
Improving Parallel Job Scheduling by Combining
Gang Scheduling and Backfilling Techniques

Y. Zhangy H. Frankez J. E. Moreiraz A. Sivasubramaniamy

y Department of Computer Science& Engineering z IBM T. J. Watson Research Center
The Pennsylvania State University P. O. Box 218

University Park PA 16802 Yorktown Heights NY 10598-0218
fyyzhang, anandg@cse.psu.edu ffrankeh, jmoreirag@us.ibm.com

Abstract

Two different approaches have been commonly used to
address problems associated with space sharing schedul-
ing strategies: (a) augmenting space sharing with backfill-
ing, which performs out of order job scheduling; and (b)
augmenting space sharing with time sharing, using a tech-
nique called coscheduling or gang scheduling. With three
important experimental results – impact of priority queue
order on backfilling, impact of overestimation of job execu-
tion times, and comparison of scheduling techniques – this
paper presents an integrated strategy that combines back-
filling with gang scheduling. Using extensive simulations
based on detailed models of realistic workloads, the benefits
of combining backfilling and gang scheduling are clearly
demonstrated over a spectrum of performance criteria.

1. Introduction

Large scale parallel machines are essential to meet the
needs of demanding applications at supercomputing cen-
ters. With the increasing emphasis on computer simulation
as an engineering and scientific tool, the load on such sys-
tems is expected to become quite high in the near future.
As a result, it is imperative to provide effective scheduling
strategies to meet the desired quality of service parameters
from both user and system perspectives. Specifically, we
would like to reduce response and wait times for a job, min-
imize the slowdown that a job experiences in a multipro-
grammed setting compared to when it is run in isolation,
maximize the throughput and utilization of the system, and
be fair to all jobs regardless of their size or execution times.

Scheduling strategies can have a significant impact on
the performance characteristics of a large parallel sys-
tem [2, 5, 8, 10, 11, 15, 16, 19]. Early scheduling strate-
gies for parallel systems just used a space-sharing approach,
wherein jobs can run side by side on different nodes of the

machine at the same time, but eachnode is exclusively as-
signed to a job. Space sharing in isolation can result in poor
utilization since there could be nodes that are left empty de-
spite a waiting queue of jobs. Furthermore, the wait and
response times for jobs with an exclusively space-sharing
strategy are relatively high.

Among the several approaches used to alleviate these
problems with space sharing scheduling, two have been
most commonly studied. The first is a technique called
backfilling [4, 11], which attempts to assign unutilized
nodes to jobs that are behind in the priority queue of wait-
ing jobs, rather than keep them idle. To prevent starvation
of larger jobs, (conservative) backfilling requires that the
execution of a job selected out of order does not delay the
start of jobs that are ahead of it in the priority queue. This
requirement imposes the need for an estimation of job exe-
cution times. The second approach is to add a time-sharing
dimension to space sharing using a technique called gang
scheduling or coscheduling [14]. This technique virtualizes
the physical machine by slicing the time axis into multi-
ple space-shared virtual machines. Tasks of a parallel job
are coscheduled to run in the same time-slices (same virtual
machines). The number of virtual machines created (equal
to the number of time slices), is called the multiprogram-
ming level (MPL) of the system. This multiprogramming
level in general depends on how many jobs can be executed
concurrently, but is typically limited by system resources.
This approach opens more opportunities for the execution
of parallel jobs, and is thus quite effective in reducing the
wait time, at the expense of increasing the apparent job exe-
cution time. Gang scheduling does not depend on estimates
for job execution time.

It is a logical next step to attempt to combine these two
approaches – gang scheduling and backfilling. In principle,
combining backfilling and gang scheduling is as simple as
applying backfilling toeach of the virtual machines created

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

by gang scheduling. However, obtaining precise estimates
for job execution time under gang scheduling can be very
difficult or even impossible. The effective multiprogram-
ming level of a parallel system can actually vary during the
execution of a job. Therefore, even if exact information on
the dedicated execution time were available, in general it
would not be possible to estimate the execution time when
the machine is time-shared.

This paper examines the following four important issues
related to this combined approach: (i) the impact of priority
queue discipline on backfilling; (ii) the impact of overes-
timating job execution times on the effectiveness of back-
filling; (iii) how to estimate job completion times in a gang
scheduling environment; and (iv) the overall impact of com-
bining backfilling and gang scheduling on quality of service
and system performance parameters.

As an evaluation approach, we use detailed simulations
based on stochastic models derived from real workloads at
Lawrence Livermore National Laboratory (LLNL). We find
that FCFS queueing policy does as well as other priority
policies. We also find that overestimating job execution
times has little impact on the quality of service parameters.
As a result, we can conservatively estimate the execution
time of a job in a coscheduled system to be the multipro-
gramming level (MPL) times the estimated job execution
time in a dedicated setting. With these results, we construct
a backfilling gang scheduling system, calledBGS, which
fills in holes in the Ousterhout scheduling matrix [14] using
backfilling. We demonstrate that this combined strategy is
always better than the individual gang scheduling or back-
filling strategies for all the quality of service parameters that
we consider.

