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Abstract
Modern programs frequently employ sophisticated modular de-
signs. As a result, performance problems cannot be identified from
costs attributed to routines in isolation; understanding code perfor-
mance requires information about a routine’s calling context. Ex-
isting performance tools fall short in this respect. Prior strategies
for attributing context-sensitive performance at the source level ei-
ther compromise measurement accuracy, remain too close to the bi-
nary, or require custom compilers. To understand the performance
of fully optimized modular code, we developed two novel binary
analysis techniques: 1) on-the-fly analysis of optimized machine
code to enable minimally intrusive and accurate attribution of costs
to dynamic calling contexts; and 2) post-mortem analysis of op-
timized machine code and its debugging sections to recover its
program structure and reconstruct a mapping back to its source
code. By combining the recovered static program structure with
dynamic calling context information, we can accurately attribute
performance metrics to calling contexts, procedures, loops, and in-
lined instances of procedures. We demonstrate that the fusion of
this information provides unique insight into the performance of
complex modular codes. This work is implemented in the HPC-
TOOLKIT1 performance tools.

Categories and Subject Descriptors C.4 [Performance of sys-
tems]: Measurement techniques, Performance attributes.

General Terms Performance, Measurement, Algorithms.

Keywords Binary analysis, Call path profiling, Static analysis,
Performance tools, HPCTOOLKIT.

1. Introduction
Modern programs frequently employ sophisticated modular de-
signs that exploit object-oriented abstractions and generics. Com-
position of C++ algorithm and data structure templates typically
yields loop nests spread across multiple levels of routines. To im-
prove the performance of such codes, compilers inline routines and
optimize loops. However, careful hand-tuning is often necessary to

1 HPCTOOLKIT is an open-source suite of performance tools available
from http://hpctoolkit.org.
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obtain top performance. To support tuning of such code, perfor-
mance analysis tools must pinpoint context-sensitive inefficiencies
in fully optimized applications.

Several contemporary performance tools measure and attribute
execution costs to calling context in some form. However, when
applied to fully optimized applications, existing tools fall short
for two reasons. First, current calling context measurement tech-
niques are unacceptable because they either significantly perturb
program optimization and execution with instrumentation, or rely
on compiler-based information that is sometimes inaccurate or un-
available, which causes failures while gathering certain calling con-
texts. Second, by inlining procedures and transforming loops, op-
timizing compilers introduce a significant semantic gap between
the binary and source code. Thus, prior strategies for attributing
context-sensitive performance at the source level either compro-
mise measurement accuracy or remain too close to the object code.

To clarify, we consider the capabilities of some popular tools
using three related categories: calling context representation, mea-
surement technique and attribution technique.

Calling context representation. Performance tools typically
attribute performance metrics to calling context using a call graph
or call path profile. Two widely-used tools that collect call graph
profiles are gprof [11] and Intel’s VTune [15]. A call graph profile
consists of a node for each procedure and a set of directed edges
between nodes. An edge exists from node p to node q if p calls
q. To represent performance measurements, edges and nodes are
weighted with metrics. Call graph profiles are often insufficient
for modular applications because a procedure p that appears on
multiple distinct paths is represented with one node, resulting in
shared paths and cycles. Consequently, with a call graph profile it
is in general not possible to assign costs to p’s full calling context,
or even to long portions of it. To remove this imprecision, a call
path profile [12] represents the full calling context of p as the path
of calls from the program’s entry point to p. Call path profiling is
necessary to fully understand the performance of modular codes.

Measurement technique. There are two basic approaches for
obtaining calling context profiles: instrumentation and statistical
sampling. Instrumentation-based tools use one of three principal
instrumentation techniques. Tools such as Tau [26] use source code
instrumentation to insert special profiling code into the source pro-
gram before compilation. In contrast, VTune [15] uses static bi-
nary instrumentation to augment application binaries with profiling
code. (gprof’s [11] instrumentation, though traditionally inserted
by a compiler, is effectively in this category.) The third technique
is dynamic binary instrumentation.

While source-level instrumentors collect measurements that are
easily mapped to source code, their instrumentation can interfere
with compiler optimizations such as inlining and loop transforma-
tions. As a result, measurements using source-level instrumenta-
tion may not accurately reflect the performance of fully optimized
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code [28]. Binary instrumentors may also compromise optimiza-
tion. For example, in some compilers gprof-instrumented code
cannot be fully optimized.

An important problem with both source and static binary in-
strumentation is that they require recompilation or binary rewriting
of a program and all its libraries. This requirement poses a sig-
nificant inconvenience for large, complex applications. More criti-
cally, the need to see the whole program before run time can lead to
‘blind spots,’ i.e., portions of the execution that are systematically
excluded from measurement. For instance, source instrumentation
fails to measure any portion of the application for which source
code is unavailable; this frequently includes critical system, math
and communication libraries. For Fortran programs, this approach
can also fail to associate costs with intrinsic functions or compiler-
inserted array copies. Static binary instrumentation is unable to
cope with shared libraries dynamically loaded during execution.

The third approach, dynamic binary instrumentation, supports
fully optimized binaries and avoids blind spots by inserting instru-
mentation in the executing application [4]. Intel’s recently-released
Performance Tuning Utility (PTU) [14], includes a call graph pro-
filer that adopts this approach by using Pin [18]. However, dynamic
instrumentation remains susceptible to systematic measurement er-
ror because of instrumentation overhead.

Indeed, all three instrumentation approaches suffer in two dis-
tinct ways from overhead. First, instrumentation dilates total execu-
tion time, sometimes enough to preclude analysis of large produc-
tion runs or force users to a priori introduce blind spots via selec-
tive instrumentation. For example, because of an average slowdown
factor of 8, VTune requires users to limit measurement to so-called
‘modules of interest’ [15]. Moreover, overhead is even more acute
if loops are instrumented. A recent Pin-based ‘loop profiler’ in-
curred an average slowdown factor of 22 [22]. Second, instrumen-
tation dilates the total measured cost of each procedure, dispropor-
tionately inflating costs attributed to small procedures and thereby
introducing a systematic measurement error.

The alternative to instrumentation is statistical sampling. Since
sampling periods can easily be adjusted (even dynamically), this
approach naturally permits low, controllable overhead. Sampling-
based call path profilers, such as the one with Intel’s PTU [14], use
call stack unwinding to gather calling contexts. Stack unwinding re-
quires either the presence of frame pointers or correct and complete
unwind information for every point in an executable because an
asynchronous sample event may occur anywhere. However, fully
optimized code often omits frame pointers. Moreover, unwind in-
formation is often incomplete (for epilogues), missing (for hand-
coded assembly or partially stripped libraries) or simply erroneous
(optimizers often fail to update unwind information as they trans-
form the code). In particular, optimized math and communication
libraries frequently apply every ‘trick in the book’ to critical proce-
dures (e.g., hot-cold path splitting [6])— just those procedures that
are likely to be near the innermost frame of an unwind.

Attribution technique. By inlining procedures and transform-
ing loops, optimizing compilers introduce a semantic gap between
the object and source code, making it difficult to reconcile binary-
level measurements with source-level constructs. Compiler trans-
formations such as inlining and tail call optimization cause call
paths during execution to differ from source-level call paths. Af-
ter compilers inline procedures and apply loop transformations,
execution-level performance data does not correlate well with
source code. Since application developers wish to understand per-
formance at the source code level, it is necessary for tools to collect
measurements on fully optimized binaries and then translate those
measurements into source-level insight. Since loops are critical to
performance, but are often dynamically nested across procedure
calls, it is important to understand loops in their calling context.

Much prior work on loop attribution either compromises mea-
surement accuracy by relying on instrumentation [22, 26] or is
based on context-less measurement [19]. A few sampling-based
call path profilers [2, 14, 22] identify loops, but at the binary level.
Moseley et al. [22] describe a sampling-based profiler (relying
on unwind information) that additionally constructs a dynamic
loop/call graph by placing loops within a call graph. However,
by not accounting for loop or procedure transformations, this tool
attributes performance only to binary-level loops and procedures.
Also, by using a dynamic loop/call graph, it is not possible to un-
derstand the performance of procedures and loops in their full call-
ing context.

