
Designing Efficient Sorting Algorithms for
Manycore GPUs

Nadathur Satish
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA

Email: nrsatish@eecs.berkeley.edu

Mark Harris Michael Garland
NVIDIA Corporation

Santa Clara, CA
Email: mharris@nvidia.com, mgarland@nvidia.com

Abstract—We describe the design of high-performance parallel
radix sort and merge sort routines for manycore GPUs, taking
advantage of the full programmability offered by CUDA. Our
radix sort is the fastest GPU sort and our merge sort is the fastest
comparison-based sort reported in the literature. Our radix sort
is up to 4 times faster than the graphics-based GPUSort and
greater than 2 times faster than other CUDA-based radix sorts.
It is also 23% faster, on average, than even a very carefully
optimized multicore CPU sorting routine.

To achieve this performance, we carefully design our algo-
rithms to expose substantial fine-grained parallelism and de-
compose the computation into independent tasks that perform
minimal global communication. We exploit the high-speed on-
chip shared memory provided by NVIDIA’s GPU architecture
and efficient data-parallel primitives, particularly parallel scan.
While targeted at GPUs, these algorithms should also be well-
suited for other manycore processors.

I. INTRODUCTION

Sorting is a computational building block of fundamental
importance and is one of the most widely studied algorithmic
problems [1], [2]. The importance of sorting has also lead to
the design of efficient sorting algorithms for a variety of paral-
lel architectures [3]. Many algorithms rely on the availability
of efficient sorting routines as a basis for their own efficiency,
and many other algorithms can be conveniently phrased in
terms of sorting. Database systems make extensive use of
sorting operations [4]. The construction of spatial data struc-
tures that are essential in computer graphics and geographic
information systems is fundamentally a sorting process [5],
[6]. Efficient sort routines are also a useful building block
in implementing algorithms like sparse matrix multiplication
and parallel programming patterns like MapReduce [7], [8].
It is therefore important to provide efficient sorting routines
on practically any programming platform, and as computer
architectures evolve there is a continuing need to explore
efficient sorting techniques on emerging architectures.

One of the dominant trends in microprocessor architecture
in recent years has been continually increasing chip-level
parallelism. Multicore CPUs—providing 2–4 scalar cores,
typically augmented with vector units—are now commonplace
and there is every indication that the trend towards increasing
parallelism will continue on towards “manycore” chips that
provide far higher degrees of parallelism. GPUs have been

at the leading edge of this drive towards increased chip-
level parallelism for some time and are already fundamentally
manycore processors. Current NVIDIA GPUs, for example,
contain up to 240 scalar processing elements per chip [9],
and in contrast to earlier generations of GPUs, they can be
programmed directly in C using CUDA [10], [11].

In this paper, we describe the design of efficient sort-
ing algorithms for such manycore GPUs using CUDA. The
programming flexibility provided by CUDA and the current
generation of GPUs allows us to consider a much broader
range of algorithmic choices than were convenient on past
generations of GPUs. We specifically focus on two classes of
sorting algorithms: a radix sort that directly manipulates the
binary representation of keys and a merge sort that requires
only a comparison function on keys.

The GPU is a massively multithreaded processor which
can support, and indeed expects, several thousand concurrent
threads. Exposing large amounts of fine-grained parallelism is
critical for efficient algorithm design on such architectures. In
radix sort, we exploit the inherent fine-grained parallelism of
the algorithm by building our algorithm upon efficient parallel
scan operations [12]. We expose fine-grained parallelism in
merge sort by developing an algorithm for pairwise parallel
merging of sorted sequences, adapting schemes based on
parallel splitting and binary search previously described in the
literature [13], [14], [15]. We demonstrate how to impose a
block-wise structure on the sorting algorithms, allowing us to
exploit the fast on-chip memory provided by the GPU archi-
tecture. We also use this on-chip memory for locally ordering
data to improve coherence, thus resulting in substantially better
bandwidth utilization for the scatter steps used by radix sort.

Our experimental results demonstrate that our radix sort
algorithm is faster than all previously published GPU sort-
ing techniques when running on current-generation NVIDIA
GPUs. Our tests further demonstrate that our merge sort
algorithm is the fastest comparison-based GPU sort algorithm
described in the literature, and is faster in several cases
than other GPU-based radix sort implementations. Finally,
we demonstrate that our radix sort is highly competitive
with multicore CPU implementations, being up to 4.1 times
faster than comparable routines on an 8-core 2.33 GHz Intel
E5345 system and on average 23% faster than the most

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

optimized published multicore CPU sort [16] running on a
4-core 3.22 GHz Intel Q9550 processor.

II. PARALLEL COMPUTING ON THE GPU

Before discussing the design of our sorting algorithms, we
briefly review the salient details of NVIDIA’s current GPU
architecture and the CUDA parallel programming model. As
their name implies, GPUs (Graphics Processing Units) came
about as accelerators for graphics applications, predominantly
those using the OpenGL and DirectX programming interfaces.
Due to the tremendous parallelism inherent in graphics, GPUs
have long been massively parallel machines. Although they
were originally purely fixed-function devices, GPUs have
rapidly evolved into increasingly flexible programmable pro-
cessors.

Modern NVIDIA GPUs—beginning with the GeForce
8800 GTX—are fully programmable manycore chips built
around an array of parallel processors [9], as illustrated in
Figure 1. The GPU consists of an array of SM multiprocessors,
each of which is capable of supporting up to 1024 co-resident
concurrent threads. NVIDIA’s current products range in size
from 1 SM at the low end to 30 SMs at the high end. A
single SM shown in Figure 1 contains 8 scalar SP processors,
each with 1024 32-bit registers, for a total of 64KB of register
space per SM. Each SM is also equipped with a 16KB on-chip
memory that has very low access latency and high bandwidth,
similar to an L1 cache.

