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Abstract

We report on an eficient adaptive N-body method which

u~e have recently designed and implemented. The algo-

rithm computes the forces on an arbitrary distribution of

bodies in a time which scales as N log N with the particle

number. The acclwacy of the force calculations is ana-

lytically bounded, and can be adjusted via a user dejined

parameter be fit’een a few percent relative accaracy, doivn

to machine arithmetic accuracy. Instead of using pointers

to indicate the topology of the tree, we identify each possible

cell with a key. The mapping of keys into memory locations

is achieved via a hash table. This allows the program to

access data in an eflcient manner across multiple proces-

sors. Performance of the parallel program is measured on

the 512 processor Intel Touchstone Delta system. We also

comment on a number of wide-ranging applications which

can benejitfiom application of this type of algorithm.

1 Introduction

N-body simulations have become a fundamental tool in

the study of complex physical systems. Starting fkom a
basic physical interaction (e.g., gravitational, Coulombic,

Biot-Savart, van der Waals) one can follow the dynamical

evolution of a system of N bodies, which represent the

phase-space density distribution of the system. N-body

simulations are essentially statistical in nature (unless the

physical system can be directly modeled by N bodies, as is

the case in some molectdar dynamics simulations). More
bodies implies a more accurate and complete sampling of

the phase space, and hence more accurate or complete re-
sults. Unfortunately, the minimum aeeuracy required to
model systems of interest often depends on having N be

much larger than current computational resources allow.

Because interactions occur between each pair of parti-

cles in a N-body simulation, the computational work scales
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asymptotically as N2. Much effort has been expended

to reduce the computational complexity of such simtda-

tions, while retaining acceptable accuracy. One approach

is to interpolate the field from a lattice with resolution h,

where it can be computed in time O (h–3) (using multi-

grid) or 0(h-3 log h“3) (using Fourier transforms). The

N-dependence of the time complexity then becomes O(N).

The drawback to this method is that dynamics on scales

comparable to or smaller than h cannot be modeled. In

three dimensions, this restricts the dynamic range in length

to about one part in a hundred (or perhaps one part in a thou-

sand on a parallel supercomputer), which is insufficient for

many calculations.

Over the past several years, a number of methods have

been introduced which allow N-body simulations to be per-
formed on arbitrary collections of bodies in time much less

than O(N2), without imposition of a lattice. They all have

in common the use of a truncated expansion (e.g., Taylor

expansion, Legendre expansion, Poisson expansion) to ap-

proximate the contribution of many bodies with a single

interaction. The resulting complexity is usually cited as

O(N) or O(N log N), but a careful analysis of what depen-

dent variables should be held constant (e.g., constant per-

timestep error, constant integrated error, constant memory,
constant relative error with respect to discreteness noise)

often leads to different conclusions about the scaling. In

any event, the scaling is a tremendous improvement over

0(N2) and the methods allow accurate computations with

vastly larger N.

The basic idea of an N-body algorithm based on a trtm-

cated series approximation is to partition an arbitrary col-
lection of bodies in such a reamer that the series approx-

imation can be applied to the pieces, while maintaining
sufficient accuracy in the force (or other quantity of inter-

est) on each particle. In general, the methods represent a

system of N bodies i in a hierarchical manner by the use of

1we refer ~ ~~ ~es ~d pticles, which shouldboth be under-

stoodto begeneral“atomic” objectswhich mayrefer to a masselement,
charge,vortex element,panel, or other quantity subjectto a multipole
approximation.
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a spatial tree data structure. Aggregations of bodies at var-

icms levels of detail form the internal nodes of the tree, and

are called cells. Generally, the expansions have a limited

domain of convergence, and even where the infinite expan-

sion converges, the truncated expansion introduces errors

of some magnitude. Making a good choice of which cells

to interact with, and which to reject as being too inaccurate
is critical to the success of these algorithms. The decision

is controlled by a function which we shall call the muhipole

acceptance criterion (MAC). Some of the muhipole meth-

ods which have been described in the literature are briefly

reviewed in the next section.

2, Background

2.1 Multipole Methods

Appel was the first to introduce a multipole method [1].