The rest of this paper is organized as follows. Sec-
tion 2 describes our approach to modeling parallel job work-
loads and obtaining performance characteristics of schedul-
ing systems. It also characterizes our base workload quan-
titatively. Section 3 is a study of the impact of backfilling
on different job queuing policies. It shows that a FCFS pri-
ority policy together with backfilling is a sensible choice.
Section 4 analyzes the impact of job execution time estima-
tion on the overall performance from system and user per-
spectives. We show that relevant performance parameters
are almost invariant to the accuracy of average job execu-
tion time estimation. Section 5 demonstrates the significant
improvements in performance that can be achieved by com-
bining gang scheduling and backfilling with a FCFS policy.
Finally, Section 6 presents our conclusions and possible di-
rections for future work.

2. Evaluation methodology

When selecting and developing job schedulers for use
in large parallel system installations, it is important to un-

derstand their expected performance. To that end, we need
a characterization technique and a procedure to syntheti-
cally generate the expected workloads. Our methodology
for generating these workloads, and from there obtaining
performance parameters, involves the following steps: (i)
fit a typical workload with mathematical models; (ii) gener-
ate synthetic workloads based on the derived mathematical
models; (iii) simulate the behavior of the different schedul-
ing policies for those workloads; and (iv) determine the pa-
rameters of interest for the different scheduling policies.

Parallel workloads often are over-dispersive. That is, job
interarrival time distributionand job service time (execution
time on a dedicated system) distribution each has a coeffi-
cient of variation that is greater than one. These distribu-
tions can be fitted adequately with Hyper Erlang Distribu-
tions of Common Order. In [9] such a model was devel-
oped, and its efficacy demonstrated by using it to fit a typ-
ical workload from the Cornell University Theory Center.
Here we use this model to fit a typical workload from the
320-node unclassified ASCI Blue-Pacific system.

Our modeling procedure involves the following steps.
First we group the jobs into classes, based on the number
of processors they require to execute on. Each class is a
bin in which the upper boundary is a power of 2. We de-
termine the frequency of occurrence of each class from the
actual workload. Then we model the interarrival time dis-
tribution for each class, and the service time distribution for
each class as follows. From the job traces, we compute the
first three moments of the observed interarrival time and the
first three moments of the observed service time. We then
select the Hyper Erlang Distribution of Common Order that
fits these 3 observed moments.

Next, we generate various synthetic workloads from the
observed workload by varying the interarrival rate and ser-
vice time parameters using the procedure described in [9].
(We adopt a uniform distribution for the size of the jobs in
each class.) Finally, we simulate the effects of these syn-
thetic workloads and observe the results.

Within a workload trace, each job is described by its ar-
rival time, the number of nodes it uses, its execution time on
a dedicated system, and an overestimation factor. Backfill-
ing strategies require an estimate of the job execution time.
We obtain this estimate by multiplying the dedicated ex-
ecution time by an overestimation factor, which is a uni-
formly distributed random number between 1 and an up-
per limit 1 +
. In particular,
 = 0 indicates we have
perfect knowledge of how long jobs are going to run. In
reality, users provide an estimated execution time for their
job. This estimated execution time is always greater than or
equal to the actual execution time, since jobs are killed after
reaching this limit. The overestimation factor is the mecha-
nism we use to capture this discrepancy between estimated
and actual execution times for parallel jobs. During simu-

2

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

lation, the estimated execution time is used exclusively for
performing job scheduling, while the actual execution time
is only used to define the job finish event.

The baseline workload is the synthetic workload gen-
erated from the parameters directly extracted from the ac-
tual ASCI Blue-Pacific workload. It consists of 10000 jobs,
varying in size from 1 to 256 nodes. Some characteristics of
this workload are shown in Figures 1 and 2. Figure 1 reports
the distribution of job sizes (number of nodes). Foreach job
size, between 1 and 256, it shows the number of jobs with
at mostthat size. Figure 2 reports the distribution of total
CPU time. CPU time of a job is defined as job execution
time on a dedicated setting times its number of nodes. For
each job size, it shows the sum of the CPU times for all
jobs ofat mostthat size. From Figures 1 and 2 we observe
that, although large jobs (those with more than 32 nodes),
represent only 30% of the number of jobs, they constitute
more than 80% of the total work performed in the system.
This baseline workload corresponds to a system utilization
of � = 0:55. (System utilization is defined below.)

0 32 64 96 128 160 192 224 256
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Job size (number of nodes)

N
um

be
r

of
 jo

bs

Cumulative distribution of job sizes

Figure 1. Distribution of job sizes in workload.