To understand the performance of modular programs, as part of
the HPCTOOLKIT performance tools we built hpcrun, a call path
profiler that measures and attributes execution costs of unmodified,
fully optimized executables to their full calling context, as well
as loops and inlined code. Achieving this result required novel
solutions to three problems:

1. To measure dynamic calling contexts, we developed a context-
free on-line binary analysis for locating procedure bounds and
computing unwind information. We show its effectiveness on
applications in the SPEC CPU2006 suite compiled with Intel,
Portland Group and PathScale compilers using peak optimiza-
tion.

2. To attribute performance to user-level source code, we devel-
oped a novel post-mortem analysis of the optimized object code
and its debugging sections to recover its program structure and
reconstruct a mapping back to its source code. The ability to
expose inlined code and its relation to source-level loop nests
without a special-purpose compiler and without any additional
measurement overhead is unique.

3. To compellingly present performance data, we combine (post-
mortem) the recovered static program structure with dynamic
call paths to expose inlined frames and loop nests. No other
sampling-based tool attributes the performance of transformed
loops in the full calling context of transformed routines for fully
optimized binaries to source code.

In this paper, we describe our solutions to these problems. The
major benefit of our approach is that hpcrun is minimally invasive,
yet accurately attributes performance to both static and dynamic
context, providing unique insight into program performance.

Our results are summarized by Figure 1. As shown in Fig-
ure 1(a), let p → q → r → s be a user-level call chain of four
procedures. Procedure p contains a call site cp (that calls q) em-
bedded in loop lp; procedures q and r contain analogous call sites.
Assume that a compiler inlines call site cq so that code for proce-
dure r appears within loop lq . Consequently, at run time cq is not
executed and therefore a procedure frame for r is absent. Using
call stack unwinding and line map information recorded by com-
pilers yields the reconstruction of context shown in Figure 1(c).
By combining dynamic context obtained by call stack unwinding
with static information about inlined code and loops gleaned us-
ing binary analysis, our tools obtain the reconstruction shown in
Figure 1(b). Specifically, our tools 1) identify that cp and cr are
located within loops; 2) detect the inlining; and 3) nest cr within
both its original procedure context r and its new host procedure
q. Most importantly, reconstructed procedures, loops and inlined
frames can be treated as ‘first-class’ entities for the purpose of as-
signing performance metrics.

The rest of the paper is as follows. Section 2 describes our use
of binary analysis to support call path profiling of optimized code
and evaluates its effectiveness (contribution 1). Section 3 describes



Figure 1. Correlating call paths with program structure.

our binary analysis to support accurate correlation of performance
measurements to optimized code (contribution 2). Section 4 high-
lights the rich performance data we obtain by fusing dynamic call
paths and static structure (contribution 3). Finally, Section 5 dis-
cusses related work; and Section 6 summarizes our conclusions.

2. Binary Analysis for Call Path Profiling
Sampling-based call path profilers use call stack unwinding to
gather calling contexts. For such profilers to be accurate, they
must be able to unwind the call stack at any point in a program’s
execution. A stack unwind, which forms the calling context for
a sample point, is represented by the program counter for the
innermost procedure frame and a list of return addresses — one for
each of the other active procedure frames. Successfully unwinding
the call stack requires determining the return address for each frame
and moving up the call chain to the frame’s parent. Obtaining the
return address for a procedure frame without a frame pointer is
non-trivial since the procedure’s frame can dynamically grow (as
space is reserved for the caller’s registers and local variables, or
supplemented with calls to alloca) and shrink (as space for the
aforementioned purposes is deallocated) as the procedure executes.
If the return address is kept in the stack (as is typical for non-leaf
procedures), the offset from the stack pointer at which the return
address may be obtained often changes as a procedure executes.

Finding the return address for a procedure frame is simple with
correct and complete compiler-generated unwind information [10].
Unfortunately, compilers routinely omit unwind information for
procedure epilogues because it is not needed for exception han-
dling. However, even if compilers generate complete unwind in-
formation, fully optimized applications often link with vendor li-
braries (e.g., math or OpenMP) that have incomplete unwind tables
due to hand-coded assembly or partial stripping. Since codes may
spend a significant fraction of time in procedures that lack proper
unwind information,2 dropping or mis-attributing samples that oc-
cur in such procedures could produce serious measurement error.

To enable accurate unwinding of all code, even code lacking
compiler-based unwind information, we developed two binary an-
alyzers — one to determine where a procedure begins and ends in
partially-stripped code, and a second to compute how to unwind to

2 For example, the S3D turbulent combustion code described in Section 4.2
spends nearly 20% of its total execution time in the math library’s exponen-
tiation routine as it computes reaction rates.

Algorithm 1: High-level sketch of using on-the-fly binary
analysis to support call stack unwinding of optimized code.

Input: B, procedure bounds for each load module
Input: U , unwind recipes for procedure intervals (splay tree)

let F = 〈PC ,FP ,SP〉 be the frame of the sample point
(consisting of program counter, frame and stack pointer)

while F is not the outermost frame do
if U has no unwind recipe for PC then

let µ be the load module containing PC
if B has no bounds for µ then

Compute bounds for all procedures in µ
let π be the procedure (from B) with bounds β

containing PC
Scan the object code of π, 1) tracking the locations

of its caller’s program counter, frame and stack
pointer; and 2) creating an unwind recipe for each
distinct interval

let υ be the unwind recipe (from U) for PC
let F ′ = 〈PC ′,FP ′,SP ′〉 be the caller’s frame,

computed using υ
F ← F ′

a caller’s frame from any address within a procedure. At any in-
stant, a frame’s return address (which also serves as the program
counter for the calling frame) may be located either 1) in a register,
2) in a location relative to the stack pointer, or 3) in a location rela-
tive to the frame pointer (which the frame must have initialized be-
fore using). The value of the frame pointer for a caller’s frame may
be found similarly. To recover the program counter, stack pointer
and frame pointer values for a caller’s frame, we compute a se-
quence of unwind recipes for a procedure. Each unwind recipe cor-
responds to an interval of code that ends in a frame-relevant instruc-
tion. A frame-relevant instruction is one that changes the machine
state (e.g., by moving the stack pointer, saving the frame pointer
value inherited from the caller, or initializing the frame pointer for
the current frame) in such a way that a different unwind recipe is
needed for instructions that follow.

Although procedure bounds and unwind recipes could be com-
puted off-line, we perform both analyses on demand at run time.
We perform binary analysis on each load module to recover the
bounds of all of its procedures. This analysis is triggered at program
launch for the executable and all shared libraries loaded at launch
and whenever a new shared library is loaded with dlopen. The
computed procedure-bounds information for a module is cached in
a table that is queried using binary search. We perform binary anal-
ysis to compute unwind intervals for a procedure lazily — the first
time that the procedure appears on the call stack when a sample
event occurs. This approach elegantly handles dynamically loaded
shared libraries and avoids wasting space and time computing un-
wind recipes for procedures that may never be used. To support
fast queries, we memoize unwind recipes in a splay tree indexed
by intervals of code addresses. Algorithm 1 shows a high-level
overview of the process of performing on-the-fly binary analysis
to support call path profiling. Because dynamic analysis must be
efficient, we prefer fast linear-time heuristics that may occasion-
ally fail over slower fully general methods.3 (An evaluation of our
approach in Section 2.3 shows that our methods almost never fail
in practice.) In the next two sections, we describe how we infer
procedure bounds and compute unwind recipes.

3 For example, Rosenblum et al. [24] developed an off-line analyzer to
recover procedure bounds in fully stripped code. However, the focus of this
work was on thorough analysis for security.



