High Performance Computing Systems (CMSC714)

Lecture 8: Perf. Analysis & Visualization

Abhinav Bhatele, Department of Computer Science

Summary of last lecture

- Task-based programming models and Charm++
- Key principles:
 - Over-decomposition, virtualization
 - Message-driven execution
- Automatic load balancing, checkpointing, fault tolerance

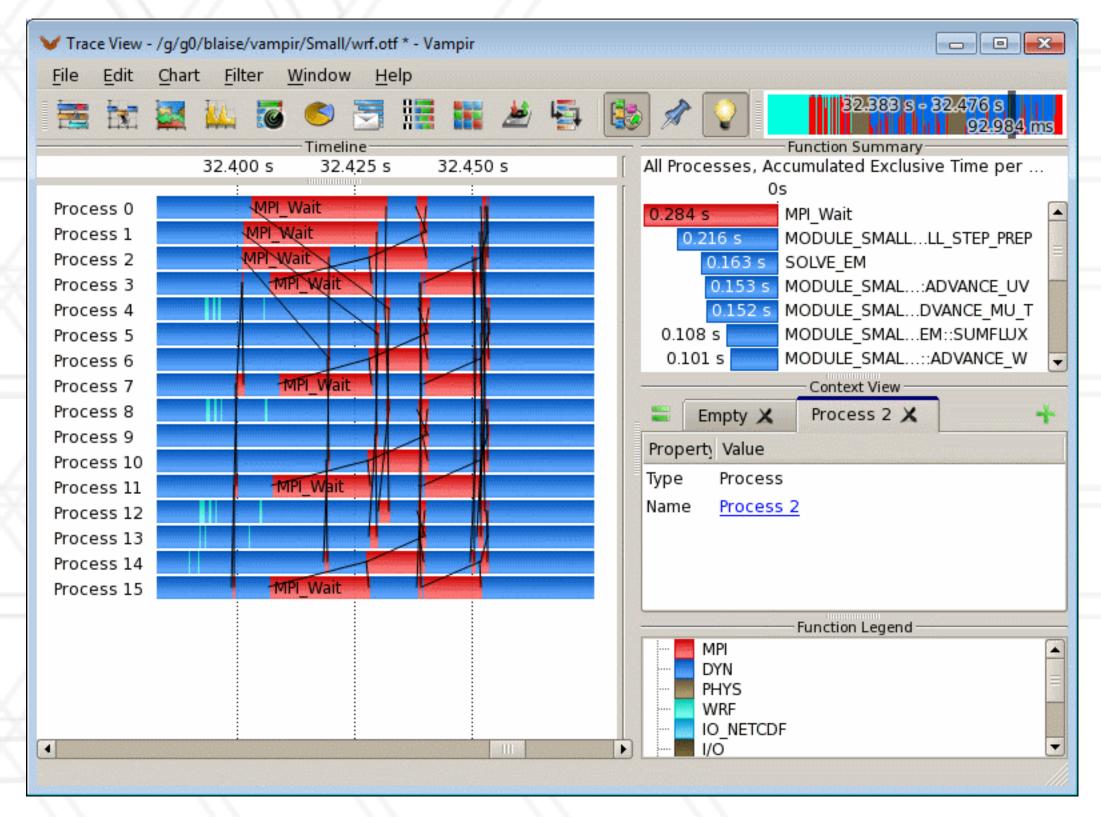
Abhinav Bhatele (CMSC714)

Tracing tools

- Record all the events in the program with timestamps
- Events: function calls, MPI events, etc.

Vampir visualization: <u>https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server</u>