Appel’s method uses a binary tree data structure whose

leaves are bodies, and internal nodes represent roughly

spherical cells. Some care is taken to construct a “good”

set of cells which minimize the higher order mukipole mo-

ments of the cells. The MAC is based on the size of in-

teracting cells. The method was originally thought to be

O(NloglV), but has more recently beenshownto be O(N)

[2].

The Barnes-Hut (BH) algorithm [3] uses a regular, hier-

archical cubical subdivision of space (an oct-tree in three

dimensions). A two-dimensional illustration of such a tree

(a quad-tree) is show in Fig. 1. Construction of BH trees

is much faster than construction of Appel trees. In the BH

algorithm, the MAC is controlled by a parameter O, which

requires that the cell size,s, divided by the distance from a

particle to the cell center-of-mass be less than 6 (which is

usually in the range of 0.6-1.0). Cell-cell interactions are

riot computed, and the method scales as N log N.

The fast muh.ipole method (FMM) of Greengard &

Rokhlin [4] has achieved the greatest popularity in the

broader population of applied mathematicians and compu-

tational scientists. It uses high order muhipole expansions

and interacts fixed sets of cells which fulfill the criterion of

being “well-separated.” The FMM has a well-defined worst

case error bound, e, which is guaranteed to be met when

rnultipole expansions are carried out to orderp = – logz (c).

In two dimensions, when used on systems which are not ex-

cessively clustered, the FMM is very efficient. It has been

implemented on parallel computers [5, 6]. The crossover

point (the value of N at which the algorithm becomes faster

than a direct N2 method) with a stringent accuracy is as low
as a few hundred particles. On the other hand, implementa-

tions of the FMM in three dimensions have not performed

as well. Schmidt and Lee have implemented the algorithm
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Figure 1: A representation of a regular tree structure in

two dimensions (a quad-tree) which contains 10 thousand

particles which are centrally clustered.

in three dimensions, and find a crossover point of about

70 thousand particles [7]. The reason is that the work in

the most computationally intensive step scales as p2 in two

dimensions, and p4 in three dimensions. It is possible to

obtain much better performance by using a smallerp [8, 9],

but the worst-case error can become uncomfortably large in

this case. The major advantage of the FMM over the meth-

ods such as that of Barnes & Hut is that the error bound

is rigorously defined. However, this deficiency has been

remedied, as is shown in the following section.

2.2 Analytic Error Bounds

Recently, we have analyzed the performance of the

Barnes-Hut algorithm, and have shown that the worst case

errors can be quite large (in fact, unbounded) for commonly

used values of the opening criterion, @[10]. We have devel-

oped a different method for deciding which cells to interact

with. By using moments of the mass or charge distribution

within each cell, tie method achieves far better worst case

error behavior, and somewhat better mean error behavior,

for the same amount of computational resources.

In addition, the analysis provides a strict error bound

which can be applied to any fast multipole method. This

error bound is superior to those used previously because

it makes use of information about the bodies contained
within a cell. This information takes the form of eas-

ily computed moments of the mass or charge distribution

(strength) within the cell. Computing this information takes
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place in the tree construction stage, and takes very little time

compared with the later phases of the algorithm. The exact
form of the error bound is:

((’+2)(*)-(’+’)(*))(1)
The moments, 13(n) are defined as:

,-
(2)

The scalar d = l?’ – Fol is the distance from the particle

position F to the center of the muh.ipole expansion, p is

the largest term in the multipole expansion, and b~a, is

the maximal distance of particles ffom the center of the

cell, (see Fig. 2). This equation is essentially a precise

statement of several common-sense ideas. Interactions are

more accurate wherx

●

●

●

●

The interaction distance is larger (larger d).

The cell is smaller (smaller b~c.).

More terms in the mukipole expansion are used (larger

P).

The truncated multipole moments are smaller (smaller

B(P+I)).
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Figure 2: An illustration of the relevant distances used in

the error bound equation.

Having a per-interaction error bound is an overwhelm-

ing advantage when compared to existing muh.ipole accep-

tance criteria, which assume a worst-case arrangement of

bodies within a cell when bounding the interaction error.

The reason is that the worst-case interaction error of an

arbitrary strengl.h distribution is usually many times larger

than the error bound on a particular strength distribution.