2.1 Inferring Procedure Bounds
To compute unwind recipes for a procedure based on its instruction
sequence, one must know the procedure’s bounds, namely where
the procedure begins and ends. In many cases, complete informa-
tion about procedure bounds is not readily available. For instance,
stripped shared libraries have only a dynamic symbol table that
contains only information about global procedure symbols; all in-
formation about local symbols is missing. Often, libraries are par-
tially stripped. For instance, the OpenMP run time library for ver-
sion 3.1 of PathScale’s x86-64 compiler only has symbol informa-
tion for OpenMP API procedures; all information about other pro-
cedures is missing. For this reason, inferring procedure bounds for
stripped or partially stripped code is an important precursor to com-
puting unwind intervals.

Our approach for inferring procedure bounds is based on the
following observations.

• We expect each load module to provide information about at
least some procedure entry points.
Performance analysis of a stripped executable is typically
unproductive. Interpreting measurement results is difficult
without procedure names. For this reason, entry points for
user procedures will generally be available for an executable.
Dynamically-linked shared libraries have (at a minimum) pro-
cedure entry points for externally-visible library procedures.

• We must perform procedure discovery on all load modules.
Partially-stripped libraries are not uncommon. There is no a pri-
ori way to distinguish between a partially-stripped load mod-
ule and one that has full symbol information. We have also
encountered (non-stripped) executables that lack information
about some procedures. For instance, the SPEC benchmark
xalanbmk, when compiled with the PathScale C++ compiler
(version 3.1, using -O3) contains small anonymous procedures.

• Having the proper address for a procedure start is more impor-
tant than having the proper address for a procedure end.
For a procedure with the interval [s, e), incorrectly inferring
the procedure end at address e′ > e will not change the unwind
recipes that we compute for the interval [s, e).

• We assume all procedures are contiguous
In other words, we assume a single procedure is not divided
into disjoint code segments. For the most part, this assumption
holds. We have, however, encountered compilers that employ
hot-cold optimization [6]. This optimization sometimes splits
the procedure into disjoint segments. Furthermore, an unrelated
procedure may be placed between the disparate parts of the hot-
cold-optimized procedure. Our treatment of a divided procedure
is to treat each part as a separate procedure. Our treatment sim-
plifies procedure discovery, but requires additional considera-
tion when determining the unwind recipe for the various seg-
ments of a divided procedure. See §2.2 for more information.

• Not all false positives are equally problematic.
We classify false procedures starts into two categories: malig-
nant and benign. If we infer a false procedure start in a gap
between two real procedures that contains data (e.g., a jump ta-
ble for a switch statement), this will not affect the bounds of any
real procedures for which we need to compute unwind intervals.
For this reason, we call such a false procedure start benign. On
the other hand, if we infer a false procedure start s′ in the mid-
dle of a real procedure ranging from [s, e), this may cause us to
compute incorrect unwind information for the interval [s′, e).
We call such a false procedure start malignant.

2.1.1 Approach
We take an aggressive approach to procedure discovery. Without
evidence to the contrary, we assume that the instruction following
an unconditional jump or a return is the start of a new procedure. In
optimized code, we have also seen procedures that end with a call
to a procedure that doesn’t return (e.g., exit or abort). To handle
this case, we infer a function start after a call if we immediately
encounter code that is obviously a function prologue. We use the
following collection of heuristics to avoid inferring a procedure
start within a procedure (a malignant false positive).

• We call the interval between a conditional branch at an address
a and its target at address t a protected interval. No procedure
start will be inferred in a protected interval. If a < t, this yields
a protected interval [a, t′), where t′ is the end of the instruction
at address t; otherwise, this yields a protected interval [t, a′),
where a′ is the end of the instruction at address a. (Conditional
jumps are almost always within procedures. While we have
found one or two conditional forward branches used as tail calls
in libc, other heuristics prevent us from missing procedure
starts in this rare case.)

• A backward unconditional jump at address a into a protected
interval that extends from [s, e) extends the protected interval
to cover the range [s, a′), where a′ is the end of the instruc-
tion at address a. (Such jumps often arise at the end of ‘cold
path’ prefetching code that has been outlined from loops and
deposited after what would have been the end of the procedure.)

• Moving the stack pointer upward at address a in a procedure
prologue (to allocate stack space for local variables ) must be
followed by a compensating adjustment of the stack pointer in
each of the procedure’s n epilogues, at addresses e1, . . . , en.
Let en be the epilogue with the largest address. We treat the
interval [a, e′n) as a protected.

• Let the interval between initializing the frame pointer register
with the value of the stack pointer and restoring the value of the
frame pointer be a protected interval. Similarly, let the interval
between a ‘store’ and ‘load’ of the frame pointer be a protected
interval.

• A global symbol in the symbol table or the dynamic symbol
table is always considered a procedure start, even if it lies within
a protected interval. In contrast, a local symbol only considered
a procedure start if it does not fall within a protected interval.

2.2 Computing Unwind Recipes
Because dynamic analysis must be efficient, we prefer fast linear-
time heuristics that are typically accurate over slower fully general
methods. Experiments described in Section 2.3 show that our ap-
proach is nearly perfect in practice. Although we initially devel-
oped our strategy for computing unwind recipes for x86-64 bina-
ries, the general approach is architecture independent. We recently
adapted it to compute unwind recipes for MIPS and PowerPC bi-
naries to support call path profiling on SiCortex clusters and Blue
Gene/P, respectively.

Our binary analyzer creates an unwind recipe for each distinct
interval within a procedure. An interval is of the form [s, e) and
its unwind recipe describes where to find the caller’s program
counter, frame pointer (FP) register value, and stack pointer (SP).
For example, the caller’s program counter (the current frame’s
return address) can be in a register, at an offset relative to SP or at an
offset relative to FP; the value of the caller’s FP register, which may
or may not be used by the caller as a frame pointer, is analogous.

The initial interval begins with (and includes) the first instruc-
tion. The recipe for this interval describes the frame’s state immedi-
ately after a call. For example, on x86-64, a procedure frame begins



with its return address on the top of stack, the caller’s value of FP
in register FP, and the caller’s value of SP at SP−8, just below the
return address. In contrast, on MIPS, the return address is in regis-
ter RA and the caller’s value of FP and SP are in registers FP and
SP, respectively.

The analyzer then computes unwind recipes for each interval in
the procedure by determining where each interval ends. (Intervals
are contiguous and cannot overlap.) To do this, it performs a linear
scan of each instruction in the procedure. For each instruction, the
analyzer determines whether that instruction affects the frame. (For
x86-64, where instruction decoding is challenging, we use Intel’s
XED tool [5].) If so, the analyzer ends the current interval and
creates a new interval at the next instruction. The unwind recipe for
the new interval is typically created by applying the instruction’s
effects to the previous interval’s recipe. An interval ends when an
instruction:

1. modifies the stack pointer (pushing registers on the stack, sub-
tracting a fixed offset from SP to reserve space for a procedure’s
local variables, subtracting a variable offset from SP to support
alloca, restoring SP with a frame pointer from FP, popping a
saved register),

2. assigns the value of SP to FP to set up a frame pointer,

3. jumps using a constant displacement to an address outside the
bounds of the current procedure (performing a tail call),

4. jumps to an address in a register when SP points to the return
address,

5. returns to the caller,

6. stores the caller’s FP value to an address in the stack, or

7. restores the caller’s FP value from a location in the stack.

There are several subtleties to the process sketched above: fol-
lowing a return or a tail call (items 4 and 5 above), a new interval
begins. What recipe should the new interval have? We initialize the
interval following a tail call or a return with the recipe for the inter-
val that we identify as the canonical frame. We use the following
heuristic to determine the canonical frame C. If a frame pointer rel-
ative (FP) interval was found in the procedure (FP was saved to the
stack and later initialized to SP), let C be the first FP interval. Oth-
erwise, we continue to advance C along the chain of intervals while
the frame size (the offset to the return address from the SP) is non-
decreasing, and the interval does not contain a branch, jump, or call.
We use such an interval as a signal that the prologue is complete
and the current frame is the canonical frame. In addition, whenever
a return instruction is encountered during instruction stream pro-
cessing, we check to make sure that the interval has the expected
state: e.g., for x86-64, the return address should be on top of the
stack, and the FP should have been restored. If the interval for the
return instruction is not in the expected state, then the interval that
was most recently initialized from the canonical frame is at fault.
When a return instruction interval anomaly is detected, we adjust
all of the intervals from the interval reaching the return back to the
interval that was most recently initialized from the canonical frame.