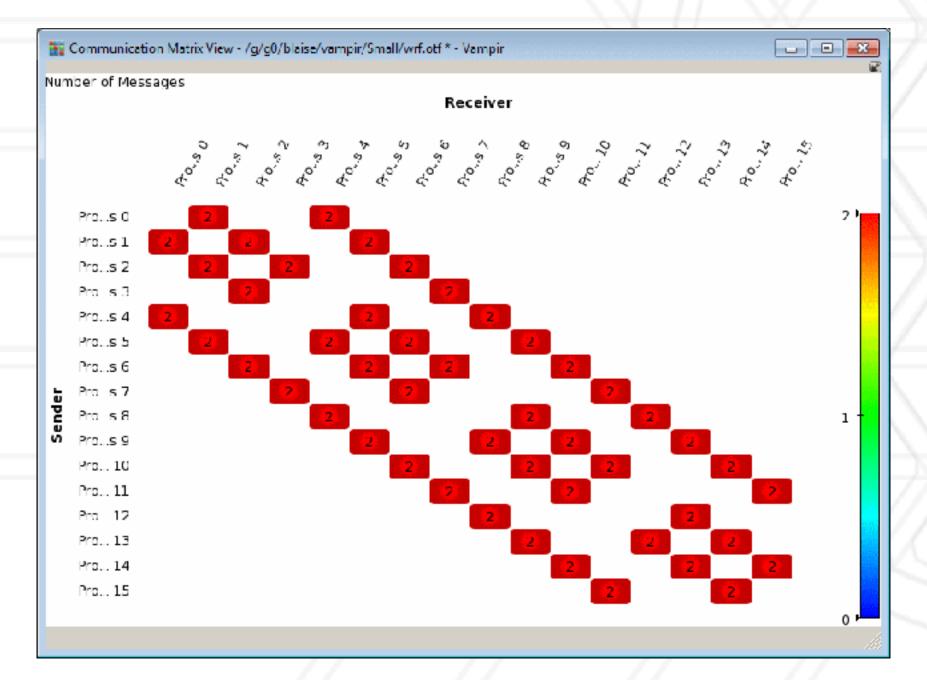
Abhinav Bhatele (CMSC714)



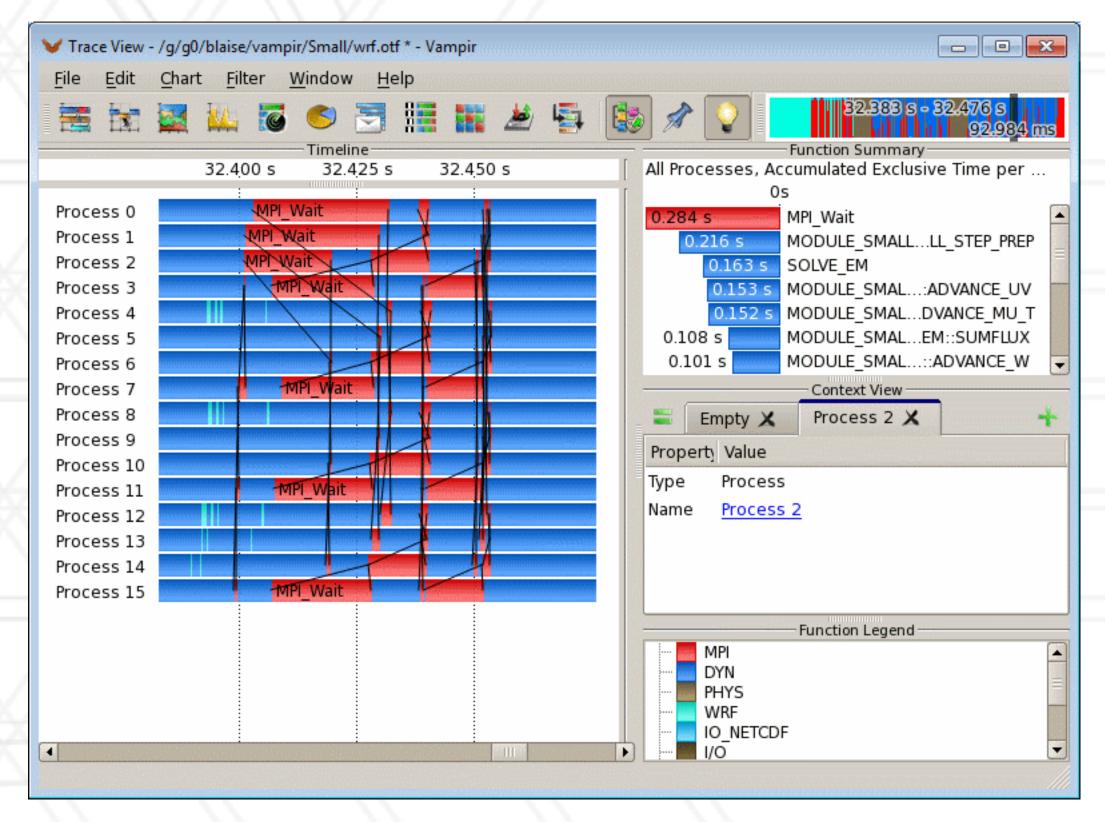
Tracing tools

- Record all the events in the program with timestamps
- Events: function calls, MPI events, etc.