This causes an algorithm which knows nothing about the

strength distribution inside a cell to provide too much ac-

curacy for most muh.ipole interactions. This accuracy is

wasted, however, because of the few multipole interaction

errors which do approach the worst-case error bound that

are added into and pollute the final result. A data-dependent

per-interaction error bound is much less prone to this prob-
lem, since the resulting error bound is much tighter, even

though the actual error in the computation is exactly the

same.

The implementation of an algorithm using a fixed per-

interaction error bound poses little difficulty. One may

simply solve for r. in,

As(P) (r=) < Ainte.action> (3)

where A~~t~v=Ct~o~is a user-specified absolute error toler-

ance. Then, T. defines the smallest interaction distance

allowed for each cell in the system. For the case of p = 1,

the critical radius can be analytically derived from Eq. 1 if

we use the fact that B3 ~ O:

B2 is simply the trace of the quadruple moment ten-

sor. In more general cases (using a better bound on B3,

or with p > I), ~c can be computed from the error bound
equation (Eq. 1) using Newton’s method. The overall com-

putational expense of calculating rC is small, since it need

only be calculated once for each cell. Furthermore, New-

ton’s method need not be iterated to high accuracy. The

MAC then becomes d > rC for each displacement d and

critical radius re (Fig. 3). This is computationally very

similar to the Barnes-Hut opening criterion, where instead

of using a fixed box size,s, we use the distance r., derived

ffom the contents of the cell and the error tolerance. Thus,

our data dependent MAC may replace the MAC in existing

algorithms with minimal additional coding.

3 Computational Approach

Parallel treecodes for distributed memory machines are

discussed in[11, 12], and their application to the analysis of

galaxy formation may be found in [13, 14]. Further analysis

and extensions of the computational methods maybe found

in[15, 16, 17]. The MAC described above is problematical

for these previous methods because the parallel algorithm
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Figure 3: The critical radii of a cell and one of its daughters

are shown here as circles. For the specified accuracy, a par-

ticle must lie outside the critical radius of a cell, The shaded

region shows the spatial domain of all particles which would

interact with the lower left daughter cell. Those particles

outside the shaded region would interact with the parent

cell, and those within the unshaded region would interact

with even smaller cells inside the daughter cell,

requires determination of locally essential data before the

tree traversal kqjns. With the data-dependent MAC it is

difficult to pre-determine which non-local cells are required

in advance of the traversal stage. The problem becomes

pmticularly acute if one wishes to impose error tolerances

which vary from particle to particle.

It is for this reason that the algorithm described here

was developed. It does not rely on the ability to identify

a p-ion’ locally essential data; instead it provides a mech-

anism to retrieve non-local data as it is needed during the
tree traversal. The decision to abandon our previous par-

allel N-body algorithm was also motivated by the desire to

produce a more “friendly” code, with which a variety of re-

search could be performed in computatioml science as well

as physics. The old code, which was the result of porting

a previously existing sequential algorithm, was a maze of

complications, brought about by the haphazard addition of

pieces over several years. We took full advantage of the op-

portunity to start over with a clean slate, with the additional

benefit of several years of hindsight and experience.

When one considers what additional operations are nec-

essary when dealing with a tree structure distributed over

many processors, it is clear that retrieval of particular cells

required by one processor from another is a very common
operation. When using a conventional tree structure, the

pointers in a parent cell in one processor must be somehow

translated into a valid reference to daughter cells in another

processor. This required translation led us to the conclusion

thatpointers are not the proper way to represent a distributed

tree data structure (at least without significant hardware and

operating system support for such operations).

Instead of using pointers to describe the topology of a

tree, we use keys and a hash table. We begin by identifying

each possible cell with a key. By performing simple bit

arithmetic on a key, we are able to produce the keys of

daughter or parent cells. The tree topology is represented

implicitly in the mapping of the cell spatial locations and

levels into the keys. The translation of keys into memory

locations where cell data is stored is achieved via hash table

lookup. Thus, given a key, the corresponding data can be

rapidly retrieved, This scheme also provides a uniform

addressing mechanism to retrieve data which is in another

processor. This is the basis of the hashed oct-tree (HOT)

method.