In addition to the baseline workload of Figures 1 and 2
we generate 8 additional workloads, of 10000 jobseach, by
varying the model parameters so as to increase average job
execution time. More specifically, we generate the 9 dif-
ferent workloads by multiplying the average job execution
time by a factor from1:0 to 1:8 in steps of0:1. For a fixed
interarrival time, increasing job execution time typically in-
creases utilization, until the system saturates.

The synthetic workloads generated as described above
are used as input to our event-driven simulator of various
scheduling strategies, applied to a parallel system with 320
nodes. In our simulation, we monitor the following param-
eters: arrival time for jobi (tai), start time for jobi (tsi), ex-
ecution time for jobi in a dedicated setting (tei), finish time
for job i (tfi), and number of nodes used by jobi (ni). From

0 32 64 96 128 160 192 224 256
0

1

2

3

4

5

6

7

8

9

10
x 10

8

Job size (number of nodes)

T
ot

al
 C

P
U

 ti
m

e
(s

)

Cumulative distribution of CPU time

Figure 2. Distribution of cpu time in workload.

these we compute: response time for jobi (tri = t
f
i � tai),

wait time for jobi (twi = tsi � tai), and slowdown for jobi:

si =
max(tri ; 10)

max(tei ; 10)
: (1)

To reduce the statistical impact of very short jobs, it is com-
mon practice [3, 4] to adopt a minimum execution time of
10 seconds. This is the reason for themax(�; 10) terms in
the definition of slowdown.

To report quality of service figures from a user’s perspec-
tive we use the average job slowdown and average job wait
time. Job slowdown measures how much slower than a ded-
icated machine the system appears to the users, which is
relevant to both interactive and batch jobs. Job wait time
measures how long a job takes to start execution and there-
fore it is an important measure for interactive jobs. In ad-
dition to objective measures of quality of service, we also
use these averages to characterize the fairness of a schedul-
ing strategy. We evaluate fairness by comparing average
and standard deviation of slowdown and wait time for small
jobs, large jobs, and all jobs combined. As discussed pre-
viously, large jobs are those that use more than 32 nodes,
while small jobs use 32 or fewer nodes.

We measure quality of service from the system’s per-
spective with two parameters: utilization and capacity loss.
Utilization is the fraction of total system resources that are
actually used during the execution of a workload. Let the
system haveN nodes and executem jobs, where jobm is
the last job to finish execution. Also, let the first job arrive
at timet = 0. Utilization is then defined as

� =

Pm

i=1 nit
e
i

N � t
f
m

(2)

A system incurs loss of capacity when (i) it has jobs wait-
ing in the queue to execute, and (ii) it has empty nodes

3

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

(either physical or virtual) but, because of fragmentation,
it still cannot execute those waiting jobs. Ascheduling
eventtakes place whenever a new job arrives or an execut-
ing job terminates. By definition, there are2m scheduling
events, occurring at monotonically nondecreasing times i,
for i = 1; : : : ; 2m. Let ei be the number of entries in the
scheduling matrix left empty between scheduling eventsi

andi + 1. Finally, let �i be 1 if there are any jobs waiting
in the queue after scheduling eventi, and 0 otherwise. Loss
of capacity is then defined as

� =

P2m�1

i=1 ei(i+1 � i)�i

MPL � t
f
m �N

(3)

A system is in a saturated state when increasing the load
does not result in an increase in utilization. At this point,
the loss of capacity is equal to one minus the maximum
achievable utilization. More specifically,� = 1� �.

3. Queuing policies with backfilling

In this section we analyze the behavior of well known
queuing policies when backfilling is used. A queuing policy
is a set of rules that prioritizes the order with which jobs are
selected for execution. We consider four different queuing
policies:

1. First come first serve (FCFS): Jobs are ordered ac-
cording to their arrival time.

2. Shortest job first (SJF): Jobs are ordered according to
their estimated execution time. This policy can lead
to starvation of long running jobs.

3. Best fit (BFit): Jobs are ordered according to their
size (number of nodes). The scheduler looks for the
job that best matches the number of empty nodes.

4. Worst fit (WFit): Jobs are ordered according to their
size, and scheduling proceeds from the smallest to the
largest job.

Backfilling [4, 11] is a space-sharing optimization tech-
nique that can be used with any of the above policies. With
backfilling, we can bypass the priority order imposed by
the policy, as long as the execution of a lower priority job
does not delay the start time of higher priority jobs. This re-
quirement imposes the need for an estimate of job execution
times.

