtime should create a PAMI client to
make PAMI library calls. Figure 1 gives an overview of

765765

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

PAMI’s compontents. A client may instantiate one or more
communication contexts. A context is a collection of software
communication devices, where progress is made by an
application thread or communication thread. Progress is made
via the PAMI_Context_advance call, that is thread unsafe and
thread safety is a responsibility of higher level software. A
thread-safe work queue provides an efficient lock-less hand-
off mechanism between application threads and
communication threads. Each software device in a context
manages a physical partition of the hardware resources and
can be advanced independent of other software devices. For
example, the shared memory hardware is used by the shared
memory device to drive intranode communication, whereas
the torus network hardware is used by the MU device to
implement off-node communication.

Figure 1. Overview of PAMI

B. PAMI messaging parallelism & concurrency

PAMI Context: A context defines a unit of thread parallelism.
Messaging operations are initiated and progressed in the
context independent of other co-existing contexts. For
example, two different threads can be pinned to two different
contexts to achieve independent concurrent communication.
Initiating a messaging operation involves either posting a work
request via the PAMI_Context_post call to the context to be
progressed later, or directly posting to the injection FIFOs of
the MU via the PAMI_Send call. The work request queues
use L2 atomic operations to provide a low-overhead highly
concurrent approach without the use of an explicit lock.
Hence, multiple threads can post requests to a single context
using this approach. Two threads can simultaneously advance
or send messages on two different contexts. If the two threads
must simultaneously access (e.g. perform send or collective
operation) the same context, then they need to lock/unlock the

context. Alternatively, if communication threads are enabled,
the main threads can post a work function to a lock-less queue
to be executed on the communication thread.
Lockless queues: The L2 Atomic operations provide
convenient and scalable atomic constructs that can be used to
design communication queues for different message passing
operations. One of the supported L2 Atomics operations is
“bounded increment”. This combines an atomic load-and-
increment with a compare against bounds, enabling atomic
allocation of elements to a fixed-sized array used to implement
a fast scalable queue. This fixed-sized array is enhanced with
an overflow queue to handle cases when the array is full. The
overflow queue is accessed through mutexes.

PAMI Endpoint: An Endpoint is used to designate a
communication address in PAMI. Addressing is not based on
processes or tasks but rather on Endpoints within the process.
This can be used to provide finer grain addressing within a
process that allows different threads to be pinned or attached
to specific endpoints, thereby providing communication across
different threads. Hybrid programming models and the hybrid
proposals for MPI-3.0 would directly benefit from this
approach.

C. Exploiting Communication Threads

Communication threads are helper threads that perform
background “advance” on one or more PAMI contexts, thus
providing communication parallelism in applications. They
also drive the MPI progress engine. These threads are
designed to be automatic in nature, such that when an
application thread is spawned (or ready to run) on the same
hardware thread, the commthread will voluntarily yield
(change to lowest priority) and allow the application thread to
run. During execution, commthreads detect the condition
where no communications are going on and will execute a
PPC wait instruction using the Wakeup Unit, thus eliminating
any impact on other compute threads. This will ensure that
compute threads get full access to the node resources when no
communications are happening.

A great advantage of communication threads is that they allow
for communication/computation overlap. Figure 2
demonstrates the usage of communication threads. When the
main thread reaches a data movement or communication phase
in the application, it can generate a work request (addressed to
a particular context) and post it to the lock-less work queue,
which resides in a “wake up” region/unit of shared memory.
The work request can include processing memory FIFO
packets, moving data within a node, or performing reduction
arithmetic. A pool of communication threads would be in a
“wake up wait” state, which is a special instruction that halts
processing for a particular hardware thread. The instruction
causes the thread to consume no power nor generate heat
while in that state. The wake up unit is programmed to
monitor the specific wake up region containing the work
queue. Once a work request is posted to the queue, the threads