3.1 Key construction and the Hashing Function

We define a key as the result of a map of d floating point

numbers (body coordinates in d-dimensional space) into a

single set of bits (which is most conveniently represented

as a vector of integers). The mapping function consists

of translating the floating point numbers into integers, and

then interleaving the bits of the d integers into a single key

(Fig. 4). Note that we place no restriction on the dimension

of the space, although we are physically motivated to pay

particular attention to the case of d == 3. In this case, the

key derived from 3 single precision floating point numbers

fits nicely into a single 64 bit integer or a pair of 32 bit

integers.

binary coordinate representation

x Y z

10011001 01101001 11101100

, ‘Nx-cavplaceholder bit

1.101.011.011.100.111.001.000.110 binary key

0153347106 octal key

Figure 4: An illustration of the key mapping. Bits of

the coordinates are interleaved and a place-holder bit is

prepended to the most significant bit. In this example, the

8-bit z, y and z values are mapped to a 25-bit key.

Apart from the trivial choice of origin and coordinate

system, this is identical to Morton ordering (also called Z
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or N ordering, see Chapter 1 of[18] and references therein,

and also [19]). This function maps each body in the system

to a unique key. We also wish to represent nodes of the

tree using this same type of key. In order to distinguish the

higher level internal nodes of the tree ftom the lowest level

body nodes, we prepend an additional 1-bit to the most

significant bit of every key (the place-holder bit). We may

then represent all higher level nodes in the tree in the same

key space. Without the place-holder bit, there would be

an ambiguity amongst keys whose most significant bits are

all zeroes. The root node is represented by the key 1. A

two-dimensional representation of such a me is shown in
Fig. 5.
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Figure 5: A quad-tree shown along with the binary key
coordinates of the nodes. At the bottom is a “flat” repre-

sentation of the tree topology induced by the 20 particles.

The rest of the figure demonstrates the relation of the key

coordinates at each level to the tree topology. Many of the

links from parent to daughter cells are omitted for clarity.

In general, each key corresponds to some composite data

describing the physical data inside the domain of a cell (the

mass and center-of-mass coordinates, for example). To

map the key to the memory location holding this data, a
hash table is used. A table with a length much smaller

than the possible number of keys is used, with a hashing

function to map the k-bit key to the h-bit long hash address.

We use a very simple hashing function, which is to AND

the key with the bit-mask 2h – 1, which selects the least

significant h bits.

Collisions in the hash table are resolved via a linked

list (chaining). The incidence of collisions could degrade

petiormance a great deal. Our hashing scheme uses the

simplest possible functio% a one instruction AND. However,

it is really the map of floating point coordinates into the key

that performs what one usually would consider “hashing.”

The structure of the hierarchical key space and selection of

the least significant bits of the key performs extraordinarily

well in reducing the incidence of collisions. For the set of

all keys which contain fewer significant bits than the hash

mask, the hashing function is “perfect.” This set of keys

represents the upper levels of the tree, which tend to be

accessed the most often. At lower levels of the tree (where

the number of bits in a key exceeds the length of the hash

mask), distinct keys can result in the same hash address (a
collision). However, the map of coordinates into the keys

keeps these keys spatially separated. On a parallel machine,

many of the keys which would results in collisions become

distributed to different processors.

The key space is very convenient for tree traversals. In

order to find daughter nodes, the parent key is left-shifted

by d bits, and the result is added (or equivalently OR’ed) to

daughter numbers from O to 2d – 1. Also, the key retrieval

mechanism is much more flexible in terms of the kinds of

accesses which are allowed. If we wish to find a particular

node of a tree in which pointers are used to traverse the

We, we must start at the root of the tree, and traverse

until we find the desired node (which takes of order log N

operations). On the other hand, a key provides immediate

(0( 1)) access to any object in the tree.

An entry in the hash table (an hcell) consists of a

pointer to the cell or body data, a pointer to a linked list

which resolves collisions, the key, and various flags which

describe properties of the hcell and its corresponding cell.

In order to optimize certain tree traversal operations, we

also store in eachhcell 2d bits that describe which daughters

of the cell actually exist. This redundant information allows

us to avoid using hash-table lookup functions to search for

cells which don’t exist.