Figure 3 summarizes results of average job wait time and
loss of capacity for each of the four policies we discussed
above in the presence of backfilling. For these policies, wait
time is a particularly good indication of the quality of ser-
vice from a user’s perspective. Once a job is done waiting
and starts executing, the execution proceeds as in a dedi-
cated machine. Therefore, wait time captures the essential

performance characteristics. For the purpose of providing
a performance reference, we assume perfect knowledge of
job execution times (
 = 0) when performing scheduling.
The dashed line in Figure 3(b) is a plot of� = 1 � � and,
as discussed in Section 2, represents the loci of maximum
utilization (saturation) points.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(x

10
00

 s
ec

on
ds

)

FCFS
SJF
BFit
WFit

(a) average wait time

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

utilization

A
ve

ra
ge

 c
ap

ac
ity

 lo
ss

κ = 1−ρ
FCFS
SJF
BFit
WFit

(b) average capacity loss
Figure 3. Comparing different policies in BF.

From Figure 3(a), we observe that at lower utilization (up
to 80%) all policies are comparable, with SJF leading the
pack. (We note that SJF is optimal with respect to wait time
only for uniprocessor systems.) However, at higher utiliza-
tions FCFS performs better than the other policies. From
Figure 3(b), we observe that both SJF and WFit saturate at
an utilization of 87%, while both BFit and FCFS can sustain
utilizations of 95%. However, at this high loads, FCFS ex-
hibits better average job wait time than BFit. On top of that,
FCFS is straightforward to implement and has no implied
starvation problems. In face of these results, and in order to

4

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

limit the length of this paper, we restrict our discussion to
FCFS policies for the remaining of the paper.

4. The impact of overestimation on backfilling

To compute scheduling times for jobs, backfilling de-
pends on estimates of job execution time. These are typ-
ically provided by users when jobs are submitted. It has
been shown in the literature [4] that there is little correla-
tion between estimated and actual execution times. Since
jobs are killed when the estimated time is reached, users
have an incentive to overestimate the execution time. Fur-
thermore, the effective rate at which a job executes under
gang scheduling depends on many factors, including: (i)
what is the effective multiprogramming level of the system,
(ii) what other jobs are present, and (iii) how many time
slices are occupied by the particular job. This makes it dif-
ficult to estimate the correct execution time for a job under
gang scheduling.

We conducted a study of the effect of overestimation on
the performance of backfilling schedulers using a FCFS pri-
oritization policy. The results are summarized in Figure 4.
Figures 4(a) and 4(b) plot average job slow down and av-
erage job wait time, respectively, as a function of system
utilization for different values of
. We can see that the
impact of overestimation is minimal with respect to the av-
erage behavior of user jobs. We observe that for utilizations
of up to� = 0:90 overestimation actually helps in reducing
average slow down by approximately 20% with respect to
perfect backfilling. The variation in average wait time for
utilizations up to� = 0:85 is negligible. Only at very high
utilizations we start to see some impact of overestimation.

We can understand why backfilling is not that sensitive
to the estimated execution time by the following reasoning.
On average, overestimation impacts both the jobs that are
running and the jobs that are waiting. The scheduler com-
putes a later finish time for the running jobs, creating larger
holes in the schedule. The larger holes can then be used to
accommodate waiting jobs that have overestimated execu-
tion times. The probability of finding a backfilling candi-
date effectively does not change with the overestimation.

Even though the average job behavior is insensitive to
the average degree of overestimation, individual jobs can be
affected. To verify that, we group the jobs into 10 classes
based on how close their estimated times are to their ac-
tual execution times. More precisely, classi, i = 0; : : : ; 9
includes all those jobs for which the ratio of estimated to ac-
tual execution time falls in the range[1+

10
i; 1+

10
(i+1)).

Figure 5 shows the average job wait time for (i) all jobs,
(ii) jobs in class 0 (best estimators) and (iii) jobs in class
9 (worst estimators) when the average overestimation fac-
tor is 3 (
 = 3). We observe that those users that pro-
vide good estimates are rewarded with a lower average wait

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

utilization

A
ve

ra
ge

 jo
b

sl
ow

 d
ow

n

Ω=0.0

Ω=0.5

Ω=1.0

Ω=2.0

Ω=3.0

Ω=10.0

(a) average slowdown

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(x

10
00

 s
ec

on
ds

)

Ω=0.0

Ω=0.5

Ω=1.0

Ω=2.0

Ω=3.0

Ω=10.0

(b) average wait time
Figure 4. The impact of overestimation on BF.

time. Users do get a benefit, and therefore an encourage-
ment, from providing good estimates.

Our findings are in agreement with the work described
in [17]. In that paper, the authors describe mechanisms
to more accurately predict job execution times, based on
historical data. They find that more accurate estimates of
job execution time leads to more accurate estimates of wait
time. However, the accuracy of execution time prediction
has minimal effect on system parameters, such as utiliza-
tion. The authors do observe an improvement in average
job wait time, for a particular Argonne National Laboratory
workload, when using their predictors instead of previously
published work [1, 7]. The work described in [4] shows that
significant overestimation of execution time, according to
the model we adopt, has little impact on average job slow-
down, even with
 as high as 300. It also shows, however,

5

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(x

10
00

 s
ec

on
ds

)

worst estimators

average

best estimators

Figure 5. The impact of good estimation from
a user perspective.

that user estimates may not conform to this model and can
produce worse results.