All thread management, including creation, scheduling, and
barrier synchronization is performed entirely in hardware by
the SM with essentially zero overhead. To efficiently manage
its large thread population, the SM employs a SIMT (Single
Instruction, Multiple Thread) architecture [9], [10]. Threads
are executed in groups of 32 called warps. The threads of a
warp are executed on separate scalar processors which share a
single multithreaded instruction unit. The SM transparently
manages any divergence in the execution of threads in a
warp. This SIMT architecture allows the hardware to achieve
substantial efficiencies while executing non-divergent data-
parallel codes.

CUDA [10], [11] provides the means for developers to
execute parallel programs on the GPU. In the CUDA pro-
gramming model, an application is organized into a sequential
host program that may execute parallel programs, referred to
as kernels, on a parallel device. Typically, the host program
executes on the CPU and the parallel kernels execute on
the GPU, although CUDA kernels may also be compiled for
efficient execution on multicore CPUs [17].

A kernel is a SPMD-style (Single Program, Multiple Data)
computation, executing a scalar sequential program across a
set of parallel threads. The programmer organizes these threads
into thread blocks; a kernel thus consists of a grid of one or
more blocks. A thread block is a group of concurrent threads
that can cooperate amongst themselves through barrier syn-
chronization and a per-block shared memory space private to
that block. When invoking a kernel, the programmer specifies
both the number of blocks and the number of threads per block

to be created when launching the kernel. The thread blocks of
a CUDA kernel essentially virtualize the SM multiprocessors
of the physical GPU. We can think of each thread block as a
virtual multiprocessor where each thread has a fixed register
footprint and each block has a fixed allocation of per-block
shared memory.

A. Efficiency Considerations

The SIMT execution of threads is largely transparent to
the CUDA programmer. However, much like cache line sizes
on traditional CPUs, it can be ignored when designing for
correctness, but must be carefully considered when designing
for peak performance. To achieve best efficiency, kernels
should avoid execution divergence, where threads within a
warp follow different execution paths. Divergence between
warps, however, introduces no performance penalty.

The on-chip shared memory provided by the SM is an es-
sential ingredient for efficient cooperation and communication
amongst threads in a block. It is particularly advantageous
when a thread block can load a block of data into on-chip
shared memory, process it there, and then write the final result
back out to external memory.

The threads of a warp are free to load from and store to
any valid address, thus supporting general gather and scatter
access to memory. However, when threads of a warp access
consecutive words in memory, the hardware is able to coalesce
these accesses into aggregate transactions with the memory
system, resulting in substantially higher memory throughput.
For instance, a warp of 32 threads gathering from widely
separated addresses will issue 32 requests to memory, while a
warp reading 32 consecutive words will issue 2 requests.

Finally, the GPU relies on multithreading, as opposed to
a cache, to hide the latency of transactions with external
memory. It is therefore necessary to design algorithms that
create enough parallel work to keep the machine fully utilized.
For current-generation hardware, a minimum of around 5,000–
10,000 threads must be live simultaneously to efficiently utilize
the entire chip.

B. Algorithm Design

When designing algorithms in the CUDA programming
model, our central concern is in dividing the required work
up into pieces that may be processed by p thread blocks of
t threads each. Throughout this paper, we will use a thread
block size of t = 256. Using a power-of-2 size makes
certain algorithms, such as parallel scan and bitonic sort,
easier to implement, and we have empirically determined that
256-thread blocks provide the overall best performance. For
operations such as sort that are required to process input arrays
of size n, we choose p ∝ n/t, assigning a single or small
constant number of input elements to each thread.

We treat the number of thread blocks as the analog of
“processor count” in parallel algorithm analysis, despite the
fact that threads within a block will execute on multiple
processing cores within the SM multiprocessor. It is at the
thread block (or SM) level at which internal communication

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

GPU

SM
Off-chip Memory

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM SP SP SP SP

SP SP SP SP

Shared Memory
(16 KB)

Fig. 1. GeForce GTX 280 GPU with 240 scalar processor cores (SPs), organized in 30 multiprocessors (SMs).

is cheap and external communication becomes expensive.
Therefore, focusing on the decomposition of work between
the p thread blocks is the most important factor in assessing
performance.

It is fairly natural to think of a single thread block as the
rough equivalent of a CRCW asynchronous PRAM [18], using
explicit barriers to synchronize. Broadly speaking, we find that
efficient PRAM algorithms are generally the most efficient
algorithms at the block level. Since global synchronization can
only be achieved via the barrier implicit between successive
kernel calls, the need for global synchronization drives the
decomposition of parallel algorithms into separate kernels.

III. RADIX SORT

Radix sort is one of the oldest and best-known sorting
algorithms, and on sequential machines it is often amongst
the most efficient for sorting small keys. It assumes that the
keys are d-digit numbers and sorts on one digit of the keys at
a time, from least to most significant. For a fixed key size d,
the complexity of sorting n input records will be O(n).

The sorting algorithm used within each of the d passes of
radix sort is typically a counting sort or bucket sort [2]. Each
radix-2b digit is a b-bit string within the key. For a given
digit of each key, we compute the number of keys whose
digits are smaller plus the number of keys with the same digit
occurring earlier in the sequence. This will be the output index
at which the element should be written, which we will refer to
as the rank of the element. Having computed the rank of each
element, we complete the pass by scattering the elements into
the output array. Since this counting is stable (i.e., it preserves
the relative ordering of keys with equal digits) sorting each
digit from least to most significant is guaranteed to leave the
sequence correctly sorted after all d passes are complete.