Vampir visualization: <u>https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server</u>

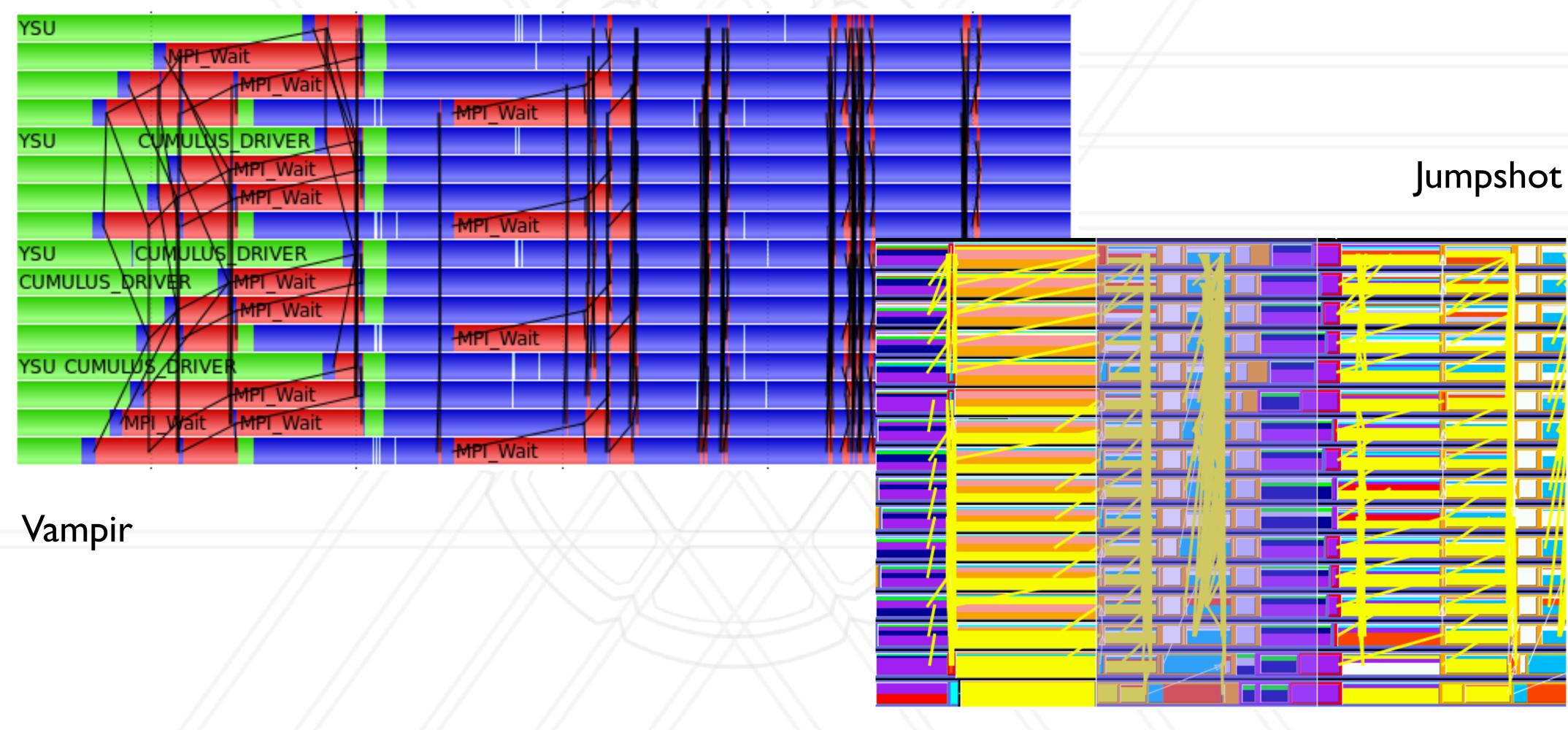


Abhinav Bhatele (CMSC714)


Tracing tools

- Record all the events in the program with timestamps
- Events: function calls, MPI events, etc.