Programming Paradigm

client

context

 Shared
Memory

torus network

APPLICATION

Programming Paradigm

client

context context context

M
U

 D
evice

work queue work queue

Shm
em

M
U

 D
evice

Shm
em

Shm
em

M
U

 D
evice

Shm
em

M
U

 D
evice

766766

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

wake up from the wait state and resume processing. The
thread that owns the context addressed by the work request
will call the advance routine which basically dequeues the
work request, performs the actual work specified in it, and
then invokes the call back function, which sets the completion
conditions for the main thread that posted the work. If there
are no more incoming work requests addressed to this
particular thread, it goes back to the wake up wait state. Note
that all of these events are happening in the background while
the main thread is doing useful computation. At some point,
the main thread will poll to see if the work request has been
satisfied

Figure 2. Exploiting communication threads

D. Collective Acceleration

In BG/Q, collective operations such as barrier, broadcast,
reduce, and allreduce are directly supported by the collective
network embedded in the 5D torus. As explained earlier,
classroutes provide the routing tree information for the packets
to travel up the tree to the root and then down tree to all
participating nodes of the collective. In addition, the
classroutes can be programmed to work on sub communicators
which are contiguous rectangles (e.g. lines, planes or cubes).

On BG/Q, the collective operations are RDMA capable and
the data that is being operated upon is directly read from or
written to the memory. This eliminates extra copies,

improving the performance of the operation. Moreover,
together with the shared memory, integrated protocols can be
designed to support effcient messaging when more than one
process is running on a node, as explained in the next section.

Classroutes are a limited resource on BG/Q, so MPI
applications that use a large number of communicators will
not be able to use the Collective Network for all of them, even
if all are rectangular. PAMI supports the ability to “optimize”
and “deoptimize” a communicator for the Collective Network,
such that an active set of communicators can access and reuse
available classroutes. This feature is exported to MPI users
via MPIX extensions.

E. MU Device Software

As mentioned previously, BG/Q has a sufficient number of
hardware resources to enable concurrent communication per
thread. The 544 injection FIFOs and 272 reception FIFOs are
partitioned across the PAMI contexts with each context having
exclusive access to its own set of resources, thereby
eliminating any need for locking and critical section
protection. The MU software creates independent entities for
each context that have an independent set of protocol data
structures and addressing mechanisms. Messages are sent
using the various protocols associated with these contexts, the
important ones being the eager protocol for short messages via
memory FIFOs and rendezvous for long messages. Eager
protocol has lower latency since it does not have a handshake
phase. However, it has lower throughput as the message
payload must be copied from the memory FIFO to the
application buffer. In the rendezvous protocol, remote get is
used to directly transfer the data from the source node to the
destination node‘s buffer. The progress for these protocols
that involves posting/building descriptors and polling for the
incoming messages is done on a per-context basis. Also, to
maintain MPI ordering, injection FIFOs are pinned statically
for each destination so that the same FIFO is used every time
for a given destination. Eager messages and rendezvous
headers use deterministic ordered routing to be matched with
receives on the destinations in order. We have explored
optimized algorithms for active message send as well as one-
sided put and get over the MU hardware.

F. Shared memory software

With multiple processes per node and several applications
exhibiting locality characteristics, shared memory based
communication has been a popular method to extract good
performance within the node. In addition, using shared
memory in BG/Q enables applications to take advantage of the
high throughput available in the L2 cache for intra-node
communication.

The shared memory software uses lockless queues that take
advantage of L2 atomic increment instructions. To enable
good memory scaling, each process owns only one queue to

767767

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

which others atomically write into. It is important to note that
we use the wakeup unit for advancing both the MU and shared
memory communication paths. This eliminates the need for a
thread to actively poll for the message to arrive, therefore
saving processor cycles.

G. Memory optimizations

To reduce the memory requirements, we’ve developed space
efficient topology structures in the PAMI library to handle a
range of ranks and importantly defined an axial topology
which defines the range of the ranks emanating from a given
node. These are used both for COMM_WORLD and sub
communicators.

IV. MPI OVER PAMI

We extended MPICH2 [11] from Argonne National
Laboratory with a pamid device that implements the MPICH2
ADI [12] and makes PAMI API calls for both point-to-point
and collective communication. PAMI provides low-level
point-to-point protocols for messaging across the different
endpoints of different source and destination processes or
tasks. These protocols are context-scoped and progress is
made by advancing each individual context by the application
thread or the commthread. The protocols are active message
based and a dispatch is triggered on the remote endpoint upon
message arrival. The dispatch function in the pamid device
looks up the list of posted receives and if a match is found, it
returns a buffer to the PAMI library to receive the message.
If a match is not found, an entry is created in the unexpected
queue, and a buffer is allocated to receive the message. Inter-
node messaging uses the MU, while L2 Atomic based shared
memory queues are used for intra-node communication.