To handle procedures that have been split via hot-cold optimiza-
tion, we check the end of the current procedure p for a pattern that
indicates that p is not an independent procedure, but rather part of
another one. The pattern has two parts:

1. p ends with an unconditional branch to an address a that is in
the interior of another procedure q.

2. The instruction preceding a is conditional branch to the begin-
ning of p.

When the hot-cold pattern is detected, all intervals in p are adjusted
according to the interval computed for a.

Integer programs
Overhead (percent) Unwind Failures

hpc PTU- PTU- hpc PTU-smpl
Benchmark run smpl Pin run Intel Others
perlbench 1.3 0.9 1043.3 0.0 4.5% 87.5%
bzip2 2.9 0.9 197.1 0.0 0.8% 52.2%
gcc 3.2 1.3 300.9 15.1 4.5% 70.7%
mcf 1.3 2.6 8.5 0.0 0.1% 60.4%
gobmk 1.7 1.3 481.3 0.1 2.4% 71.6%
hmmer 0.4 1.0 36.4 0.0 0.1% 74.4%
sjeng 0.3 1.6 694.4 0.0 19.2% 100.0%
libquantum -0.2 -0.2 16.3 0.0 0.1% 99.9%
h264ref 0.1 0.0 784.2 0.6 21.9% 69.7%
omnetpp 1.6 1.7 701.2 0.0 1.4% 49.4%
astar 1.6 1.7 184.1 0.0 0.5% 57.6%
xalancbmk 9.5 10.8 732.0 0.0 1.0% 0.4%
Average* 2.0 1.9 431.6 1.3 4.7% 66.1%
Std. Dev. 2.6 2.8 353.4 4.3 7.6% 26.6%

Floating-point programs
bwaves 1.7 1.9 9.9 0.0 0.0% 66.6%
gamess 0.8 0.1 † 0.0 0.3% 99.7%
milc 0.6 0.4 61.0 0.0 0.0% 99.9%
zeusmp 2.1 2.0 † 0.0 0.0% 99.7%
gromacs 0.6 0.4 57.3 0.0 0.1% 100.0%
cactusADM 1.6 1.5 6.7 0.0 0.0% 100.0%
leslie3d 2.0 1.7 2.5 0.0 0.0% 93.5%
namd 0.2 1.5 5.1 0.0 0.0% 42.0%
dealII 0.5 0.7 1746.4 0.0 2.7% 83.8%
soplex 1.6 1.8 19.3 0.0 2.0% 54.3%
povray 0.1 0.3 1732.8 0.0 6.5% 49.8%
calculix -0.5 0.9 62.5 0.0 0.2% 99.5%
GemsFDTD -0.8 -1.2 45.3 0.0 0.1% 74.9%
tonto 0.3 1.3 287.4 0.0 11.1% 98.0%
lbm 0.9 1.2 10.2 0.0 0.0% 13.5%
wrf 3.0 1.5 59.5 0.5 0.0% 98.2%
sphinx3 0.4 2.4 84.7 0.0 1.9% 48.0%
Average* 0.9 1.1 279.4 0.0 1.5% 77.7%
Std. Dev. 1.0 0.9 566.0 0.1 3.0% 27.1%

* Neither the arithmetic nor geometric mean summarizes these values well.
† PTU-Pin failed to execute any version of these benchmarks.

Table 1. Comparing hpcrun and PTU on SPEC CPU2006.

In the linear scan between the start and end address of a pro-
cedure, the analyzer may encounter embedded data such as jump
tables. This may cause decoding to fail or lead to corrupt intervals
that would leave us unable to unwind. Although such corrupt in-
tervals could cause unwind failures (we note such failures in a log
file), we have not found them to be a problem in practice.

2.3 Evaluation
To evaluate the efficiency and effectiveness of our binary analyses
for unwinding against contemporary tools, we compared hpcrun
with two of the tools from Intel’s Performance Tuning Utility
(PTU) [14] — PTU’s call stack sampling profiler (PTU-smpl) and
PTU’s Pin-based call graph profiler (PTU-Pin) — using the SPEC
CPU2006 benchmarks [27]. Since PTU is designed for Intel archi-
tectures, this evaluation focuses on analysis of x86-64 binaries. We
compiled two versions of each benchmark, distinguished by ‘base’
or ‘peak’ optimization, using the Intel 10.1 (20080312), PathScale
3.1 and Portland Group (PGI) 7.1-6 compilers; this resulted in six
versions of each benchmark. We used the following ‘base’ and
‘peak’ optimization flags: for Intel, -O3 and -fast (but with static
linking disabled); for PathScale, -O3 and -Ofast; for PGI, -fast
-Mipa=fast,inline. To permit high-throughput testing, experi-
ments were performed on a cluster where each node is a dual-socket
Intel Xeon Harpertown (E5440) with 16 GB memory running Red
Hat Enterprise Linux 5.2. Table 1 summarizes our results.



2.3.1 Efficiency
The first multi-column of Table 1 compares the average overhead
of hpcrun with PTU-smpl and PTU-Pin. We first observe that
despite PTU-Pin’s sophistication, dynamic binary instrumentation
is not an acceptable measurement technique for two reasons. First,
compared to a worst case sampling overhead of about 10% (average
of 1-2%), instrumentation can introduce slowdown factors of 10-
18. Second, the drastic variation in overheads strongly suggests that
Pin’s instrumentation dilates the execution of small procedures and
introduces systematic distortion. Because of the extremely long run
times and the clear advantage of sampling, we chose not to collect
PTU-Pin results on executables generated by non-Intel compilers,
assuming that an Intel tool used with an Intel-generated executable
represents a best-case usage.

Both hpcrun’s and PTU-smpl’s results are averaged over all six
versions of the benchmarks; each tool used a 5 ms sampling period,
yielding approximately 200 samples/second. Because of hpcrun’s
additional dynamic binary analysis, one might expect it to incur
more overhead. However, our results show that a reasonable execu-
tion time and sampling rate quickly amortizes the binary analysis
overhead over thousands of samples and makes it negligible.4 In
fact, the overhead differences between hpcrun and PTU are sta-
tistically insignificant. This is seen in two ways. First, the average
overheads for each set of benchmarks are very similar; and given
the high standard deviations, a statistical test would not meaning-
fully distinguish between the two. Second, average overheads for
the individual benchmarks are within within 1-2% of each other,
but no tool consistently performs better. Moreover, these small dif-
ferences are well within the natural execution-time variability for a
standard operating system (especially when using shared I/O) [23];
this fact accounts for the small negative overheads.

The one benchmark for which both hpcrun and PTU incur
meaningful overhead is xalancbmk, at around 10%. The reason is
that xalancbmk has many call paths that are 1000-2000 invocations
long. An earlier version of hpcrun for the Alpha platform used a
technique of inserting an ‘active return’ on a sample to memoize
stack unwinds and collect return counts [9]. We plan to implement
this technique and expect that it will significantly reduce hpcrun’s
overhead in such cases.

2.3.2 Effectiveness
Given that hpcrun and PTU-smpl incur comparably low over-
heads, multi-column two of Table 1 assesses the quality of their
call path profiles in terms of unwind failures. An unwind failure is
defined as the inability to collect a complete calling context. Note
that for hpcrun, this metric directly assesses the quality of unwind
recipes and indirectly reflects the accuracy of procedure bounds.
This is a reasonable metric because we have designed hpcrun’s
binary analyses to cooperate for the purpose of obtaining accurate
unwinds.