Radix sort is fairly easy to parallelize, as the counting
sort used for each pass can be reduced to a parallel prefix
sum, or scan, operation [12], [19], [20], [21]. Scans are a
fundamental data-parallel primitive with many uses and which
can be implemented efficiently on manycore processors like
the GPU [22]. Past experience suggests that radix sort is

amongst the easiest of parallel sorts to implement [23] and is
as efficient as more sophisticated algorithms, such as sample
sort, when n/p is small [23], [21].

The simplest scan-based technique is to sort keys 1 bit at
a time—referred to by Blelloch [12] as a “split” operation.
This approach has been implemented in CUDA by Harris et
al. [24] and is publicly available as part of the CUDA Data-
Parallel Primitives (CUDPP) library [25]. While conceptually
quite simple, this approach is not particularly efficient when
the arrays are in external DRAM. For 32-bit keys, it will
perform 32 scatter operations that reorder the entire sequence.
Transferring data to/from external memory is relatively ex-
pensive on modern processors, so we would prefer to avoid
this level of data movement if possible. One natural way to
reduce the number of scatters is to consider more than b = 1
bits per pass. To do this efficiently, we can have each of
the p blocks compute a histogram counting the occurrences
of the 2b possible digits in its assigned tile of data, which
can then be combined using scan [19], [21]. Le Grand [26]
and He et al. [27] have implemented similar schemes in
CUDA. While more efficient, we have found that this scheme
also makes inefficient use of external memory bandwidth.
The higher radix requires fewer scatters to global memory.
However, it still performs scatters where consecutive elements
in the sequence may be written to very different locations in
memory. This sacrifices the bandwidth improvement available
due to coalesced writes, which in practice can be as high as
a factor of 10.

To design an efficient radix sort, we begin by dividing the
sequence into tiles that will be assigned to p thread blocks.
We focus specifically on making efficient use of memory
bandwidth by (1) minimizing the number of scatters to global
memory and (2) maximizing the coherence of scatters. Data
blocking and a digit size b > 1 accomplishes the first goal. We
accomplish the second goal by using on-chip shared memory
to locally sort data blocks by the current radix-2b digit. This
converts scattered writes to external memory into scattered
writes to on-chip memory, which is roughly 2 orders of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

Blocks

Buckets
0 1 2 15• • • • •

0
1
2

p−1

Global offset
prefix sum

Fig. 2. Per-block histograms to be stored in column-major order for prefix
sum.

magnitude faster.
We implement each pass of the radix sort in four phases. As

global synchronization is required between each phase, they
correspond to separate parallel kernel invocations.

1) Each block loads and sorts its tile in on-chip memory
using b iterations of 1-bit split.

2) Each block writes its 2b-entry digit histogram and the
sorted data tile to global memory.

3) Perform a prefix sum over the p×2b histogram table,
stored in column-major order, to compute global digit
offsets [19], [21] (see Figure 2).

4) Using prefix sum results, each block copies its elements
to their correct output position.

As we discussed earlier, our CUDA kernels are executed
by blocks of t = 256 threads each. While assigning one
element per thread would be a natural design choice, handling
a larger number of elements per thread is actually somewhat
more efficient. We process 4 elements per thread or 1024
elements per block. Performing more independent serial work
in each thread improves overall parallel work efficiency and
provides more opportunities to hide latency. Since each block
will process a tile of 1024 elements, we use p = dn/1024e
blocks in our computations.

The choice of b is determined by two competing factors.
We pre-sort each tile in Step 1 to limit the scatter in Step 4
to only 2b contiguous blocks. Larger values of b will decrease
the coherence of this scatter. On the other hand, a small b
leads to a large number of passes, each of which performs
a scatter in global memory. Given that each block processes
O(t) elements, we expect that the number of buckets 2b

should be at most O(
√

t), since this is the largest size for
which we can expect uniform random keys to (roughly) fill all
buckets uniformly. We find empirically that choosing b = 4,
which in fact happens to produce exactly

√
t buckets, provides

the best balance between these factors and the best overall
performance.

IV. MERGE SORT

Since direct manipulation of keys as in radix sort is not
always allowed, it is important to provide efficient comparison-
based sorting algorithms as well. From the many available
choices, we have chosen to explore divide-and-conquer merge

sort. As we will see, this leads to an efficient sort and also
provides an efficient merge procedure which is a valuable
computational primitive in its own right.

Sorting networks, such as Batcher’s bitonic sorting net-
work [28], are among the oldest parallel sorting techniques.
Bitonic sort is often the fastest sort for small sequences but its
performance suffers for larger inputs [23], [21]. This reflects
both its asymptotically inefficient O(n log2 n) complexity and
its relatively high communication cost.

Parallel versions of quicksort can be implemented in parallel
using segmented scan primitives [12]. Similar strategies can
also be used for other partitioning sorts, such as MSB radix
sort which recursively partitions the sequence based on the
high order bits of each key [27]. However, the relatively high
overhead of the segmented scan procedures leads to a sort that
is not competitive with other alternatives [23], [22]. Cederman
and Tsigas [29] achieve a substantially more efficient quicksort
by using explicit partitioning for large sequences coupled with
bitonic sort for small sequences.