A. Multi threaded MPI over PAMI

By default, in MPICH2, each call has a global lock to protect
access to shared resources such as receive queues, request
allocators, and network resources. Such an implementation is
thread safe, but has limited scalability due to the global lock.
We explored fine grained locking and lockless techniques in
MPICH2 [13,16]. We extended request allocators by creating
thread private pools to minimize locking overheads. We also
leveraged parallelism from PAMI contexts to hand off the
work in MPI_Isends to build and inject MU descriptors to a
communication thread. The source PAMI context is computed
by hashing the destination rank and communicator id, and the
destination context on the remote node is computed by
hashing the source MPI rank and communicator id. Thus, all
the messages between two processes use the same source and
destination contexts for a given communicator. This preserves
MPI ordering for the messages as PAMI only orders messages
between endpoints. Since the destination ranks can be hashed
to different contexts, concurrency is available to the messages
sent to different remote destinations or using different
communicators.

Parallelizing the MPI_Irecv call is trickier. The default
MPICH2 receive queue is serial and needs to be protected.
We have explored parallel receive queues with a separate
queue for a subset of source nodes. However, a wildcard any-
source receive can serialize receive processing as it must be
matched before all receives posted after that wildcard. We
observed that the algorithms to process wild cards can be very
complex and significantly limit performance in the presence of
wild cards. As wildcard receives are very commonly used in
Blue Gene/Q applications, we used the default MPICH2
receive queue algorithm with a low overhead L2 atomic mutex
to serialize access to it. The remainder of receive processing,
such as the processing of incoming packets and copying
packet payload to user buffers, is parallelized on different
communication threads.

The biggest challenge was to optimize the MPI_Waitall
operation. The MPI_Waitall is executed on the main thread
that polls completion counters in request objects completed by
communication threads. There may be cache thrashing
between the main thread and communication thread while
accessing request objects, resulting in poor performance. We
designed a two phase waitall algorithm. In the first phase, the
MPI request IDs are converted to MPICH2 request object
pointers via a hash function. The execution of this step takes
tens of processor cycles per request to complete. We overlap
the hash function computation with the load of another
request’s completion counter that is likely to be a cache miss.
If the requests have not completed they are inserted into a
queue and polled for completion in the second phase. As
applications typically post several send and receive several
messages before calling waitall, the two phase approach
enables the request hashing overheads to overlap with the
cache misses of already completed requests.

We use the thread level in the MPI_Init_thread call to
determine the level of thread parallelism required by the
application. If MPI_THREAD_MULTIPLE is requested,
communication threads are automatically enabled to speedup
message rate. There is also an environment variable available
for applications that do not generally use that threading model.

B. MPI Collectives over PAMI

MPI collectives such as MPI_Barrier, MPI_Bcast
MPI_Reduce, and MPI_Allreduce directly use the hardware
collective network to achieve superior scaling in terms of
latency and bandwidth. Collective performance is further
aided by the RDMA enabled collectives cutting down any
extra copies, unlike the memory FIFO where the packets have
to be transferred to the application buffers from FIFOs. Also,
using the shared memory within each BG/Q node, collective
operations can be accelerated when more than one process is
running on a node. The RDMA and shared memory allow
seamless integration of intra-node and inter-node protocols,
boosting the performance of these collective operations. For
MPI_Barrier, we use the fast L2 atomics and the global

768768

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

interrupt network to provide very low-overhead barrier across
the entire machine. Moreover, we utilize the shared address
approach on a node to get the best performance for broadcast
and allreduce when running with more than one process per
node. In the following, we detail the shared address approach.