5. Backfilling gang scheduling

In the previous sections we only considered space-
sharing scheduling strategies. An extra degree of flexibility
in scheduling parallel jobs is to share the machine resources
not only spatially but also temporally by partitioning the
time axis into multiple time slices [2, 6, 18]. Schedules for
space- and time-sharing of a parallel machine can be rep-
resented by an Ousterhout matrix [14], in which the rows
represent time slices and the columns represent processors.
Each row of the matrix defines a virtual parallel machine,
which has the same number of processors as the physical
machine but runs slower. We use these virtual machines to
run multiple parallel jobs. All tasks of a parallel job are al-
ways coscheduled to run concurrently. This approach gives
each job the impression that it is still running on a dedi-
cated, albeit slower, machine. This type of scheduling is
commonly calledgang scheduling. Note that it is possible
to scheduled some jobs in multiple rows (multiple virtual
machines).

There is a cost associated with time-sharing, due mostly
to: (i) the cost of the context-switches themselves, (ii) ad-
ditional memory pressure created by multiple jobs sharing
nodes, and (iii) additional swap space pressure caused by
more jobs executing concurrently. For that reason, the de-
gree of time-sharing is usually limited by a parameter that
we call, in analogy to uniprocessor systems, the multipro-
gramming level (MPL). A gang scheduling system with
multiprogramming level of 1 reverts back to a space-sharing
system.

In our particular implementation of gang scheduling, we
operate under the following conditions. (1) Multiprogram-
ming levels are kept at modest levels, in order to guarantee
that the images of all tasks in a node remain in core. This
eliminates paging and significantly reduces the cost of con-
text switching. Furthermore, the time slices are sized so
that the cost of the resulting context switches are negligi-
ble. (2) Assignments of tasks to processors are static. That
is, once spatial scheduling is performed for the tasks of a
parallel job, they cannot migrate to other nodes. (3) When
building the scheduling matrix, we first attempt to schedule
as many jobs for execution as possible, constrained by the
physical number of processors and the multiprogramming
level. Only after that do we attempt toexpanda job, by
making it occupy multiple rows of the matrix.

Gang scheduling is a time-sharing technique that can be
applied together with any prioritizationpolicy. In particular,
we have shown in previous work [5, 12] that gang schedul-
ing is very effective in improving the performance of FCFS
policies. This is in agreement with the results in [15]. We
have also shown that gang scheduling is particularly effec-
tive in improving system responsiveness, as measured by
average job wait time. However, gang scheduling alone is
not as effective as backfilling in improving average job re-
sponse time, unless very high multiprogramming levels are
allowed. These may not be achievable in practice by the
reasons mentioned in the previous paragraphs.

Gang scheduling and backfilling are two optimization
techniques that operate on orthogonal axes, space for back-
filling and time for gang scheduling. It is tempting to com-
bine both techniques in one scheduling system. In principle
this can be done by treatingeach of the virtual machines
created by gang scheduling as a target for backfilling. The
difficulty arises in estimating the execution time for parallel
jobs. Some jobs can appear in multiple rows, and there-
fore execute at a faster rate than other jobs. Furthermore,
the execution rate of an individual job can change during its
lifetime, as new jobs arrive and executing jobs terminate,
causing changes to the scheduling matrix.

Fortunately, as we have shown in Section 4, even sig-
nificant average overestimation of job execution time has
little impact on average system performance. Therefore, it
is reasonable to attempt to use a worst case scenario when
estimating the execution time of parallel jobs under gang
scheduling. We take the simple approach of computing the
estimated time under gang scheduling as the product of the
estimated time on a dedicated machine and the multipro-
gramming level.

We compare seven different scheduling strategies. They
all use FCFS as the prioritization policy. The first strat-
egy is a space-sharing policy that uses backfilling to opti-
mize the performance parameters. We identify this strat-
egy asBF. We also use three variations of gang scheduling,

6

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

with multiprogramming levels 2, 3, and 5. These strategies
are identified byGS-2, GS-3, GS-5, respectively. Finally,
we consider three strategies that combine backfilling and
gang scheduling, with the same multiprogramming level as
above. That is, backfilling is applied toeach virtual ma-
chine created by gang scheduling. These are referred to as
BGS-2, BGS-3, BGS-5. (It is important to note that the
combined backfilling and gang scheduling with a multipro-
gramming level of 1 reverts back to ourBF strategy.) We
first present results based on a perfect estimation of the jobs
execution time for a dedicated system (
 = 0:0). Later, we
show that overestimation does not change the conclusions.