Another elegant parallelization technique is used by sample
sort [30], [31], [32]. It randomly selects a subset of the input,
called splitters, which are then sorted by some other efficient
procedure. The sorted sequence of splitters can be used to
divide all input records into buckets corresponding to the
intervals delimited by successive splitters. Each bucket can
then be sorted in parallel and the sorted output is simply
the concatenation of the sorted buckets. Sample sort has
proven in the past to be one of the most efficient parallel
sorts on large inputs, particularly when the cost of inter-
processor communication is high. However, it appears less
effective when n/p, the number of elements per processor,
is small [23], [21]. Since we use a fairly small n/p = 256,
this makes sample sort less attractive. We are also working in
a programming model where each of the p thread blocks is
given a statically-allocated fixed footprint in on-chip memory.
This makes the randomly varying bucket size produced by
sample sort inconvenient.

Merge sort is generally regarded as the preferred technique
for external sorting, where the sequence being sorted is stored
in a large external memory and the processor only has direct
access to a much smaller memory. In some respects, this fits
the situation we face. Every thread block running on the GPU
has access to shared external DRAM, up to 4 GB in current
products, but only at most 16 KB of on-chip memory. The
latency of working in on-chip memory is roughly 100 times
faster than in external DRAM. To keep operations in on-chip
memory as much as possible, we must be able to divide up
the total work to be done into fairly small tiles of bounded
size. Given this, it is also important to recognize that sorting
any reasonably large sequence will require moving data in and
out of the chip, as the on-chip memory is simply too small
to store all data being sorted. Since the cost of interprocessor
communication is no higher than the cost of storing data in
global memory, the implicit load balancing afforded by merge
sort appears more beneficial than sample sort’s avoidance of
interprocessor communication.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

The merge sort procedure consists of three steps:
1) Divide the input into p equal-sized tiles.
2) Sort all p tiles in parallel with p thread blocks.
3) Merge all p sorted tiles.

Since we assume the input sequence is a contiguous array of
records, the division performed in Step (1) is trivial. For sort-
ing individual data tiles in Step (2), we use an implementation
of Batcher’s odd-even merge sort [28]. For sorting t values
on chip with a t-thread block, we have found the Batcher
sorting networks to be substantially faster than either radix
sort or quicksort. We use the odd-even merge sort, rather than
the more common bitonic sort, because our experiments show
that it is roughly 5–10% faster in practice. All the real work
of merge sort occurs in the merging process of Step (3), which
we accomplish with a pair-wise merge tree of log p depth.

At each level of the merge tree, we merge pairs of cor-
responding odd and even subsequences. This is obviously
an inherently parallel process. However, the number of pairs
to be merged decreases geometrically. This coarse-grained
parallelism is insufficient to fully utilize massively parallel
architectures. Our primary focus, therefore, is on designing a
process for pairwise merging that will expose substantial fine-
grained parallelism.

A. Parallel Merging

Following prior work on merging pairs of sorted sequences
in parallel for the PRAM model [13], [33], [14], [15] we use
two key insights in designing an efficient merge algorithm.
First, we can use a divide-and-conquer technique to expose
higher levels of parallelism at each level of the merge tree.
And second, computing the final position of elements in the
merged sequence can be done efficiently using parallel binary
searches.

Given the sorted sequences A and B, we want to compute
the sorted sequence C = merge(A, B). If these sequences
are sufficiently small, say of size no greater than t = 256
elements each, we can merge them using a single t-thread
block. For an element ai ∈ A, we need only compute
rank(ai, C), which is the position of element ai in the merged
sequence C. Because both A and B are sorted, we know
that rank(ai, C) = i + rank(ai, B), where rank(ai, B) is
simply the count of elements bj ∈ B with bj < ai and which
we compute efficiently using binary search. Elements of B
can obviously be treated in the same way. Therefore, we can
efficiently merge these two sequences by having each thread
of the block compute the output rank of its corresponding
elements in A and B, subsequently writing those elements to
the correct position. Since this can be done in on-chip memory,
it will be very efficient.

We merge larger arrays by dividing them up into tiles of size
at most t that can be merged independently using the block-
wise process we have just outlined. To do so in parallel, we
begin by constructing two sequences of splitters SA and SB

by selecting every t-th element of A and B, respectively. By
construction, these splitters partition A and B into contiguous
tiles of at most t elements each. We now construct a single

merged splitter set S = merge(SA, SB), which we achieve
with a nested invocation of our merge procedure.

We use the combined set S to split both A and B into
contiguous tiles of at most t = 256 elements. To do so,
we must compute the rank of each splitter s in both input
sequences. The rank of a splitter s = ai drawn from A is
obviously i, the position from which it was drawn. To compute
its rank in B, we first compute its rank in SB . We can compute
this directly as rank(s, SB) = rank(s, S)−rank(s, SA), since
both terms on the right hand side are its known positions in
the arrays S and SA. Given the rank of s in SB , we have now
established a t-element window in B in which s would fall,
bounded by the splitters in SB that bracket s. We determine
the rank of s in B via binary search within this window.

V. PERFORMANCE ANALYSIS

We now examine the experimental performance of our
sorting algorithms. Our performance tests are all based on
sorting sequences of key-value pairs where both keys and
values are 32-bit words. Although this does not address all
sorting problems, it covers many cases that are of primary
importance to us, such as sorting points in space and building
irregular data structures. We use a uniform random number
generator to produce random keys. We report GPU times as
execution time only and do not include the cost of transferring
input data from the host CPU memory across the PCI-e bus
to the GPU’s on-board memory. Sorting is frequently most
important as one building block of a larger-scale computation.
In such cases, the data to be sorted is being generated by
a kernel on the GPU and the resulting sorted array will be
consumed by a kernel on the GPU.