There are two ways to directly measure unwind failures. The
most comprehensive method uses binary analysis to attempt to
verify each link in the recovered call chain. For each each step in
the unwind, we have a segment p → q and a return address (RA)
within p. The analysis can then certify the unwind from q to p as
(almost certainly) valid, likely, or (provably) invalid:

• valid, if a statically-linked call to q immediately precedes RA

4 Although it is more difficult to amortize the overhead of our binary anal-
yses for very short executions, this does not imply that for such executions
tools like PTU-smpl that use statically-computed unwind information in-
duce significantly less overhead. Because typical compiler-generated un-
wind information is stored sparsely, a tool like PTU-smpl must invest some
effort to read and interpret it.

• valid, if a dynamically-linked call to q immediately precedes
RA (via inspection of the procedure linkage table)

• likely, if a dynamically-dispatched call immediately precedes
RA

• likely, if a call to procedure r immediately precedes RA, and r
is known to have tail calls

• invalid, if none of the above apply

Two details are worth noting. First, for architectures with variable-
width instructions, it is reasonable to simply test offsets from RA
that correspond to possible call or jump instructions rather than
disassembling from the beginning of the procedure. Second, delay
slots will offset the location of the call site.

The second way to measure unwind failures is based on the
observation that, in practice, if an unwinder attempts to use an
incorrect frame or stack pointer, errors very quickly accumulate and
result in return addresses that are provably wrong in that they do
not correspond to mapped code segments. Also, hpcrun’s program
monitoring technology is able to intercept a process’s or thread’s
entry point (for both statically and dynamically linked binaries).
Thus, this second method classifies an unwind as invalid if it finds
a provably wrong return address or if the unwind is not rooted in
the process’s or thread’s entry point.

hpcrun currently implements the second method and discards
all invalid unwinds. We are in the process of implementing the first,
stronger version.

In contrast, for PTU-smpl, we measured unwind failures indi-
rectly. PTU-smpl does retain partial unwinds; and if it performs
any sort of verification, that information is not exported. Therefore,
we wrote a script to analyze the results of PTU-smpl’s ‘hot path’
listing. The script classifies a path as valid if it is rooted at some
variant of “main” or any ancestor frame. Observe that this require-
ment is more relaxed than hpcrun’s. It is also worth noting that this
requirement does not not penalize PTU-smpl for skipping a frame
by incorrectly following its parent’s frame pointer rather than its
own — an easy mistake for an x86-64 tool that is unwinding from
an epilogue or frame-less procedure and that relies on compiler-
generated unwind information.

Our results showed radically different failure rates for PTU-
smpl on Intel-generated code (5%) versus PathScale and PGI code
(65-75%). Since PTU-smpl is dependent upon frame pointers and
unwind information, and since frame pointers are not reliably main-
tained in these binaries, the results strongly suggest that, compared
to PathScale and PGI, the Intel compiler places a much higher pri-
ority on consistently recording correct unwind information. How-
ever, even on Intel-generated binaries, PTU-smpl can have high
enough failure rates — as high as 5-20% — that it risks introducing
systematic distortion by failing to unwind through a commonly ap-
pearing procedure instance. On the non-Intel benchmark versions,
PTU-smpl’s failure rate is so high that it essentially becomes a call
path fragment profiler.

In contrast, the number of unwind failures for hpcrun is vanish-
ingly small. hpcrun’s failures are reported as the average number
(not percent) of failures over all six benchmark versions. Its worst
performance was on the gcc benchmark. The benchmark averages
on the order of 100K samples. Across the six versions of the bench-
mark that we studied, hpcrun failed to gather a full call path for 16
of those samples on average.

2.3.3 Summary
Despite the fact that hpcrun’s binary analysis for unwind recipes
is a) context insensitive, b) operates without a control flow graph,
c) does not formally track register values, and d) cannot treat
embedded data as such, these results show that the cost of our



(LM /mypath/hmc load module
(File /mypath/hmc.cc source file

(Proc doHMC 257-449 {[0xabe-0xfeed)} procedure
(Stmt 309-309 {[bab1-0xbabe)} ) statement
(Loop 311-435 {[0xdad-0xfad)} loop

(Stmt 313-313 {[0xdaf-0xea1), [ee1-0xeef)} )
))))

Figure 2. An object to source-code-structure map.

analysis is very modest and its results are very effective. Given that
hpcrun almost always collects a full call path and that PTU-smpl
much more frequently fails, we can say that on average hpcrun
performs more useful work per sample than PTU-smpl — at the
same overhead.

The clearest downside to our approach is the effort we have
invested in developing these heuristics. The x86 unwinder was
the most difficult to write, in large part because of its irregular
architecture and variable-sized instructions. Nevertheless, once we
arrived at the general approach we were able to relatively quickly
develop MIPS and PowerPC unwinders. For example, we wrote
the PowerPC unwinder — for use on Blue Gene/P — and resolved
some OS-specific issues in about a week and a half. During our
first major test, we collected performance data for an 8192-core
execution of the FLASH astrophysics code [7] compiled with the
IBM XL Fortran and C compilers for BG/P (versions 11.1 and
9.0, respectively) using options -O4 -qinline -qnoipa.5 Out of
approximately 1 billion total samples, hpcrun failed to unwind
approximately 13,000 times — a failure rate of .0013%.

3. Binary Analysis for Source-Level Attribution
To combine dynamic call path profiles with the static structure
of fully optimized binaries, we need a mapping between object
code and its associated source code structure. An example of what
this mapping might look like is shown in Figure 2. The mapping
is represented as a scope tree, where a load module (a binary)
contains source files; files contain procedures; procedures contain
loops; procedures and loops contain statements; and scopes such as
procedures, loops and statements can be annotated with object code
address interval sets.

There are two ways to obtain the desired mapping: use a sum-
mary of transformations recorded by the compiler or reconstruct
it through analysis. Because debuggers must associate the execu-
tion of object code with source code, one would expect debugging
information to provide the former. In 1992, Brooks et al. [3] devel-
oped debugging extensions for mapping object code to a scope tree
of procedures, loops, blocks, statements and expressions. While
they left to future work a solution for the inlining problem, nei-
ther compilers nor debugging formats followed their lead. Although
DWARF [8], the de facto standard on Linux, can represent inlin-
ing, it cannot describe loops or loop transformations. Even worse,
all x86 Linux compilers that we have used generate only limited
DWARF, often failing to record inlining decisions. Intel’s com-
piler (10.x) retains line-level information in the presence of inlin-
ing, but the information is incomplete (e.g., there is no association
between inlined code and object code) and sometimes erroneous.
Thus, however easy the problem of creating the object to source
code mapping could have been, the fact remains that vendor com-
pilers do not provide what we desire. Consequently, we wrote the
hpcstruct tool to reconstruct the mapping through binary analy-
sis, using only a ‘lowest common denominator’ set of debugging
information. We focus on programs written in C++, C, and Fortran.

5 We were forced to disable inter-procedural analysis because of an incom-
patibility between IBM’s compiler and our tool for inserting hpcrun in
statically-linked binaries.

Address File Line Procedure
0x...15550 hmc.cc 499 main
0x...15570 hmc.cc 14 main
0x...17030 qdp multi.h 35 main
0x...172c0 stl tree.h 1110 main

Figure 3. Typical line map information.

An obvious starting point is to consult an executable’s line map,
which maps an object address to its corresponding source file, line
number and procedure name for use by a debugger. However, the
line map is insufficient for detecting inlined, or more generally,
alien code, i.e., code that originates outside of a given procedure.
To see this, consider the unexceptional line map excerpt from a
quantum chromodynamics code shown in Figure 3. Given that the
first entry maps to native (as opposed to alien) code, what is the
first line of procedure main? Although one is tempted to answer
14, it turns out that the second line is actually alien; this is not
detectable because the line map retains the original file and line in-
formation (from before inlining) but assumes the name of the host
procedure (after inlining). Even worse, because optimizing com-
pilers reorder the native and alien instructions (including prologues
and epilogues), no particular entry is guaranteed to map to native
code, much less the procedure’s begin or end line. Consequently,
to reconstruct the desired mapping we must supplement the line
map with a ‘lowest common denominator’ set of DWARF-specific
information.