We use the performance parameters described in Sec-
tion 2, namely (i) average slow down, (ii) average wait time,
and (iii) average loss of capacity, to compare the strategies.
For slow down and wait time we additionally compare the
standard deviation for these parameters. The standard devi-
ation serves as a measure of fairness: smaller standard devi-
ations indicate that more jobs operate closer to the average
and therefore closer to each other.

Figure 6 shows the slow down results for all our seven
strategies. We observe that regular gang scheduling (GS
strategies) results in very high slow downs, even at low or
moderate (less than� = 0:75) utilizations. Backfilling ba-
sically performs much better than gang scheduling with re-
spect to slow down. Equally, the standard deviation of slow
down reveals thatBF provides better fairness to the users.
The combined approach (BGS) is always better than its in-
dividual components (BF andGS with corresponding mul-
tiprogramming level). The improvement in average slow
down is monotonic with the multiprogramming level. This
observation also applies most of the time for the standard
deviation. For any given maximum slow down,BGS al-
lows the system to be driven to much higher utilizations,
while preserving good fairness characteristics. We want to
emphasize that significant improvements can be achieved
even with the low multiprogramming level of 2. For in-
stance, if we choose a maximumacceptable slow down of
20, the resulting maximum utilization is� = 0:68 for GS-
5, � = 0:73 for BF and� = 0:82 for BGS-2. That last
result represents an improvement of 20% overGS-5 with a
much smaller multiprogramming level.

Figure 7 shows the wait time results for all our seven
strategies. We observe the same kind of behavior as for slow
down. The combined strategies (BGS) are always superior
to pure backfilling or gang scheduling, both with respect to
average and standard deviation. Again we observe a very
consistent monotonic improvement with the multiprogram-
ming level.

We further analyze the scheduling strategies by compar-
ing the behavior of the system for large and small jobs. (As
defined in Section 2, a small job uses 32 or fewer nodes,
while a large job uses more than 32 nodes.) Those results

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

 d
ow

n

BF
BGS−2
BGS−3
BGS−5
GS−2
GS−3
GS−5

(a) average slowdown

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

250

300

350

400

450

500

utilization

S
ta

nd
ar

d
de

vi
at

io
n

of
 jo

b
sl

ow
 d

ow
n

BF
BGS−2
BGS−3
BGS−5
GS−2
GS−3
GS−5

(b) standard deviation of slowdown
Figure 6. Comparing slow down for BGS with
BF and GS.

are shown in Figure 8. We observe that, for a given utiliza-
tion, the machine appears almost equally as slow for both
large and small jobs when theBGS strategy is used. In
contrast, forBF the difference increases with higher utiliza-
tions. At � = 0:90 utilization, the machine appears 35%
slower to small jobs than to large jobs. The differences be-
tween large and small jobs are more significant for the wait
time parameter. Both forBF andBGS, the machine appears
less responsive to large jobs than to small jobs as utilization
increases. However, the difference is larger forBF.

At first, the results for slow down and wait time for large
and small jobs may seem contradictory: small jobs have
smaller wait times but larger slow down. But, since smaller
jobs tend to have shorter execution time, the relative cost
of waiting in the queue can be larger. We note thatBGS
impacts the wait time for large and small jobs in a way that

7

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(x

10
00

 s
ec

on
ds

)

BF
BGS−2
BGS−3
BGS−5
GS−2
GS−3
GS−5

(a) average wait time

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

S
ta

nd
ar

d
de

vi
at

io
n

of
 jo

b
w

ai
t t

im
e

(x
10

00
 s

ec
on

ds
)

BF
BGS−2
BGS−3
BGS−5
GS−2
GS−3
GS−5

(b) standard deviation of wait time
Figure 7. Comparing job wait time for BGS
with BF and GS.

ends up making the system feel equal to all kinds of jobs.

Whereas Figures 6 through 8 report performance from a
user’s perspective, we now turn our attention to the system’s
perspective. Figure 9 is a plot of the average capacity loss
as a function of utilization for all our seven strategies. By
definition, all strategies saturate at the line� = 1��, which
is indicated by the dashed line in Figure 9. Again, the com-
bined policies deliver consistently better results than the
pure backfilling and gang scheduling (of equal MPL) poli-
cies. The improvement is also monotonic with the multi-
programming level. However, all backfilling based policies
(pure or combined) saturate at essentially the same point.
Loss of capacity comes from holes in the scheduling matrix
and the ability to fill those holes actually improves when
the load is very high. We observe that the capacity loss for

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

 d
ow

n

BF, Large

BF, Small

BGS−5, Large

BGS−5, Small

(a) slowdown of large and small jobs

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(x

10
00

 s
ec

on
d)

BF, Large

BF, Small

BGS−5, Large

BGS−5, Small

(b) wait time of large and small jobs
Figure 8. Comparing the behavior of large and
small jobs for BGS with BF.