Figure 3 reports the running time for our sorting implemen-
tations. The input arrays are randomly generated sequences
whose lengths range from 1K elements to 16M elements,
only some of which are power-of-2 sizes. One central goal
of our algorithm design is to scale across a significant range
of physical parallelism. To illustrate this scaling, we measure
performance on a range of NVIDIA GeForce GPUs: the
GTX 280 (30 SMs), 9800 GTX+ (16 SMs), 8800 Ultra
(16 SMs), 8800 GT (14 SMs), and 8600 GTS (4 SMs).
Our measurements demonstrate the scaling we expect to see:
the progressively more parallel devices achieve progressively
faster running times.

The sorting performance trends are more clearly apparent
in Figure 4, which shows sorting rates derived from Figure 3.
We compute sorting rates by dividing the input size by total
running time, and thus measure the number of key-value pairs
sorted per second. We expect that radix sort, which does
O(n) work, should converge to a roughly constant sorting rate,
whereas merge sort should converge to a rate of O(1/ log n).
For small array sizes, running times can be dominated by fixed
overhead and there may not be enough work to fully utilize the
available hardware parallelism, but these trends are apparent
at larger array sizes. The radix sorting rate exhibits a larger
degree of variability, which we believe is due to the load placed
on the memory subsystem by radix sort’s global scatters.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

0

100

200

300

400

500

600

700

- 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000 16,000,000 18,000,000

R
ad

ix
 S

o
rt

 T
im

e
(m

s)

Sequence Size (key-value pairs)

GTX 280

9800 GTX+

8800 Ultra

8800 GT

8600 GTS

(a) Radix sort

0

200

400

600

800

1000

1200

1400

1600

- 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000

M
er

g
e

S
o

rt
 T

im
e

(m
s)

Sequence Size (key-value pairs)

GTX 280

9800 GTX+

8800 Ultra

8800 GT

8600 GTS

(b) Merge sort

Fig. 3. Sorting time for varying sequence sizes across a range of GPU chips.

-

20

40

60

80

100

120

140

160

1,000 10,000 100,000 1,000,000 10,000,000

R
ad

ix
 S

o
rt

in
g

 R
at

e
(p

ai
rs

/s
ec

)
M

ill
io

n
s

Sequence Size (key-value pairs)

GTX 280 9800 GTX+ 8800 Ultra 8800 GT 8600 GTS

(a) Radix sort

-

10

20

30

40

50

60

1,000 10,000 100,000 1,000,000 10,000,000

M
er

g
e

S
o

rt
in

g
 R

at
e

(p
ai

rs
/s

ec
)

M
ill

io
n

s

Sequence Size (key-value pairs)

GTX 280 9800 GTX+ 8800 Ultra 8800 GT 8600 GTS

(b) Merge sort

Fig. 4. Sorting rates (elements sorted per second) derived from running times shown in Figure 3.

We next examine the impact of different key distributions
on our sort performance. Figure 5 shows sorting rates for
different key sizes. Here, we have simply restricted the number
of random bits we generate for keys to the lower order 8,
16, 24, or full 32 bits. As expected, this makes a substantial
difference for radix sort, where we can limit the number of
passes over the data we make. Measured sorting rates for 8,
16, and 24-bit keys are, precisely as expected, 4, 2, and 1.33
times faster than 32-bit keys for all but the smallest sequences.
For merge sort, the effect is far less dramatic, although having
only 256 unique keys (the 8-bit case) does result in 5–10%
better performance.

We also adopt the technique of Thearling and Smith [20]
for generating key sequences with different entropy levels by
computing keys from the bitwise AND of multiple random

samples. As they did, we show performance—in Figure 6—
using 1–5 samples per key, effectively producing 32, 25.95,
17.41, 10.78, and 6.42 unique bits per key, respectively. We
also show the performance for 0 unique bits, corresponding
to AND’ing infinitely many samples together, thus making all
keys zero. We see that increasing entropy, or decreasing unique
bits per key, results in progressively higher performance. This
agrees with the results reported by Thearling and Smith [20]
and Dusseau et al. [21].

Finally, we also measured the performance of both sorts
when the randomly generated sequences were pre-sorted. As
expected, this made no measureable difference to the radix
sort. Applying merge sort to pre-sorted sequences produced
nearly identical measurements to the case of uniform 0 keys
shown in Figure 6, resulting in 1.3 times higher performance

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

-

100

200

300

400

500

600

700

1,000 10,000 100,000 1,000,000 10,000,000

R
ad

ix
 S

o
rt

in
g

 R
at

e
(p

ai
rs

/s
ec

)
M

ill
io

n
s

Sequence Size (key-value pairs)

8 bits 16 bits 24 bits 32 bits

(a) Radix sort

-

10

20

30

40

50

60

70

1,000 10,000 100,000 1,000,000 10,000,000

M
er

g
e

S
o

rt
in

g
 R

at
e

(p
ai

rs
/s

ec
)

M
ill

io
n

s

Sequence Size (key-value pairs)

8 bits 16 bits 24 bits 32 bits

(b) Merge sort

Fig. 5. Sort performance on GeForce GTX 280 with restricted key sizes.