3.1 Recovering the Procedure Hierarchy
Compilers perform several procedure transformations such as
flattening nested procedures, inlining, and cloning for special-
ization. Recovering the procedure hierarchy involves re-nesting
source code procedure representations, determining their source
line bounds and identifying alien code.

It turns out that by combining standard DWARF information
with certain procedure invariants, recovering the procedure hierar-
chy is less difficult than it first appears. A load module’s DWARF
contains procedure descriptors for each object procedure in the load
module and the nesting relationship between the descriptors. Each
descriptor includes 1) the procedure’s name, 2) the defining source
file and begin line, and 3) its object address ranges. The key miss-
ing piece of information is the procedure’s end line. Observe how-
ever, that two source procedures do not have overlapping source
lines unless they are the same procedure or one is nested inside the
other. Intuitively, in block structured languages, source code does
not ‘overlap.’ More formally:

Non-overlapping Principle. Let scopes x1 and x2 have source
line intervals σ1 and σ2 within the same file. Then, either x1 and
x2 are the same, disjoint or nested, but not overlapping:6

• (x1 = x2)⇔ (σ1 = σ2)
• (x1 6= x2)⇔ ((σ1 ∩ σ2 = ∅) ∨ (σ1 ⊂ σ2) ∨ (σ2 ⊂ σ1))

We can also say (where x2 @≺ x1 means x1 is nested in x2):

• (σ1 ∩σ2 = ∅)⇔ ((x1 6= x2) ∧ ¬(x1 @≺ x2) ∧ ¬(x2 @≺ x1))
• (σ2 ⊂ σ1)⇔ (x1 @≺ x2)

The implication of this principle is that given DWARF nesting
information, we can infer end line bounds for procedures, resulting
in the following invariants:

Procedure Invariant 1. A procedure’s bounds are constrained by
any (parent) procedures that contain it.

6 Unstructured programming constructs may give rise to irreducible loops
or alternate procedure entries. While the former is not strictly an exception
(no block of source code actually overlaps), the latter is. However, Fortran’s
alternate entry statement is deprecated and used very infrequently.



Figure 4. Bounding procedure end lines.

Procedure Invariant 2. Let procedure y have sibling procedures
x and z before and after it, respectively. Then, y’s begin line is
greater than x’s end line and its end line is less than z’s begin
line.7 Figure 4a graphically depicts application of this invariant.

Neither C++ nor C permits procedure nesting. To handle For-
tran, which places strict limits on where a procedure can be nested,
we derive a special invariant (depicted graphically in Figure 4b):8

Procedure Invariant 3. Let procedure Y have nested procedures
x1 . . . xn, in that order. Then Fortran nesting implies that the exe-
cutable code of Y and x1 . . . xn forms n + 1 ordered, contiguous
source code regions.

These invariants enable hpcstruct to infer an upper bound on
all procedure end lines except for the last top-level procedure of a
source file, whose upper bound is∞. Moreover, accurate procedure
bounds information is sufficient for detecting all alien code within
a procedure (assuming two restrictions discussed below).

There are two complications with this strategy. First, it is often
the case that a load module’s DWARF does not contain a DWARF
descriptor for every source level procedure, creating ‘gaps’ in the
procedure hierarchy. For example, no descriptor is generated for a
C++ static procedure inlined at every call site. Although this knowl-
edge can never be fully recovered, we have developed a simple and
effective heuristic to close most of the important gaps [28].

Second, C++ permits classes to be declared within the scope
of a procedure, thereby allowing class member functions to be
transitively nested within that procedure. Consider a procedure-
scoped C++ class with n member functions. The nth member
function may be inlined into the procedure but because the only
end line bound we can establish on the nth member function is
the end line bound of the containing procedure itself, we will not
be able to detect it. This means that in the presence of procedure-
scoped classes, even with DWARF descriptors for every procedure
we may not be able to detect all alien code. However, this issue is
of little practical concern: procedure-scoped classes are rare; and
we have developed a strategy for detecting the presence of most
procedure-scoped classes [28].

A high-level sketch of hpcstruct is shown in Algorithm 2.
It consists of two parts: recovering the procedure hierarchy and
recovering loop nests for each procedure. This section has covered
the first part; the second part is covered below.

3.2 Recovering Alien Contexts
Before discussing loops, we note three important aspects of detect-
ing alien code.

Figure 5a shows an example of two alien scopes, A1 and A2,
representing the presence of alien code within procedure zoo. Con-
sider the task of identifying the alien code within zoo. In general,

7 We can ignore the case where two procedures are defined on the same
source line; column information would make this precise.
8 Because DWARF contains a language identifier, this nesting rule can be
applied only when appropriate.

(File main.cpp
(Proc zoo 10-100

A1 (Alien zoo moo.cpp:10-13

... )
L1 (Loop 20-50

A2 (Alien zoo moo.cpp:10-15

... )

(Proc ...
(Alien1 ...
(Loop1 ...
...
(Alienm ...
(Loopm ...
(Alienm+1 ...
(Stmt ...)

Figure 5. (a) Alien context ambiguity; (b) Maximum procedure
context nesting for scope s.

given an object code instruction, its corresponding source level
statement is classified as alien if its source file is different than
the enclosing procedure’s or if its source line is outside the line
bounds of the enclosing procedure’s. However, as an instruction
is processed, adjacent instructions may belong to different alien
contexts (i.e., different inlined procedures). Since inlining can be
nested, it is natural to ask how to distinguish between nested and
non-nested inlining. The short answer is that without DWARF in-
lining or source-level call graph information, we cannot. Therefore,
we choose to flatten alien scopes with respect to their enclosing
loop or procedure. This implies that for a loop nest of depth m,
there can be at most m + 2 parent contexts (procedure or alien
scopes), as illustrated in Figure 5b.

Return again to Figure 5a. Observe that A1 and A2 have over-
lapping bounds, where A2 is embedded within loop L1. Without
call site information, it is not possible to distinguish between 1)
one distinct call site within the loop, where some of the inlined code
was was loop invariant; or 2) two distinct call sites where some of
the code from the first call site (A1) was entirely eliminated.

Finally, the number and bounds of alien scopes can be refined
using the Non-overlapping Principle [28].

3.3 Recovering Loop Nests
Having an outline of the procedure hierarchy, hpcstruct recovers
the loop nesting structure for each procedure. As shown in Algo-
rithm 2, this task can be broadly divided into two components: 1)
analyzing object code to find loops (line 7) and 2) inferring a source
code representation from them (line 9). To find loop nests within the
object code, hpcstruct first decodes the machine instructions in a
procedure to compute the control flow graph (CFG) and then uses
Havlak’s algorithm [13] to recover the tree of loop nests [19]. Given
this tree of object code loops, hpcstruct then recovers a source
code representation for them. This is a challenging problem be-
cause with fundamentally line-based information hpcstruct must
distinguish between 1) loops that contain inlined code, 2) loops that
may themselves be inlined, and 3) loops that may be inlined and
contain inlined code. Finally, hpcstruct must account for loop
transformations such as software pipelining.

Because loops also obey the Non-overlapping Principle, there
are analogous loop invariants for Procedure Invariants 1 and 2.
However, without symbolic loop information, these invariants are
of little value. Consequently, hpcstruct’s strategy is to initially
assume that the source loop nesting tree mirrors the object code
loop tree, and then look for exceptions. Specifically, hpcstruct
performs a preorder traversal of the object loop tree, recursively
visiting outer loops before inner loops. The challenge we now
discuss is reconstructing a source representation for every loop
during this traversal.

As a starting point, we observe that loop invariant code motion
implies that a computation at loop level l will (usually) not be
moved into a loop that is at a nesting level deeper than l. Coupling
this observation with accurate procedure bounds, we could scan
through all the non-alien statements within a particular loop and
compute a minimum and maximum line number, which we call the
min-max heuristic.