C. Shared Address Collectives over BG/Q

Figure 3. Short allreduce with parallelization

Figure 4. Long allreduce with parallelization

As copy costs dominate the intra-node performance of a
collective with multiple processes per node, we deploy the
“shared address” approach to eliminate any extraneous
movement of data within the node. Using global addresses
within the node, a process can read the data from its peers.
This feature is very useful in implementing collectives such as
MPI_Bcast and MPI_Allreduce. In MPI_Bcast, a master
process from each node is designated to post RDMA
descriptors to the collective network and the data directly
arrives to its own buffer. Thereafter, other peers on the node
can directly copy the data arrived using the global virtual
address of the master.

For MPI_Allreduce, we would have an extra logical step of
doing the local math within the node. Depending on the

message size, we use two different approaches for performing
math and pipelining with the network operations. For short
messages (Figure 3), the basic idea is to parallelize the local
math and inject a single network descriptor describing the
entire local result obtained. Once again, all masters from all
nodes are responsible for injecting descriptors and polling on
the counters, checking for the arriving data. The network sum
from the collective network arrives directly into the master’s
receive buffer as we use the RDMA write feature. The other
peers wait for the master and copy the final result directly
from the master’s receive buffer. For large messages, we use
pipelining across the local math, network allreduce, and local
broadcast to get the best performance. To do this, each
process operates on a slice of buffers as shown in Figure 4 and
reports to the master after it is done. The master injects all the
slices and the ordering of injection is maintained across all the
masters of the nodes. The result is copied from the master’s
buffer in the same manner as described above.

V. PERFORMANCE ANAYLYSIS

Our performance study measures the performance of the
PAMI and MPI libraries on production-level BG/Q hardware
with 2048 nodes. We used micro benchmarks to measure
latency and throughput of both point to point and collective
communication as well as for measuring messaging rate. We
present results from 1 to 16 MPI processes per node and 32 in
some cases. Although 64 processes per node mode is
supported, the current stage of the implementation focuses on
functionality and is not optimized.

TABLE 1. PAMI half round trip for 0B message

TABLE 2. MPI half round trip for 0B message

MPI
Library

Thread Mode Comm.
Thread
Disabled

Comm.
Thread
Enabled

Classic Thread Single 1.95us N/A
Classic Thread Single 2.28us 8.7us
Thread Opt. Thread Multiple 2.5us N/A
Thread Opt. Thread Multiple 2.96us 3.25us

Tables 1 and 2 show the half round trip latency for a zero byte
message. The latency of the PAMI library is 1.18μ using the
PAMI_SendImmediate call that copies application payload
into an internal buffer and also sends the message if injection
FIFO resources are available. This call is designed for short
messages. The latency in the MPI library is 1.95us. MPI
overheads are higher than PAMI, as MPI libraries must match
receives with incoming packets. In addition, there are

 Single Threaded Latency
PAMI Send Immediate 1.18us

PAMI Send 1.32us

P0
P1

P2
P3

Source Buffers

Shmem
Buffers

1. Parallel Reduce

2. Global collective
RDMA

3. Local BroadcastP0 P1 P2 P3

P0

P1

P2

P3

Src Buffers

1. Parallel Reduce

P1

P2
P3

P1

2. Global collective
RDMA

P0

Rcv Buffer

3. Local broadcast
P1

P2
P3

769769

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

overheads to construct request objects, hash functions to
convert communicator and request identifiers to internal object
pointers.

The classic MPI library has a global lock for all library calls.
The thread-optimized library uses thread pools and lock-free
techniques and acquires a mutex only while accessing a shared
resource such as the receive queue. When the MPI library is
initialized as MPI_THREAD_SINGLE, the classic library has
the lowest overheads as the global locks are disabled. As the
thread optimized library has memory synchronization calls to
keep memory state consistent with the communication threads,
it has higher overheads in MPI_THREAD_SINGLE.
As the classic library lacks fine grained locks, it must acquire
the PAMI context locks to make progress on PAMI context
resulting in higher latency in the presence of communication
threads.