-

20

40

60

80

100

120

140

160

180

200

1,000 10,000 100,000 1,000,000 10,000,000

R
ad

ix
 S

o
rt

in
g

 R
at

e
(p

ai
rs

/s
ec

)
M

ill
io

n
s

Sequence Size (key-value pairs)

32 bits

25.95 bits (effective)

17.41 bits (effective)

10.78 bits (effective)

6.42 bits (effective)

0 bits (constant)

(a) Radix sort

-

10

20

30

40

50

60

70

80

1,000 10,000 100,000 1,000,000 10,000,000

M
er

g
e

S
o

rt
in

g
 R

at
e

(p
ai

rs
/s

ec
)

M
ill

io
n

s

Sequence Size (key-value pairs)

32 bits

25.95 bits (effective)

17.41 bits (effective)

10.78 bits (effective)

6.42 bits (effective)

0 bits (constant)

(b) Merge sort

Fig. 6. Sort performance on GeForce GTX 280 with varying key entropy.

for sequences of 1M keys or more.

A. Comparison with GPU-based Methods

Figure 7 shows the relative performance of both our sorting
routines, as well as the radix sort published by Le Grand [26]
in GPU Gems 3, the radix sort algorithm implemented by
Sengupta et al. [22] in CUDPP [25], and the bitonic sort
system GPUSort of Govindaraju et al. [34]. All performance
measurements reflect the running time of the original imple-
mentations provided by the respective authors. We measure
performance on the 8800 Ultra, rather than the more recent
GTX 280, to provide a more fair comparison as some of these
older codes have not been tuned for the newer hardware.

GPUSort is an example of traditional graphics-based
GPGPU programming techniques; all computation is done in

pixel shaders via the OpenGL API. Note that GPUSort only
handles power-of-2 input sizes on the GPU, performing post-
processing on the CPU for arrays of other sizes. Therefore,
we only measure GPUSort performance on power-of-2 sized
sequences, since only these reflect actual GPU performance.
GPU-ABiSort [35]—another well-known graphics-based GPU
sort routine—does not run correctly on current generation
GPUs. However, it was previously measured to be about 5%
faster than GPUSort on a GeForce 7800 system. Therefore, we
believe that the GPUSort performance on the GeForce 8800
should be representative of the GPU-ABiSort performance as
well. All other sorts shown are implemented in CUDA.

Several trends are apparent in this graph. First of all,
the CUDA-based sorts are generally substantially faster than
GPUSort. This is in part due to the intrinsic advantages of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

-

10

20

30

40

50

60

70

80

1,000 10,000 100,000 1,000,000 10,000,000

S
o

rt
in

g
 R

at
e

(p
ai

rs
/s

ec
)

M
ill

io
n

s

Sequence Size (key-value pairs)

Our radix sort

Our merge sort

GPUSort

GPU Gems radix sort

CUDPP radix sort

Fig. 7. Sorting rates for several GPU-based methods on an 8800 Ultra.

CUDA. Directly programming the GPU via CUDA imposes
less overhead than the graphics API and exposes architectural
features such as load/store to memory and the on-chip shared
memory which are not available to graphics programs like
GPUSort. Furthermore, the bitonic sort used by GPUSort does
O(n log2 n) work, as opposed to the more work-efficient O(n)
radix sort algorithms and our O(n log n) merge sort algorithm.

Our results clearly show that our radix sort code delivers
substantially higher performance than all the other sorting
algorithms we tested. It is faster across all input sizes and the
relative performance gap increases for larger inputs. At the
largest input sizes, it can sort at greater than 2 times the rate
of all other algorithms and at greater than 4 times the GPUSort
rate. The algorithm suggested by Le Grand [26] is competitive
at array sizes up to 1M elements, at which point its sorting
rate degrades substantially. This shows the importance of the
block-level sorting we perform to improve scatter coherence.
Our radix sort is roughly twice as fast as the CUDPP radix
sort [22].

The results also show that our merge sort is roughly twice
as fast as GPUSort, which is the only other comparison-
based sort shown. At all but the largest input sizes, it is also
faster than the CUDPP radix sort, and is competitive with
Le Grand’s radix sort for large input sizes. Only our radix
sort routine consistently out-performs the merge sort by a
substantial margin.

In addition to the sorts shown in Figure 7, we can also
draw comparisons with two other CUDA-based partitioning
sorts. The numbers reported by He et al. [27] for their radix
sort show their sorting performance to be roughly on par with
the CUDPP radix sort. Therefore, their method should perform
at roughly half the speed of our radix sort and slightly slower
than our merge sort. The quicksort method of Cederman
and Tsigas [29] sorts key-only sequences, as opposed to the
key-value sorts profiled above. We have not implemented a
key-only variant of our merge sort and so cannot reliably

compare its performance. However, we can compare their
reported performance with our key-only radix sort results
shown in Figure 8b. For uniform random sequences of 1M–
16M elements, their sorting rate on GTX 280 is between 51
and 66 million keys/sec. Our key-only radix sorting rate for
these sequence sizes is on average 3 times higher.

B. Comparison with CPU-based Methods

We also compare the performance of our sorting routines
with high-speed multicore CPU routines. In practice, appli-
cations running on a system containing both GPU and CPU
are faced with the choice of sorting data on either processor.
Our experiments demonstrate that our sorting routines are
highly competitive with comparable CPU routines. All other
factors being equal, we conclude that applications faced with
the choice of processor to use in sorting should choose the
processor in whose memory the data is stored.