The use of a hash table offers several important advan-

tages. First, the access to data takes place in a manner

which is easily generalized to a global accessing scheme

implementable on a message passing architecture. That is,

non-local data may be accessed by requesting a key, which

is a uniform addressing scheme, regardless of which proces-

sor the data is contained within. This type of addressing is

not possible with normal pointers on a distributed memory
machine. We can also use the hash table to implement var-

ious mechanism for caching non-local data and improving

memory system performance.

3.2 Tree Construction

The higher level nodes in the tree can be constructed in

a variety of ways. The simplest is analogous to that which

was described in [3]. Each particle is loaded into the tree by
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starting at the root, and traversing the partially constructed

tree. When two particles fall within the same leaf node,

the leaf is converted to a cell which is entered into the hash

table, and new leaves are constructed one level deeper in

the tree to hold each of the particles. This takes O(logN)

steps per particle insertion. After the topology of the tree

has been constructed, the contents (mass, charge, moments,

em) of each cell may be initialized by a post-order tree

traversal.

A faster method is possible by taking advantage of the

spatial ordering implied in the key map. We first sort the

body keys, and then consider the bodies in this list in order.

A.s bodes are inserted into the tree, we start the traversal at

the location of the last node created (rather than at the root).

With this scheme, the average body insertion requires 0(1 )

time. We still require O(N log IV) time to sort the list in

the first place, but keeping the body list sorted will facilitate

our parallel data decomposition as well.

3.3 Parallel Data Decomposition

The parallel data decomposition is critical to the per-

formance of a parallel algorithm. A method which may

be conceptually simple and easy to program may result in

load imbalance which is unacceptable. A method which

attempts to balance the work precisely may take so long

that performance of the overall application suffers.

We have implemented a method which can rapidly do-

main decompose a d-dimensional set of particles into load

balanced spatial groups which represent the domain of each

processor. We take advantage of the properties of the map-

ping of spatial coordhates to keys to produce a “good”

domain decomposition. The idea is to simply cut the one-

dirnensioml list of sorted body key ordinates (see Fig. 6)

into NP (number of processors) equal pieces, weighted by

the amount of work corresponding to each body. The work

for each body is readily approximated by counting the num-

ber of interactions the body was involved in on the previous

timestep. This results in a spatially adaptive decomposi-

tion, which gives each processor an equal amount of work.

Additionally, the method keeps particles spatially grouped,

which is very important for the efficiency of the traver-

sal stage of the algorithm, since the amount of non-local

data needed is roughly proportional to the surface area of

the processor domain. An illustration of this method on a

two-dimensioml set of particles is illustrated in Fig. 7 for

a highly clustered set of particles (that which was shown

in Fig. 1) with NP = 16. One source of inefficiency in

the Morton ordered decomposition is that a processor do-

main can span one of the spatial discontinuities. A possible

solution is to use Peano-Hilbert ordering for the domain

decomposition, which does not contain spatial diacont.inu-

iries.
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Figure 6 The path indicates the one-dimensional sym-

metric self-similar path which is induced by the map of

interleaved bits (Morton order). The domain decomposi-

tion is achieved by cutting the one-dimensional list into NP

pieces.

3.4 Parallel Tree Construction

After the domain decomposition, each processor has a

disjoint set of bodies. The initial stage in parallel tree build-

ing is the construction of a tree made of the local bodies.

A special case occurs at each processor boundary in the

one-dimensional sorted key list, where the terminal bodies

from adjacent processors could lie in the same cell. This

is taken care of by sending a copy of each boundary body

to the adjacent processor, which allows the construction of

the proper tree nodes. Then, copies of branch nodes from

each processor are shared among all processors. This stage

is made considerably easier and faster since the domain

decomposition is intimately related to the tree topology

(unlike the orthogonal recursive bisection method used in

our previous code [12]). The branches make up a complete

set of cells which represent the entire processor domain

at the coarsest level possible. These branch cells are then
globally communicated among the processors. AU proces-

sors can then “fill in” the missing top of the tree down to

the branch cells. The address of the processor which owns

each branch cell is passed to the destination processor, so

the hcell created is marked with its origin. A traversal

routine can then immediately determine which processor

to request data from when it needs access to the daugh-

ters of a branch cell. The daughters received from other

processors are also marked in the same fashion. We have

.“
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Figure 7: A processor domain for one of 16 processors

in a data decomposition for the clustered system of bodies

shown in Fig. 1. The domain shown is a result of the

decomposition strategy outlined in the text.

also tried implementing the branch communication step

in a more computationslly clever manner which does not

globally concatenate the branches, but its complexity has

tended to outweigh its benefit. This does not rule out the

possibility of finding a better method for this stage of the

algorithm, however.