We ran a PAMI benchmark to measure the message rate of the
PAMI library. Here each process on a reference node
communicates with a peer process on a neighboring node.
The neighboring nodes for the processes on the reference node
are evenly distributed on the ten torus links out of a node. The
performance results are presented in Figure 5. Observe we
achieve 107 million messages per second with 32 processes
per node. We also ran a modified Sequoia [14] message rate
benchmark to measure the performance of the MPI classic
library without communication threads. Figure 5 presents
performance results where the processes on the reference node
communicate with one neighbor process on a neighboring
node. The maximum performance achieved is 22.9 million
messages per second (MMPS) at 32 processes per node.
Much of the difference between the PAMI and MPI message
rates is due to overheads such as tag matching and other
overheads in MPI processing.

3.8

7.8

15.6

31.2

62.1
107

0.9

2

4

8

15.9
22.9

2.1
3.8

5.9
9.7

15.2

2.2
3.8

6
9.9

18.7

0.1

1

10

100

1000

1 2 4 8 16 32

Processes Per Node
PAMI MPI Single Threaded MPI Thread Opt. MPI Thread Opt. WC

Figure 5. PAMI and MPI message rate (MMPS) on 32 nodes.

Figure 5 also shows the performance enhancements resulting
from the techniques that use communication threads to
accelerate message rate from 1 to 16 processes per node.
Right now, we do not enable communication threads at 32
processes per node. Here, each process communicates with
more than one neighbor process on different neighboring
nodes. We also add a barrier after all MPI receives have been
posted to eliminate unexpected messages. The barrier
overhead is included in the message rate presented. We

present the performance of both MPI_Irecv calls with source
ranks and wild cards. We see a speedup of 2.4x for one
process per node (PPN) where the most number of
communication threads are available. With more processes
per node, there are fewer communication threads per process
resulting in lower speedups. The best performance of 18.7
MMPS is achieved when PPN=16 and communication threads
are enabled.

TABLE 3. MPI neighbor send + receive throughput (MB/s)
for 1MB message varying number of neighbors

Num. of Neighbors MPI Eager MPI Rendezvous
1 3267 3333
2 3360 6625
4 6676 13139
10 8467 32355

Table 3 presents the bi-directional nearest neighbor throughput
for a reference node (with one MPI process) and an increasing
number of neighbors up to 10, each on a different link. For
rendezvous messages that use RDMA hardware capability we
achieve 90% of peak network throughput. As eager messages
are processed on the receiver by copying payload from packets
in the memory FIFO to application buffers, the maximum
achieved throughput is lower.

1

10

4 8 16 32 64 128 256 512 1024 2048

Nodes

B
ar

rie
r L

at
en

cy
 (u

s)

1 PPN
4 PPN
16 PPN

Figure 6. MPI Barrier Latency

The performance of the barrier collective via the global
interrupt (GI) barrier network is presented in Figure 6. On
2048 nodes, MPI barrier latency is 2.7μs, 4.0μs and 4.2μs for
PPN=1, 4, and 16 respectively. Observe barrier overhead in
our MPI library is small even with 16 processes per node, as
the local barrier is implemented via the scalable L2 atomic
increment operation.

Performance of MPI_Allreduce double sum of a single double
is presented in Figure 7. For PPN=1, 4, and 16, the respective
latencies on 2048 nodes are 5.5μs, 5.0μs, and 5.3μs. Figure 8
shows the MPI_Allreduce throughput on 2048 nodes. We
achieve a throughput of 1704MB/sec that corresponds to 95%
of peak with PPN=1 for an 8MB allreduce. At PPN of 4 and

770770

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

16, the MPI library achieves a peak throughput of 1693MB/s
(94% of peak) for a 2MB allreduce and 1643 MB/s (91%) for
a 512KB allreduce respectively. For larger messages, the send
and receive buffers spill out of the L2 cache and must be read
and stored to DDR respectively. So the performance of
allreduce is driven by DDR throughput which is lower than the
level-2 cache.

1

10

2 8 32 128 512 2048
Nodes

A
llr

ed
uc

e
La

te
nc

y
(u

s)

PPN 1
PPN 4
PPN 16

Figure 7. MPI Allreduce (MPI_DOUBLE, MPI_SUM) latency

1

10

100

1000

10000

8 32 128 512 2K 8K 32K 128K 512K 2M 8M

Message Size (Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

PPN 1
PPN 4
PPN 16

Figure 8. Allreduce throughput via collective network on 2048

nodes (MPI_DOUBLE, MPI_SUM)

The performance of collective network broadcast is presented
in Figure 9. With PPN=1, we achieve a performance of
1728MB/sec which is close to 96% of hardware peak for a
32MB broadcast. At PPN=4, the best performance is
1722MB/s with a 4MB buffer size, while at PPN=16, we
achieve a peak throughput of 1701MB/s for a 1MB buffer.
The performance for large messages at PPN=4 and 16
saturates as the broadcast data spills out of the L2 cache and
the performance is driven by DDR throughput.