We benchmarked the performance of the quicksort rou-
tine (tbb::parallel_sort) provided by Intel’s Thread-
ing Building Blocks (TBB), our own efficient TBB-based
radix sort implementation, and a carefully hand-tuned radix
sort implementation that uses SSE2 vector instructions and
Pthreads. We ran each using 8 threads on an 8-core 2.33 GHz
Intel Core2 Xeon E5345 (“Clovertown”) system. Here the
CPU cores are distributed between two physical sockets, each
containing a multichip module with twin Core2 chips and
4MB L2 cache per chip, for a total of 8-cores and 16MB of L2
cache between all cores. Figure 8a shows the results of these
tests. As we can see, the algorithms developed in this paper
are highly competitive. Our radix sort produces the fastest
running times for all sequences of 8K elements and larger. It
is on average 4.4 times faster than tbb::parallel_sort
for input sizes larger than 8K elements. For the same size
range, it is on average 3 and 3.5 times faster than our TBB
radix sort and the hand-tuned SIMD radix sort, respectively.
For the two comparison-based sorts—our merge sort and
tbb::parallel_sort—our merge sort is faster for all
inputs larger than 8K elements by an average factor of 2.1.

Recently, Chhugani et al. [16] published results for a
multicore merge sort that is highly tuned for the Intel Core2
architecture and makes extensive use of SSE2 vector instruc-
tions. This appears to be the fastest multicore sorting routine
available for the Intel Core2 architecture. They report sorting
times for 32-bit floating-point sequences (keys only) and
benchmark performance using a 4-core Intel Q9550 (“York-
field”) processor clocked at 3.22 GHz with 32KB L1 cache
per core and a 12MB L2 cache. Figure 8b plots their results
along with a modified version of our radix sort for processing
32-bit key-only floating point sequences. The combination
of aggressive hand tuning and a higher-end core produces
noticeably higher performance than we were able to achieve on
the Clovertown system. Nevertheless, we see that our CUDA
radix sort performance is on average 23% faster than the
multicore CPU merge sort, sorting on average 187 million
keys per second for the data shown, compared to an average
of 152 million keys per second for the quad-core CPU.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

-

20

40

60

80

100

120

140

160

1,000 10,000 100,000 1,000,000 10,000,000

S
o

rt
in

g
 R

at
e

(p
ai

rs
/s

ec
)

M
ill

io
n

s

Sequence Size (key-value pairs)

Our radix sort (GTX 280)

Our merge sort (GTX 280)

tbb::parallel_sort (8 cores)

Scalar radix sort (8 cores)

SSE radix sort (8 cores)

(a) 8-core Clovertown (key-value pairs)

-

50

100

150

200

250

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

S
o

rt
in

g
 R

at
e

(k
ey

s/
se

c)
M

ill
io

n
s

Sequence Size (32-bit floating point keys only)

Radix sort (GTX 280)

Chhugani et al. (4 cores)

Chhugani et al. (2 cores)

Chhugani et al. (1 core)

(b) 4-core Yorkfield (float keys only)

Fig. 8. Performance comparison with efficient multicore sort implementations.

VI. CONCLUSION

We have presented efficient algorithms for both radix sort
and merge sort on manycore GPUs. Our experimental results
demonstrate that our radix sort technique is the fastest pub-
lished sorting algorithm for modern GPU processors and is up
to 4 times more efficient than techniques that map sorting onto
the graphics API. In addition to being the fastest GPU sorting
technique, it is also faster than comparable sorting routines
on multicore CPUs. Our merge sort provides the additional
flexibility of comparison-based sorting while remaining one
of the fastest sorting methods in our performance tests.

We achieve this algorithmic efficiency by concentrating as
much work as possible in the fast on-chip memory provided
by the NVIDIA GPU architecture and by exposing enough
fine-grained parallelism to take advantage of the thousands
of parallel threads supported by this architecture. We believe
that these key design principles also point the way towards
efficient design for manycore processors in general. When
making the transition from the coarse-grained parallelism of
multicore chips to the fine-grained parallelism of manycore
chips, the structure of efficient algorithms changes from a
largely task-parallel structure to a more data-parallel structure.
This is reflected in our use of data-parallel primitives in radix
sort and fine-grained merging in merge sort. The exploita-
tion of fast memory spaces—whether implicitly cached or
explicitly managed—is also a central theme for efficiency on
modern processors. Consequently, we believe that the design
techniques that we have explored in the context of GPUs will
prove applicable to other manycore processors as well.

Starting from the algorithms that we have described, there
are obviously a number of possible directions for future work.
We have focused on one particular sorting problem, namely
sorting sequences of word-length key-value pairs. Other im-
portant variants include sequences with long keys and/or vari-
able length keys. In such situations, an efficient sorting routine

might make somewhat different efficiency trade-offs than ours.
It would also be interesting to explore out-of-core variants
of our algorithms which could support sequences larger than
available RAM; a natural generalization since our algorithms
are already inherently designed to work on small subsequences
at a time in the GPU’s on-chip memory. Finally, there are other
sorting algorithms whose efficient parallelization on manycore
GPUs we believe should be explored, foremost among them
being sample sort.

The CUDA source code for our implementations of the
radix sort and merge sort algorithms described in this paper
will be publicly available in the NVIDIA CUDA SDK [36]
(version 2.2) as well as in the CUDA Data-Parallel Primitives
Library [25].

ACKNOWLEDGEMENT

We would like to thank Shubhabrata Sengupta for help in
implementing the scan primitives used by our radix sort rou-
tines and Brian Budge for providing his SSE-based implemen-
tation of radix sort. We also thank Naga Govindaraju and Scott
Le Grand for providing copies of their sort implementations.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching, Second ed. Boston, MA: Addison-Wesley, 1998.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second ed. MIT Press, Sep. 2001.

[3] S. G. Akl, Parallel Sorting Algorithms. Orlando: Academic Press, Inc.,
1990.

[4] G. Graefe, “Implementing sorting in database systems,” ACM Comput.
Surv., vol. 38, no. 3, pp. 1–37, 2006.