Algorithm 2: High-level sketch of recovering a binary’s static
source code structure.

Input: A load module lm (with DWARF information)
Result: S, lm’s object to source code structure map

let D, dwarf map : object-procedure 7→ DWARF-descriptor
let L, line map : address 7→ 〈file-name, proc-name, line〉
// Recover procedure hierarchy (§3.1)
Create a source procedure pS for each DWARF descriptor in
D with no object code

Create a source procedure pS for each object-procedure pO
using D(pO) or L(pO).

// Recover loop nests (§3.3)
foreach procedure pS in S with object-procedure pO do

Form pO’s loop nests by creating the strongly connected7
regions tree T induced by pO’s control flow graph

foreach basic block b in T (preorder traversal) do9
if b is a loop header then

let σ ← L(i) for backward-branch i
let esS ← determine-context(σ)
Create a source code loop lS located within esS

foreach instruction i in b do
let σ ← L(i)
let esS ← determine-context(σ)
Create a statement scope sS for σ within esS

Normalize each procedure p in S (§3.4)

(File main.cpp Steps
(Proc init 145-199

A1 (Alien ... Array.cpp:82-83 1. Find alien context
S1 (Stmt 82-82)
L2 (Loop 83-83 2. Locate loop (incorrectly)
S2 (Stmt 83-83)

A3 (Alien ... main.cpp :158-158

S3 (Stmt 158-158) 3. Self nesting!

Figure 6. Detecting incorrect loop placement via nesting cycles.

One complication for the min-max heuristic is Fortran’s use
of statement functions, which are single-statement functions nested
within a procedure. Statement functions have no associated DWARF
descriptors. Code for statement functions is forward substituted
wherever they are used. Applying the min-max heuristic to the first
loop of a procedure that uses a statement function will result in a
loop begin line that erroneously includes all executable statements
prior to the loop. To prevent this problem, we would like some
mechanism for estimating the begin line of a loop. When loops
are compiled to object code, the loop header’s continuation test is
typically translated into a conditional backward branch that, based
on the result of the continuation test, returns to the top of the loop
or falls through to the next instruction. Moreover, most compil-
ers associate the loop’s backward branch with the source line of
the continuation test, and therefore the loop header. We therefore
modify the simple min-max heuristic to form the bbranch-max
heuristic for computing loop begin and end lines: the loop begin
line can be approximated using information from the backward
branch; and the best loop end line is the maximum line after all
alien lines have been removed.

Although the bbranch-max heuristic can be thwarted by un-
structured control flow, it suffers from a more serious defect. The
difficulty is that when estimating a loop’s begin line from that
loop’s continuation test, the heuristic implicitly determines the
loop’s procedure context, i.e., the loop’s enclosing alien or proce-

Before After
(File main.cpp (File main.cpp

(Proc init 145-199 (Proc init 145-199
A1 (Alien Array.cpp:82-83> (Alien Array.cpp:82-83

(Stmt 82-82) (Stmt 82-82)
)

L1 (Loop 83-83) (Loop 158-158

(Alien Array.cpp:82-83

S2 (Stmt 83-83) (Stmt 83-83)
)

(Alien main.cpp:158-158

S3 (Stmt 158-158 ) (Stmt 158-158)

Figure 7. Correcting nesting cycles.

dure scope. Specifically, bbranch-max assumes that the procedure
context for that instruction is the same context as other instructions
within the (object) loop body. This results in a severe problem if
the loop’s condition test derives from inlined code, something that
is very common within object-oriented C++. Therefore, it is neces-
sary to somehow distinguish between a loop deriving from an alien
context (and which itself may have alien loops) and one that only
contains alien contexts within its header or body. As previously
suggested, our solution to this problem, is to guess and correct. In
brief, hpcstruct processes instructions within a loop one-by-one
(Algorithm 2, line 9); and for each instruction it determines that
instruction’s procedure context, its source line location within that
context, and its enclosing loop (if any). Figure 6 shows a partially
reconstructed procedure where alien scope A1 has been identified
(Step 1) by using the source line information for the instruction cor-
responding to S1. When hpcstruct processes the loop header (S2)
for L2 using bbranch-max (Step 2), it must determine whether the
source line loop should be located in the current procedure context,
a prior context (which would imply the current context is alien), or
a new alien context. In this case, because of the presence of state-
ment S2, hpcstruct ‘guesses’ that the loop header should be lo-
cated within the current alien procedure context A1. hpcstruct
next processes S3 (Step 3), which it determines must be alien to
the current procedure context A1, resulting in the new alien con-
text A3. However, because A3’s bounds are within init’s bounds,
this implies that init is inlined inside of itself, which is a contra-
diction. This shows that the guess at Step 2 was wrong.

This observation, which is another implication of the Non-
overlapping Principle, can be formally stated as follows:

Procedure Invariant 4. Let L be a loop nest rooted in an alien
scopeCa. Furthermore, let L have loop levels 1 . . . n. Now, let s be
a statement at level n that clearly belongs in a shallower procedure
context C′. Since C′ is a shallower procedure context, it must be a
parent of Ca which implies that C′ is nested within itself, which is
impossible.

When an impossibility such as this is found, hpcstruct, knowing
that L was mislocated, corrects the situation by relocating all levels
of L from Ca to within C′. Figure 7 shows how we correct the
loop nesting cycle shown in Figure 6. In this case, L1 is un-nested
one level, which places it within the correct procedure context and
its bounds are updated to include S3. S2 remains nested in L1, but
A1’s context must be replicated to correctly represent it. (The fact
that a loop nest of depth m can have at most m+ 2 parent contexts
bounds the cost of this correction process in practice.)

Observe that to properly recover the corrected L1, it is critical
to appropriately expand its begin line so that statements that should
belong in the loop are not ejected. To do this, we use a tolerance
factor when testing for a statement’s inclusion within the current
loop. If the current begin line minus the tolerance factor would
include the statement within the bounds, the statement is deemed to



be within the loop and the bounds grow accordingly; the loop’s end
line can thought of having a tolerance of∞ to assign the maximum
line within the loop as the end line. The effects of fuzzy matching
can be complex, because a loop may initially appear to be within
an alien context (by backward branch information) but later emerge
as a native loop. To account for this, hpcstruct uses different
tolerances based on context [28].

3.4 Normalization
Because of loop transformations such as invariant code motion
and software pipelining, the same line instance may be found both
within and outside of a loop or there may be duplicate nests that
appear to be siblings. To account for such transformations, we
developed normalization passes based on the observation that a
particular source line (statement) appears uniquely with a source
file (an application of the Non-overlapping Principle). For its most
important normalization passes, hpcstruct repeatedly applies the
following rules until a fixed point is reached:

• Whenever a statement instance (line) appears in two or more
disjoint loop nests, fuse the nests but only within the same
procedure context. (Correct for loop splitting.)

• Whenever a statement instance (line) appears at multiple dis-
tinct levels of the same loop nest (i.e., not crossing procedure
contexts), elide all instances other than the most deeply nested
one. (Correct for loop-invariant code motion.)

3.5 Summary
Thorough application of a small set of invariants enables hpcstruct
to recover very accurate program structure even in the presence
of complex inlining and loop transformations. Importantly, in the
(rare) worst case, while the effects of an incorrect inference may
be compounded, they are limited to at most one procedure. Fur-
ther details, including discussions of macros, procedure groups and
algorithms can be found in [28].

We have tested hpcstruct on the GCC, Intel, PathScale, Port-
land Group and IBM XL compilers (among others). When debug-
ging information is accurate, hpcstruct produces very good re-
sults. However, we have observed that debugging information from
certain compilers is sometimes erroneous — and even violates the
DWARF standard. We have hardened hpcstruct to handle certain
errors, but it cannot psychoanalyze. While compilers may opt to
generate incomplete information, the information that they do gen-
erate should be correct.