0.1

1

10

100

1000

10000

8 32 128 512 2K 8K 32K 128K 512K 2M 8M 32M
Message Size (Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

PPN 1
PPN 4
PPN 16

Figure 9. Broadcast throughput via collective network on 2048

nodes

To improve broadcast performance, by up to a factor of nearly
10, we also implemented a 10-color rectangle broadcast,
where the root sends data to all the remaining nodes in the 5D
torus via 10 edge disjoint spanning trees [15]. The peak
throughput of this algorithm is 18 GB/s. Figure 10 shows the
performance of the rectangle algorithm on 2048 nodes of
BG/Q. With PPN=1, the maximum achieved throughput is
16.9 GB/sec, about 94% of peak network throughput. At four
and sixteen processes per node, the incoming broadcast data
has to be copied into four or sixteen buffers and this copy rate
determines the throughput of the broadcast. Again, for large
messages, the broadcast buffers spill out of the L2 cache and
DDR throughput determines broadcast performance.

0.1

1

10

100

1000

10000

100000

8 32 128 512 2K 8K 32K 128K 512K 2M 8M 32M
Message Size (Bytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

PPN 1
PPN 4
PPN 16

Figure 10. Broadcast throughput on 2048 nodes via the multi-
color rectangle broadcast algorithm

VI. SUMMARY

We presented the thread optimized and highly scalable PAMI
messaging library with performance results on the BG/Q
machine. The MPI and PAMI libraries achieve message rates
of 107 and 22.9 MMPS respectively via micro benchmarks.
We exploit the wakeup unit and L2 atomic features of the

771771

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

BG/Q compute node to accelerate MPI message rate via
communication threads. We achieve a speedup of 2.4x for
message rate with one process per node. Our collective
performance results show under 4.2us latency for barrier and
under 5.5us latency for allreduce double sum on 2048 nodes.
We achieve high percent of peak for both nearest neighbor and
collective throughput. The maximum broadcast throughput
achieved is 16.9GB/sec. Due to L2 and DDR contention,
collective throughput may decrease at 16 processes per node.
This suggests that applications should be threaded and be run
on fewer processes per node to get the best performance on
this architecture. The collective network on BG/Q is enabled
for both MPI_COMM_WORLD and rectangular sub
communicators.

In the future we would like to explore performance
optimizations for other collective operations such as all-to-all,
scatter and gather. We would also like to explore new
algorithms for irregular sub-communicators.

ACKNOWLEDGEMENTS

We would like to thank Robert M Senger, Yutaka Sugawara,
Noel Eisley, and Martin Ohmacht on providing technical
support for the Blue Gene/Q hardware design. We would like
to thank Charles Archer and Pat Mccarthy for PAMI technical
support. We would like to thank Bryan Rosenburg and
Thomas Gooding for help and guidance with CNK. In
addition, we would also like to thank Carl Obert, Robert
Wisinewski and George Chiu. The work presented in this
paper was funded in part by the US Government contract No.
B554331.

REFERENCES

[1] The IBM Blue Gene Team. “The Blue Gene/Q Compute
Chip,” Presented at Hot Chips Conference
http://www.hotchips.org/archives/hc23/HC23-
papers/HC23.18.1-manycore/HC23.18.121.BlueGene-
IBMBM_BQC_HC23_20110818.pdf, Aug. 17-19, 2011.
[2] D. Chen, N. A. Eisley, P. Heidelberger, R. M Senger,
B. Steinmacher-Burrow, Y. Sugawara, S. Kumar, J. J.
Parker, V. Salapura and D. L Satterfield. The Blue Gene/Q
Interconnection Network. To appear in Proceedings of
Supercomputing SC’11, Seattle Washington, 2011.
[3] A. Gara, M. A. Blumrich, D. Chen, G. L. Chiu, P.
Coteus, M. E. Giampapa, R. A. Haring, P. Heidelberger,
D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas.
Overview of the Blue Gene/L System Architecture. IBM
Journal of Research and Development, 49(2/3):195–212,
2005.
[4] IBM Blue Gene Team. Overview of the Blue Gene/P
project. IBM J. Res. Dev., 52(1/2), January (2008).
[5] M. P. I. Forum. MPI-2: Extensions to the
message-passing interface, 1997. http://www.mpiforum.
org/docs/mpi-20-html/mpi2-report.html.