BF actually starts to decrease once utilization goes beyond
� = 0:75. At very high loads (� > 0:95) there are almost
always small jobs to backfill holes in the schedule. Look-
ing purely from a system’s perspective, we note that pure
gang scheduling can only be driven to utilization between
� = 0:82 and � = 0:87, for multiprogramming levels 2
through 5. On the other hand, the backfilling strategies can
be driven to up to� = 0:97 utilization.

One could argue that the perfect estimate of completion
time (
 = 0:0) could be a reason for unduly biasing the re-
sults in favor ofBGS here. To point out that this is not the
case, we have also run experiments with
 = 2:0, and the
performance from user’s (slowdown and wait time) and sys-
tem’s (capacity loss) perspectives are presented in Figure 10
and Figure 11. As can be seen, a larger overestimation fac-

8

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

utilization

A
ve

ra
ge

 c
ap

ac
ity

 lo
ss

BF
BGS−2
BGS−3
BGS−5
GS−2
GS−3
GS−5
κ = 1−ρ

Figure 9. Comparing capacity loss for BGS
with BF and GS.

tor even improves performance from a user’s perspective,
despite a slightly higher capacity loss. Nevertheless, the
overall trends and conclusions drawn comparingBGS with
BF andGS for
 = 0 still hold for
 = 2:0.

To summarize our observations, we have shown that
the combined strategy of backfilling with gang scheduling
(BGS) consistently outperforms the other strategies (back-
filling and gang scheduling separately) from the perspec-
tives of responsiveness, slow down, fairness, and utilization.

6. Concluding remarks and future work

This paper has made three valuable contributions to-
wards implementing effective job scheduling strategies for
large scale parallel machines. First, we have shown that
FCFS policy, in conjunction with backfilling, does just as
well as other fancier policies such as shortest job first, best
fit, and worst fit. FCFS is not only straightforward to im-
plement, but it also avoids starvation. Second, we have
shown that overestimation of execution times has minimal
impact on the resulting system behavior, supporting the re-
sults in [4]. However, we have also shown that users that
provide better estimates see a benefit in reduced wait time
for their jobs. Finally, We can effectively combine gang
scheduling and backfilling, by conservatively estimating the
gang scheduling execution time to be the multiprogram-
ming level times the estimated execution time of the job on
a dedicated machine.

These three results help us take an important step to-
wards developing an efficient execution environment for
parallel applications on large scale machines. In particular,
we developed an integrated strategy called Backfilling Gang
Scheduling (BGS), which combines backfilling (on a FCFS
job arrival queue) with gang scheduling. We have shown

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

 d
ow

n

BF, Ω=0.0
BF, Ω=2.0
BGS−2, Ω=0.0
BGS−2, Ω=2.0
BGS−3, Ω=0.0
BGS−3, Ω=2.0
BGS−5, Ω=0.0
BGS−5, Ω=2.0

(a) slow down

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(x

10
00

 s
ec

on
ds

)

BF, Ω=0.0
BF, Ω=2.0
BGS−2, Ω=0.0
BGS−2, Ω=2.0
BGS−3, Ω=0.0
BGS−3, Ω=2.0
BGS−5, Ω=0.0
BGS−5, Ω=2.0

(b) wait time
Figure 10. Comparing performance parame-
ters for BGS with BF and GS.

how this integrated strategy outperforms a system which
uses just backfilling or just gang scheduling over a spec-
trum of performance criteria. This exercise has involved
detailed simulations of the different alternatives using work-
loads that have been synthesized from realistic scenarios at
LLNL.

There are several topics for future research that are
closely related to what has been studied in this paper. We
would like to consider the impact of context switching costs
in ourBGS strategy. In particular, we want to measure the
effectiveness of combined gang scheduling and backfilling
in actual production use, as implemented by IBM Research
in the prototype GangLL job scheduling system for ASCI
Blue-Pacific [5, 13]. We would also like to examine issues
related to migration inBGS, with respect to different per-
formance criteria. Finally, we are planning to conduct a

9

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

utilization

A
ve

ra
ge

 c
ap

ac
ity

 lo
ss

BF, Ω=0.0
BF, Ω=2.0
BGS−2, Ω=0.0
BGS−2, Ω=2.0
BGS−3, Ω=0.0
BGS−3, Ω=2.0
BGS−5, Ω=0.0
BGS−5, Ω=2.0
κ = 1−ρ

Figure 11. Average capacity loss for different
scheduling strategies.

detailed study comparing the pros and cons of space shar-
ing, space and time sharing via coscheduling, and the re-
cently evolving strategies falling in the class of space and
time sharing via dynamic coscheduling.

References

[1] A. B. Downey. Using Queue Time Predictions for Pro-
cessor Allocation. In IPPS’97 Workshop on Job Scheduling
Strategies for Parallel Processing, volume 1291 ofLecture
Notes in Computer Science, pages 35–57. Springer-Verlag,
April 1997.