4. Putting It All Together
By combining hpcrun’s minimally intrusive call path profiles and
hpcstruct’s program structure, we relate execution costs for a
fully optimized executable back to static and dynamic contexts
overlaid on its source code. To demonstrate our tools’ capabilities
for analyzing the performance of modular applications, we present
screen shots of HPCTOOLKIT’s hpcviewer browser displaying
performance data collected for two modern scientific codes.

4.1 MOAB
We first show the detailed attribution of performance data for
MOAB, a C++ library for efficiently representing and evaluat-
ing mesh data [29]. MOAB implements the ITAPS iMesh inter-
face [16], a uniform interface to scientific mesh data. We compiled
MOAB on an AMD Opteron (Barcelona) based system using the
Intel 10.1 compiler with -O3. (We could not use -fast because
of a compiler error.) We profiled a serial execution the mbperf
performance test using a 200 × 200 × 200 brick mesh and the
array-based/bulk interface.

Figure 8(a) shows a calling context tree view of a call path
profile of MOAB. The navigation pane (lower left sub-pane)
shows a partial expansion of the calling context tree. The infor-
mation presented in this pane is a fusion of hpcrun’s dynamic and
hpcstruct’s static context information. The selected line in the
navigation pane (at the bottom) corresponds to the highlight in the
source pane (top sub-pane).

The navigation pane focuses on the hottest call path (auto-
matically expanded by hpcviewer with respect to L1 data cache
misses). A closer look reveals that the path contains six loops
dynamically nested within inlined and non-inlined procedure ac-
tivations. The root of the path begins prosaically with main →
testB but then encounters an inlined procedure and loop from
mbperf_iMesh.cpp. The inlined loop makes a (non-inlined) call
to imesh_getentadj which descends through several layers of
mesh iteration abstractions. Near the end of the hot call path,
AEntityFactory::get_adjacencies contains an inlined code
fragment from the C++ Standard Template Library (STL), which
itself contains a loop over code inlined from the MOAB appli-
cation (TypeSequenceManager.hpp). Closer inspection of the call
path confirms that get_adjacencies calls an (inlined) procedure
that calls the STL set::find function — which makes a call
back to a user-supplied comparison functor in TypeSequenceM-
anager.hpp. In this context, the comparison functor incurs 21.3%
of all L1 data cache misses, suggesting that objects in the STL set
should be allocated to exploit locality. Our tools are uniquely able
to attribute performance data at the source level with exquisite de-
tail, even in the presence inlining.

4.2 S3D
The second application we discuss is S3D, a Fortran 90 code
for high fidelity simulation of turbulent reacting flows [20]. We
compiled S3D on a Cray XD1 (AMD Opteron 275) using Portland
Group’s 6.1.2 compiler with the -fast option.

Figure 8(b) shows part of a loop-level ‘flat view’ for a call path
profile of a single-core execution. The flat view organizes perfor-
mance data according to an application’s static structure. All costs
incurred in any calling context by a procedure are aggregated to-
gether in the flat view. This particular view was obtained by flatten-
ing away the procedures normally shown at the outermost level of
the flat view to show outer-level loops. This enables us to view the
performance of all loop nests in the application as peers. We focus
on the second loop on lines 209-210 of file rhsf.90. Notice that
this loop contains a loop at line 210 that does not appear explicitly
in the code. This loop consumes 5.5% of the total execution time.
This is a compiler-generated loop for copying a non-contiguous 4-
dimensional slice of array grad_Ys into a contiguous array tempo-
rary before passing it to computeScalarGradient. The ability to
explicitly discover and attribute costs to such compiler-generated
loops is a unique strength of our tools.

5. Considering Other Contemporary Tools
There is a large body of prior work on call path profiling, but its
focus has not been on using binary analysis to enable sampling-
based measurement and attribution of performance metrics for fully
optimized code. For this this reason we focus on comparing with
contemporary tools with the most closely related capabilities for
measurement and attribution.

To our knowledge, no other sampling based profiler is capa-
ble of collecting full call path profiles for fully optimized code.
Any tool based on libunwind [21] such as LoopSampler [22] re-
quires frame pointers or unwind information. OProfile [17] and
Sysprof [25], two well-known Linux system-wide call stack profil-
ers require frame pointers. Since the x86-64 ABI does not require
frame pointers, this restriction requires recompilation of any appli-



(a) A calling context view for MOAB (C++). (b) A flat view exposing loops for S3D (Fortran 90).

Figure 8. hpcviewer presenting different views of call path profiles for two applications.

cation and system library of interest. Apple’s Shark [2], one of the
nicer tools, also fails to correctly unwind optimized code. On a sim-
ple test, we observed it incorrectly unwinding calls from the sinh
math library procedure.

Sampling-based call path profilers naturally fail to record a
complete calling context tree. However, they also naturally high-
light the ‘most important’ paths, which comports well with perfor-
mance analysis. Zhuang et al. develop ‘bursty’ call path profiling
for Java [31] — a combination of sampling and adaptive, time-
limited dynamic instrumentation — that more accurately approx-
imates the complete CCT with an average overhead of 20%. For
performance tuning, it is no bargain to pay such overhead to in-
crease the knowledge of infrequently executed paths.

The importance of correlating performance measurements with
source code has been widely acknowledged. The task of correla-
tion is easy with custom-generated compiler information [1, 30].
Unfortunately, this solution is impractical. Typically, open systems
supply multiple compilers. Consequently, current sampling-based
call path profilers trivially correlate dynamic data with source code
using the binary’s line map. In the presence of inlining and loop
transformations, this approach results in confusing correlations that
attribute costs of inlined code back to their source files rather than
where they were incurred.

6. Conclusions
We have designed methods of binary analysis for 1) minimally
intrusive call path profiling of fully optimized code and 2) effec-
tive attribution and interpretation of performance measurements of
fully optimized code. Our evaluation of hpcrun using the SPEC
benchmarks on executables optimized by several different compil-
ers shows that we can attribute costs incurred by fully optimized
code to full calling context with low run-time overhead. The ex-
amples in Figure 8 highlight the unique contextual information we
obtain by combining hpcrun’s dynamic call path information with
hpcstruct’s static program structure. They show both how we at-
tribute costs to inlined frames and loop nests and how this informa-
tion yields insight into the performance of complex codes.

When compared with instrumentation-based techniques, our
measurement and analysis methods have several advantages. First,
sampling-based call path profilers do not interfere with compiler
optimization and introduce minimal distortion during profiling.
On many operating systems, they can even be invoked on un-

modified dynamically linked binaries. Second, using binary anal-
ysis to recover source code structure is uniquely complementary
to sampling-based profiling. hpcrun samples the whole calling
context in the presence of optimized libraries and even threads.
hpcstruct recovers the source code structure, by using only min-
imal symbolic information, for any portion of the calling context
— even without the source code itself. Using binary analysis to
recover source code structure addresses the complexity of real sys-
tems in which source code for libraries is often missing. Third,
binary analysis is an effective means of recovering the source code
structure of fully optimized binaries. When source code is avail-
able, we have seen that hpcstruct’s object to source code struc-
ture mapping accurately correlates highly optimized binaries with
procedures and loops. Among other things, it accounts for inlined
routines, inlined loops, fused loops, and compiler generated loops.
In effect, our binary analysis methods have enabled us to observe
both what the compiler did and did not do to improve performance.
We conclude that our binary analyses enable a unique combination
of call path data and static source code structure; and this com-
bination provides unique insight into the performance of modular
applications that have been subjected to complex compiler trans-
formations.

Both of our analyses have been motivated, in part, by a lack of
compiler information. While we would welcome improved com-
piler support, it seems unlikely any will be forthcoming. Although
compiler vendors have been sympathetic to our requests to fix or
improve their symbolic information, they have been clear that their
highest priority is highly efficient and correct code. Improving line
maps or debugging information in binaries is at the bottom of their
list of tasks. We have shown that accurate and rich contextual in-
formation can be obtained with only minimal compiler information
and we believe that the utility of our results justify our effort.
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