[6] T. El-Ghazawi, W. Carlson, and J. Draper. UPC
speci�cation, 2003. http://upc.gwu.edu/documentation.html
[7] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed array
libraries and compiler run-time systems. Lecture Notes
in Computer Science, 1586, 1999.
[8] L. V. Kale and S. Krishnan. Charm++: Parallel
Programming with Message-Driven Objects. In G. V.
Wilson and P. Lu, editors, Parallel Programming using
C++, pages 175–213. MIT Press, 1996.
[9] S. Kumar, G. Dozsa, G. Almasi, D. Chen, P.
Heidelberger, M. E. Giampapa, M. Blocksome, A. Faraj, J.
J. Parker, J. Ratterman, B. Smith and C. J. Archer. The
Deep Computing Messaging Framework. In Proceedings of
International Conference on Supercomputing, Kos, Greece,
2008.
[10] M. Banikazemi, R. Govindaraju, R. Blackmore, and
D. K. Panda. MPI-LAPI: An efficient implementation
of MPI for IBM RS/6000 SP systems. IEEE
Transactions on Parallel and Distributed Systems,
12(10):10811093, 2001
[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
MPICH: A high-performance, portable implementation of the
mpi message passing interface standard. Parallel
Computing, 22(6):789–828, September 1996.
[12] W. Gropp and E. Lusk. MPICH ADI Implementation
Reference Manual, August 1995.
[13] D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W.
Gropp, S. Kumar, Bronis R. de Supinski and R. Thakur.
Minimizing MPI Resource Contention in Multithreaded
Multicore Environments. In Proceedings of the 2010 IEEE
International Conference on Cluster Computing.
[14] Sequoia Benchmark Codes.
https://asc.llnl.gov/sequoia/benchmarks/
[15] S. Kumar et. al. Architecture of the Component
Collective Messaging Interface. International Journal of High
Performance Computing Applications, February 2010 vol.
24 no. 1 16-33.
[16] G. Dozsa, S. Kumar, P. Balaji, D. Buntinas, D.
Goodell, W. Gropp, J. Ratterman and R. Thakur. Enabling
Concurrent Multithreaded MPI Communications on Multicore
Petascale Systems. In Proceedinds of the 17th European MPI
Users’s Group Meeting (Euro MPI 2010), September 2010.
[17] Myricom. Myrinet Express (MX): A hight performance,
lowlevel, message-passing interface for Myrinet, July 2003.
http://www.myri.com/scs/MX/doc/mx.pdf.
[18] Myrinet Software and Documentation Home Page.
Myricom. Myricom: GM, MX, MPICH-GM, MPICH-MX and
Sockets-GM. http: //www.myri.com/.
[19]Common Communication Interface
http://www.olcf.ornl.gov/center-projects/common-
communication-interface/
[20] D. Buntinas, G. Mercier, and W. Gropp, “Data Transfers
Between Processes in an SMP System: Performance Study and
Application to MPI,” in International Conference on Parallel
Processing, 2006.

772772

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

[21] M. Banikazemi, R. Govindaraju, R. Blackmore, and D. K.
Panda. MPI-LAPI: An efficient implementation of MPI for
IBM RS/6000 SP systems. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1081–1093, 2001

[22] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan and R.
Thakur. Hybrid Parallel Programming with MPI and Unified
Parallel C. ACM International Conference on Computing
Frontiers (CF), May 17-19, 2010, Bertinoro, Italy

773773

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2021 at 14:39:59 UTC from IEEE Xplore. Restrictions apply.