3.5 Tree Traversal

A tree traversal routine maybe cast in recursive form in

a very few lines of C code:

Traverse (Key t key, int (*MAC) (hcell *) ,

vo~d (*postf) (hcell *) ) {

hcell *pp;

unsigned int child;

if ( (pp=Find (key) ) && MAC (PP) ) return;
key = Key Lshift (key, NDIM) ;

for (child = O; child < (l<< NDIM) ; child++)

Traverse (KeyOrInt (key, child) , MAC, postf ) ;

postf (pp) ;

This code applies an arbitrary MAC to determine

whether to continue traversing the children of a cell. If

the children are traversed, than another function, post f,

is called upon completion of the descendants. By appropri-

ate choice of the MAC and POs tf one can execute pre-order

or post-order traversals with or without complex pruning

strategies (i.e., multipole acceptability criteria).

On a parallel machine, one may add additional function-

ality to the Find function, in order to handle cases where

the requested node is in the memory of another proces-

sor. The additional code would request non-local data,

wait to receive it, and insert it into the tree. This allows

the same traversal code fragment to work without further

modification on a distributed memory computer. However,

the performance of such an approach is bound to be dis-

mal. Each request of non-local data is subject to the full

interprocessor communication latency. Computation stalls

while waiting for the requested data to arrive.

It is possible to recast the traversal function in a form

which allows the entie context of the traversal to be stored.

In this case, when a request for non-local data is encoun-

tered, the request is buffered, and the computation may

proceed. Almost all of the latency for non-local data re-

quests may be hidden, by trading communication latency

for a smaller amount of complexity overhead.

The traversal method we have chosen is breadth-first list

based scheme. It does not use recursion, and has several
useful properties. We shall discuss the plain sequential

method first, and then show the additions to allow efficient

traversals on a parallel machine.

The input to the list-based traversal is a walk list of hcell

nodes. On the first pass, the walk list contains only the root

hcell. Each daughter of the input walk list nodes is tested

against the MAC. If it passes the MAC, the corresponding

cell data is placed on the interaction list. If a daughter

fails the MAC, it is placed on the output walk list. After

the entire input list is processed the output walk list is

copied to the walk list and the process iterates. The process

terminates when there are no nodes remaining on the walk

list. This method has an advantage over a recursive traversal

in that there is an opportunity to do some vectorization of

the intermediate traversal steps, since there are generally a

fair number of nodes which are being tested at a time. It

also results in a final interaction list which can be passed

to a fully vectorized force calculation routine. The details

are too intricate to allow us to present real C code, so we
present the algorithm in pseudocode instead:

ListTraverse ( (*MAC) (hcell *) )

copy root to walk_ list;
while ( !Empty (walk_list) ) {

for (each item on walk_list) {

for (each daughter of item) {

if (MAC (daughter) )

copy daughter to interact list;—
else

copy daughter to output_walk_list;

}

}
walk list = output walk list;—

}–
—

}

18



When the traversal is complete, the int eract_list

contains a vector of items that must undergo interactions

(according to the particular MAC). The interactions them-

selves may be computed separately, so that code may be

vectorized and optimized independently of the tree traversal

method.

3.6 A Latency Hiding Tree Traversal

On a parallel machine, the traversal will encounterhcells
for which the daughters are not present in local memory. In

this case we add some additional lists which allow compu-

tation to proceed, while the evaluation of the non-local data

is deferred to some later time. Each hcell is labeled with

a HERE bh. This bit is set if the daughters of the hcell are

present in local memory. This bit is tested in the traversal

before the attempt to find the daughters. If the HERE bit

is not set, the key and the source processor address (which

is contained in the hcell) are placed on the request list,

and another copy of the key is placed on a defer list. We

acldit.ionally set a REQUESTED bh in the hcell, to prevent

additional requesta for the same data. This allows process-

ing to continue on the hcells in the input walk list, As the

traversal proceeds, additional requests will occur, until a

final state is reached, whereas much progress as possible

him been made on the given traversal (using only data in

local memory). In this state, there area number of keys and

processor addresses in the request list, and an equal number

of keys in the defer list, which require non-local data to be
received before the traversal may continue.