[2] D. G. Feitelson and M. A. Jette.Improved Utilization and
Responsiveness with Gang Scheduling. In IPPS’97 Work-
shop on Job Scheduling Strategies for Parallel Processing,
volume 1291 ofLecture Notes in Computer Science, pages
238–261. Springer-Verlag, April 1997.

[3] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong.Theory and Practice in Parallel
Job Scheduling. In IPPS’97 Workshop on Job Scheduling
Strategies for Parallel Processing, volume 1291 ofLecture
Notes in Computer Science, pages 1–34. Springer-Verlag,
April 1997.

[4] D. G. Feitelson and A. M. Weil. Utilization and pre-
dictability in scheduling the IBM SP2 with backfilling .
In 12th International Parallel Processing Symposium, pages
542–546, April 1998.

[5] H. Franke, J. Jann, J. E. Moreira, and P. Pattnaik.An Eval-
uation of Parallel Job Scheduling for ASCI Blue-Pacific.
In Proceedings of SC99, Portland, OR, November 1999.
IBM Research Report RC21559.

[6] H. Franke, P. Pattnaik, and L. Rudolph.Gang Schedul-
ing for Highly Efficient Multiprocessors . In Sixth Sym-
posium on the Frontiers of Massively Parallel Computation,
Annapolis, Maryland, 1996.

[7] R. Gibbons.A Historical Application Profiler for Use by
Parallel Schedulers. In IPPS’97 Workshop on Job Schedul-
ing Strategies for Parallel Processing, volume 1291 ofLec-
ture Notes in Computer Science, pages 58–77. Springer-
Verlag, April 1997.

[8] B. Gorda and R. Wolski.Time Sharing Massively Parallel
Machines. In International Conferenceon Parallel Process-
ing, volume II, pages 214–217, August 1995.

[9] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Ri-
ordan.Modeling of Workload in MPPs. In Proceedings of
the 3rd Annual Workshop on Job Scheduling Strategies for
Parallel Processing, pages 95–116, April 1997. In Conjuc-
tion with IPPS’97, Geneva, Switzerland.

[10] H. D. Karatza.A Simulation-Based Performance Analysis
of Gang Scheduling in a Distributed System. In Proceed-
ings 32nd Annual Simulation Symposium, pages 26–33, San
Diego, CA, April 11-15 1999.

[11] D. Lifka. The ANL/IBM SP scheduling system. In
IPPS’95 Workshop on Job Scheduling Strategies for Paral-
lel Processing, volume 949 ofLecture Notes in Computer
Science, pages 295–303. Springer-Verlag, April 1995.

[12] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and M. A.
Jette.An Infrastructure for Efficient Parallel Job Execu-
tion in Terascale Computing Environments. In Proceed-
ings of SC98, Orlando, FL, November 1998.

[13] J. E. Moreira, H. Franke, W. Chan, L. L. Fong, M. A.
Jette, and A. Yoo.A Gang-Scheduling System for ASCI
Blue-Pacific. In High-Performance Computing and Net-
working, 7th International Conference, volume 1593 ofLec-
ture Notes in Computer Science, pages 831–840. Springer-
Verlag, April 1999.

[14] J. K. Ousterhout.Scheduling Techniques for Concurrent
Systems. In Third International Conference on Distributed
Computing Systems, pages 22–30, 1982.

[15] U. Schwiegelshohn and R. Yahyapour.Improving First-
Come-First-Serve Job Scheduling by Gang Scheduling.
In IPPS’98 Workshop on Job Scheduling Strategies for Par-
allel Processing, March 1998.

[16] J. Skovira, W. Chan, H. Zhou, and D. Lifka.The EASY-
LoadLeveler API project . In IPPS’96 Workshop on
Job Scheduling Strategies for Parallel Processing, volume
1162 ofLecture Notes in Computer Science, pages 41–47.
Springer-Verlag, April 1996.

[17] W. Smith, V. Taylor, and I. Foster.Using Run-Time Predic-
tions to Estimate Queue Wait Times and Improve Sched-
uler Performance. In Proceedings of the 5th Annual Work-
shop on Job Scheduling Strategies for Parallel Processing,
April 1999. In conjunction with IPPS/SPDP’99, Condado
Plaza Hotel & Casino, San Juan, Puerto Rico.

[18] K. Suzaki and D. Walsh.Implementation of the Combina-
tion of Time Sharing and Space Sharing on AP/Linux. In
IPPS’98 Workshop on Job Scheduling Strategies for Parallel
Processing, March 1998.

[19] K. K. Yue and D. J. Lilja.Comparing ProcessorAllocation
Strategies in Multiprogrammed Shared-Memory Multi-
processors. Journal of Parallel and Distributed Computing,
49(2):245–258, March 1998.

10

0-7695-0574-0/2000 $10.00 � 2000 IEEE
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 30,2021 at 13:10:08 UTC from IEEE Xplore. Restrictions apply.