[5] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH construction on GPUs,” in Proc. Eurographics ’09, Mar.
2009.

[6] V. Havran, “Heuristic ray shooting algorithms,” Ph.D. Thesis,
Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University in Prague, Nov.
2000.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[8] B. He, W. Fang, N. K. Govindaraju, Q. Luo, and T. Wang, “Mars:
A MapReduce framework on graphics processors,” in Proc. 17th Int’l
Conference on Parallel Architectures and Compilation Techniques,
2008, pp. 260–269.

[9] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, Mar/Apr 2008.

[10] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar/Apr
2008.

[11] NVIDIA CUDA Programming Guide, NVIDIA Corporation, Jun. 2008,
version 2.0.

[12] G. E. Blelloch, Vector models for data-parallel computing. Cambridge,
MA, USA: MIT Press, 1990.

[13] F. Gavril, “Merging with parallel processors,” Commun. ACM, vol. 18,
no. 10, pp. 588–591, 1975.

[14] T. Hagerup and C. Rub, “Optimal merging and sorting on the EREW
PRAM,” Information Processing Letters, vol. 33, pp. 181–185, 1989.

[15] D. Z. Chen, “Efficient parallel binary search on sorted arrays, with
applications,” IEEE Trans. Parallel and Dist. Systems, vol. 6, no. 4,
pp. 440–445, 1995.

[16] J. Chhugani, W. Macy, A. Baransi, A. D. Nguyen, M. Hagog, S. Kumar,
V. W. Lee, Y.-K. Chen, and P. Dubey, “Efficient implementation of
sorting on multi-core SIMD CPU architecture,” in Proc. 34th Int’l
Conference on Very Large Data Bases, Aug. 2008, pp. 1313–1324.

[17] J. A. Stratton, S. S. Stone, and W. W. Hwu, “MCUDA: An efficient
implementation of CUDA kernels for multi-core CPUs,” in 21st
Annual Workshop on Languages and Compilers for Parallel Computing
(LCPC’2008), Jul. 2008, pp. 16–30.

[18] P. B. Gibbons, “A more practical PRAM model,” in Proc. 1st ACM
Symposium on Parallel Algorithms and Architectures, 1989, pp. 158–
168.

[19] M. Zagha and G. E. Blelloch, “Radix sort for vector multiprocessors,”
in Proc. ACM/IEEE Conference on Supercomputing, 1991, pp. 712–721.

[20] K. Thearling and S. Smith, “An improved supercomputer sorting bench-
mark,” in Proc. ACM/IEEE Conference on Supercomputing, 1992, pp.
14–19.

[21] A. C. Dusseau, D. E. Culler, K. E. Schauser, and R. P. Martin, “Fast
parallel sorting under LogP: Experience with the CM-5,” IEEE Trans.
Parallel Distrib. Syst., vol. 7, no. 8, pp. 791–805, Aug. 1996.

[22] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives for
GPU computing,” in Graphics Hardware 2007, Aug. 2007, pp. 97–106.

[23] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,
and M. Zagha, “A comparison of sorting algorithms for the Connection
Machine CM-2,” in Proc. Third ACM Symposium on Parallel Algorithms
and Architectures, 1991, pp. 3–16.

[24] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan)
with CUDA,” in GPU Gems 3, H. Nguyen, Ed. Addison Wesley, Aug.
2007, pp. 851–876.

[25] “CUDPP: CUDA Data-Parallel Primitives Library,” http://www.gpgpu.
org/developer/cudpp/, 2009.

[26] S. Le Grand, “Broad-phase collision detection with CUDA,” in GPU
Gems 3, H. Nguyen, Ed. Addison-Wesley Professional, Jul. 2007,
ch. 32, pp. 697–721.

[27] B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficient gather
and scatter operations on graphics processors,” in Proc. ACM/IEEE
Conference on Supercomputing, 2007, pp. 1–12.

[28] K. E. Batcher, “Sorting networks and their applications,” in Proc.
AFIPS Spring Joint Computer Conference, vol. 32, 1968, pp. 307–314.

[29] D. Cederman and P. Tsigas, “A practical quicksort algorithm for graphics
processors,” in Proc. 16th Annual European Symposium on Algorithms
(ESA 2008), Sep. 2008, pp. 246–258.

[30] W. D. Frazer and A. C. McKellar, “Samplesort: A sampling approach
to minimal storage tree sorting,” J. ACM, vol. 17, no. 3, pp. 496–507,
1970.

[31] J. H. Reif and L. G. Valiant, “A logarithmic time sort for linear size
networks,” J. ACM, vol. 34, no. 1, pp. 60–76, 1987.

[32] J. S. Huang and Y. C. Chow, “Parallel sorting and data partitioning
by sampling,” in Proc. Seventh IEEE Int’l Computer Software and
Applications Conference, Nov. 1983, pp. 627–631.

[33] R. Cole, “Parallel merge sort,” SIAM J. Comput., vol. 17, no. 4, pp.
770–785, 1988.

[34] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTera-
Sort: High performance graphics coprocessor sorting for large database
management,” in Proc. 2006 ACM SIGMOD Int’l Conference on Man-
agement of Data, 2006, pp. 325–336.

[35] A. Greß and G. Zachmann, “GPU-ABiSort: Optimal parallel sorting
on stream architectures,” in Proc. 20th International Parallel and Dis-
tributed Processing Symposium, Apr. 2006, pp. 45–54.

[36] “NVIDIA CUDA SDK,” http://www.nvidia.com/cuda, 2009.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 19,2021 at 14:29:49 UTC from IEEE Xplore. Restrictions apply.