The request list is periodically translated into a series of

interprocessor messages which contain requests for data.

Upon receipt of such a message, the appropriate hcells are

p?ckaged into a reply, and the answer is returned via a

second interprocessor message. When a reply is received,

an appropriate entry is made in the hash table, and subse-

quent Find requesta will return the data. It is possible to

implement this request/reply protocol either loosely syn-

chronously or asynchronously. The decision is governed

b,y the level of support and relative performance offered by

the hardware and operating system.

Upon receipt of some replies (it is not necessary to wait

for all replies to arrive), the defer list can be renamed as the

wa lk_l i st, and the traversal can be restarted with the

newly arrived data. Alternatively, one can begin an entirely

separate traversal to compute, e.g., the force on another

particle. With appropriate bookkeeping one can tolerate

very long latencies by implementing a circular queue of
active traversals (with a shared request list). We have used

a circular queue with 30 active traversals, so that after 30
traversals have been deferred, we restart the first traversal

by copying its defer list to its walk list. The requested data

has usually arrived in the interim.

4 Performance

Here we provide timings for the various stages of the

algorithm on the 512 processor Intel Touchstone Delta in-

stalled at Caltech. The timings listed are from an 8.8 million

particle production run simulation involving the formation

of structure in a cold dark matter Universe [14]. During

the initial stages of the calculation, the particles are spread

uniformly throughout the spherical computational volume.

We set an absolute error bound on each partial acceleration

of 10–3 times the mean acceleration in the system. This

results in 2.2 x 1010 interactions per timestep in the initial

uncluttered system. The timing breakdown is as follows:

computation stage time (see)

Domain Decomposition 7

Tree Build 7

Tree Traversal 33

Data Communication During Traversal 6

Force Evaluation 54
Load Imbalance 7

Total (5.8 Gflops) 114

At later stages of the calculation the system becomes

extremely clustered (the density in large clusters of particles

is typically 106 times the mean density). The number of

interactions required to maintain the same accuracy grows

moderately as the system evolves. At a slightly increased

error bound of 4 x 10–3, the number of interactions in the

clustered system is 2.6 x 1010 per timestep.

computation stage time (see)

Domain Decomposition 19

Tree Build 10

Tree Traversal 55

Data Communication during traversal 4

Force Evaluation 60

Load Imbalance 12

Total (4.9 Gflops) 160

It is evident that the initial domain decomposition and

tree building stages take a relatively larger fraction of the

time in this case. The reason is that in order to load balance

the force calculation, some processors have nearly three

times as many particles as the mean value, and over ten

times as many particles as the processor with the fewest.

The load balancing scheme currently attempts to load bal-

ance only the work involved in force evaluation and tree

traversal, so the initial domain decomposition and tree con-

struction work (which scales closely with the particle num-
ber within the processor) becomes imbalance.

Note that roughly 50% of the execution time

in the force calculation subroutine. This routine

is spent

consists
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of a few tens of lines of code, so it makes sense to obtain

the maximum possible performance through careful tuning.

For the Delta’s i86 O microprocessor we used hand coded

assembly language to keep the three-stage pipeline fully

filled, which results in a speed of 28 Mflops per processing

node in this routine.

If we count only the floating point operations performed

in the force calculation routine as “useful work” (30 flops

per interaction) the overall speed of the code is about 5-

6 Gflops. However, this number is in a sense unfair to

the overall algorithm, since the majority of the code is

not involved in floating point operations at all, but with

tree traversal and data structure manipulation. The integer

arithmetic and addressing speed of the processor areas im-

poctant as the floating point performance. We hope that in

the future, evaluation of processors does not become over-

balanced toward better floating point speed at the expense

of integer arithmetic and memory bandwidth, as this code

is a good example of why a balanced processor architecture

is necessary for good overall performance.

5 Multi-purpose Applications

Problems of current interest in a wide variety of ar-

eas rely heavily on N-body and/or fast multipole methods.

Accelerator beam dynamics, astrophysics (galaxy forma-

tion, large-scale structure), computational biology (protein

folding), chemistry (molecular structure and thermodynam-

ics), electromagnetic scattering, fluid mechanics (vortex

method, panel method), molecular dynamics, and plasma

physics, to name those we are familiar with, but there are

certainly more. In some of these areas, N2 algorithms are

still the most often used, due to their simplicity. However,

as problems grow larger, the use of fast methods becomes

a necessity. Indeed, in the case of problems such as elec-

tromagnetic scattering, a fast mtdtipole method reduces the

operation count for solving the second-kind integral equa-

tion fi-om O (N3 ) for Gaussian elimination to O (N4/3) per

conjugate-gradient iteration [20]. Such a vast improvement

allows one to contemplate problems which were heretofore

simply impossible. Alternatively, one can use a worksta-

tion to solve problems that had previously been in the sole
domain of large supercomputers.

We have spent substantial effort in this code keeping the

data structures and functions required by the “application”

away from those of the “tree”. Whh suitable abstractions

and ruthless segregation, we have met with some success

in this area. We currently have a number of physics ap-

plications which share the same tree code. In general, the

addition of another application only requires the definition

of a data structure, and additional code is required only

with respect to functions which are physics related (e.g.,

the force calculation).

We have described the application of our code to grav-

itational N-body problems above. The code has also been

indispensable in performing statistical analyses and data

processing on the end result of our N-body calculations,

since their size prohibits analysis on anything but a parallel

supercomputer. The code also has a module which can per-

form three-dimensional compressible fluid dynamics using

smoothed particle hydrodynamics (with or without grav-

ity). We have also implemented a vortex particle method

[21]. It is a simple matter to use the same program to do

physics involving other force laws. Apart from the defini-

tion of a data structure and modification of the basic force

calculation routine, one only need derive the appropriate

MAC using the method described in Salmon & Warren

[10],

6 Future Improvements

The code described here is by no means a “final” version.

The implementation has been explicitly designed to easily

allow experimentation, and inclusion of new ideas which

we find useful. It is perhaps unique in that it is serving

double duty as a high performance production code to study

the process of galaxy formation, as well as a testbed to

investigate mukipole algorithms.

Additions to the underlying method which we expect

will improve its performance even further include the ad-

dition of cell-cell evaluations (similar to those used in the

fast mukipole method) and the ability to evolve each parti-

cle with an independent timestep (which improves perfor-
mance significantly in systems where the timescale varies

greatiy). We expect that the expression of the algorithm

in the C++ language will produce a more friendly program

by taking advantage of the features of the language such

as data abstraction and operator overloading. The code is

very portable to other parallel platforms, and we currently

have code running on the Intel Paragon, the CM-5, the

IBM SP-1, and networks of workstations. The bulk of the

remaining improvements are in the area of processor spe-

cific tuning, such as CDPEAC coding of the inner loop of

the force-evaluation routine to obtain optimal floating point

performance on the CM-5.

7 Conclusion

In an overall view of this algorithm, we feel that these

general items deserve special attention:
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We

The fundamental ideas in this algorithm are, for the

most part, standard tools of computer science (key

mapping, hashing, sorting). We have shown that in

combination, they form the basis of a clean and effi-

cient parallel algorithm. This type of algorithm does

not evolve from a sequential method. It requires start-

ing anew, without the prejudices inherent in a program

(or programmer) accustomed to using a single proces-

sor.

The raw computing speed of the code on an extremely

irregular, dynamically changing set of particles which

require global data for their update, using a large num-

ber of processors (512), is comparable with the perfor-

mance quoted for much more regular static problems,

which are sometimes identified as the only type of

“scalable” algorithms which obtain good performance

on parallel machines. We hope we have convinced

the reader that even difficult irregular problems are

amenable to parallel computation.

expect that algorithms such as that described here,

coupled with the e~traordinary increase in computational
power expected in the coming years, will play a major part

in the process of understanding complex physical systems.
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