Vampir visualization: <u>https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server</u>



Abhinav Bhatele (CMSC714)

MPI trace visualization

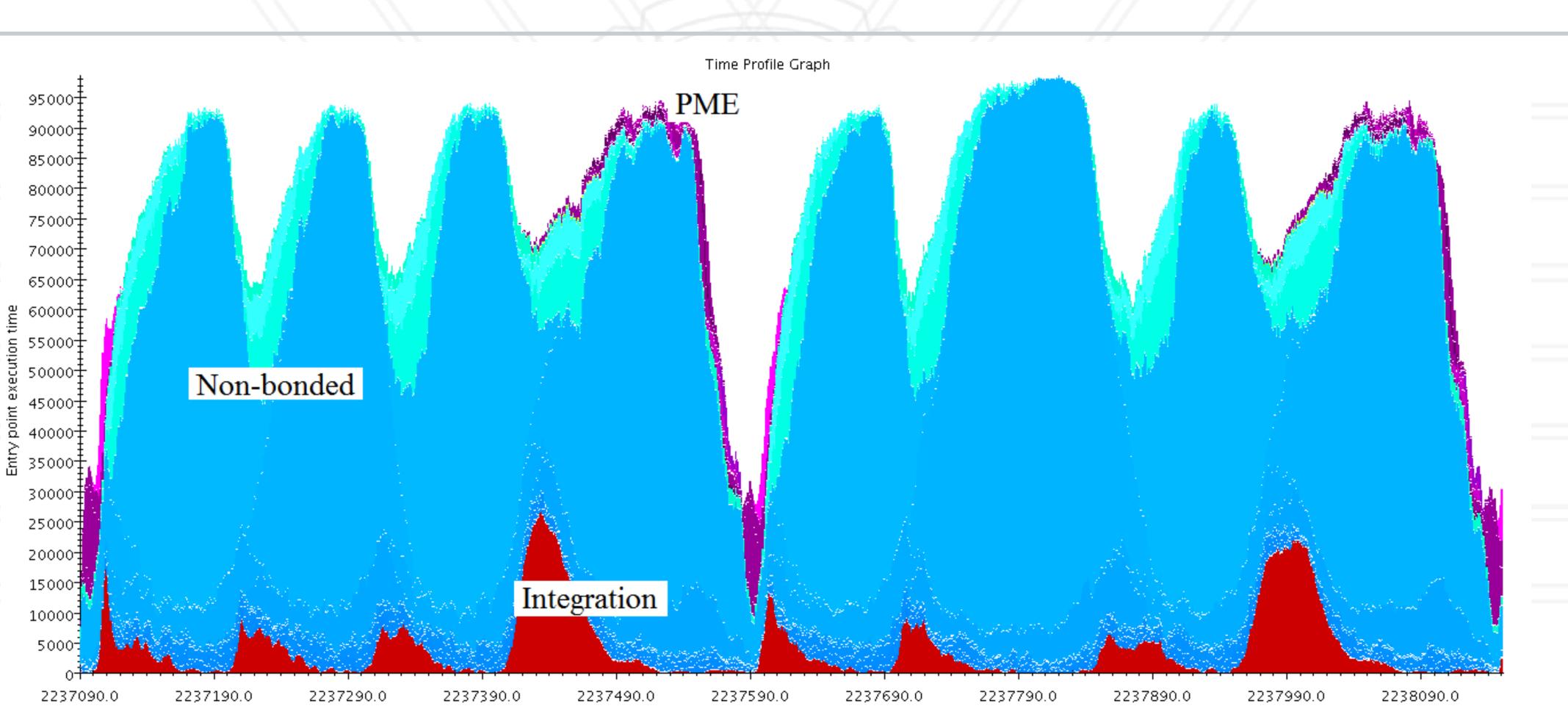
- Process 0
- Process 1
- Process 2
- Process 3
- Process 4
- Process 5
- Process 6
- Process 7
- Process 8
- Process 9
- Process 10
- Process 11
- Process 12
- Process 13
- Process 14
- Process 15

LIVE RECORDING

4


Abhinav Bhatele (CMSC714)

Projections Performance Analysis Tool

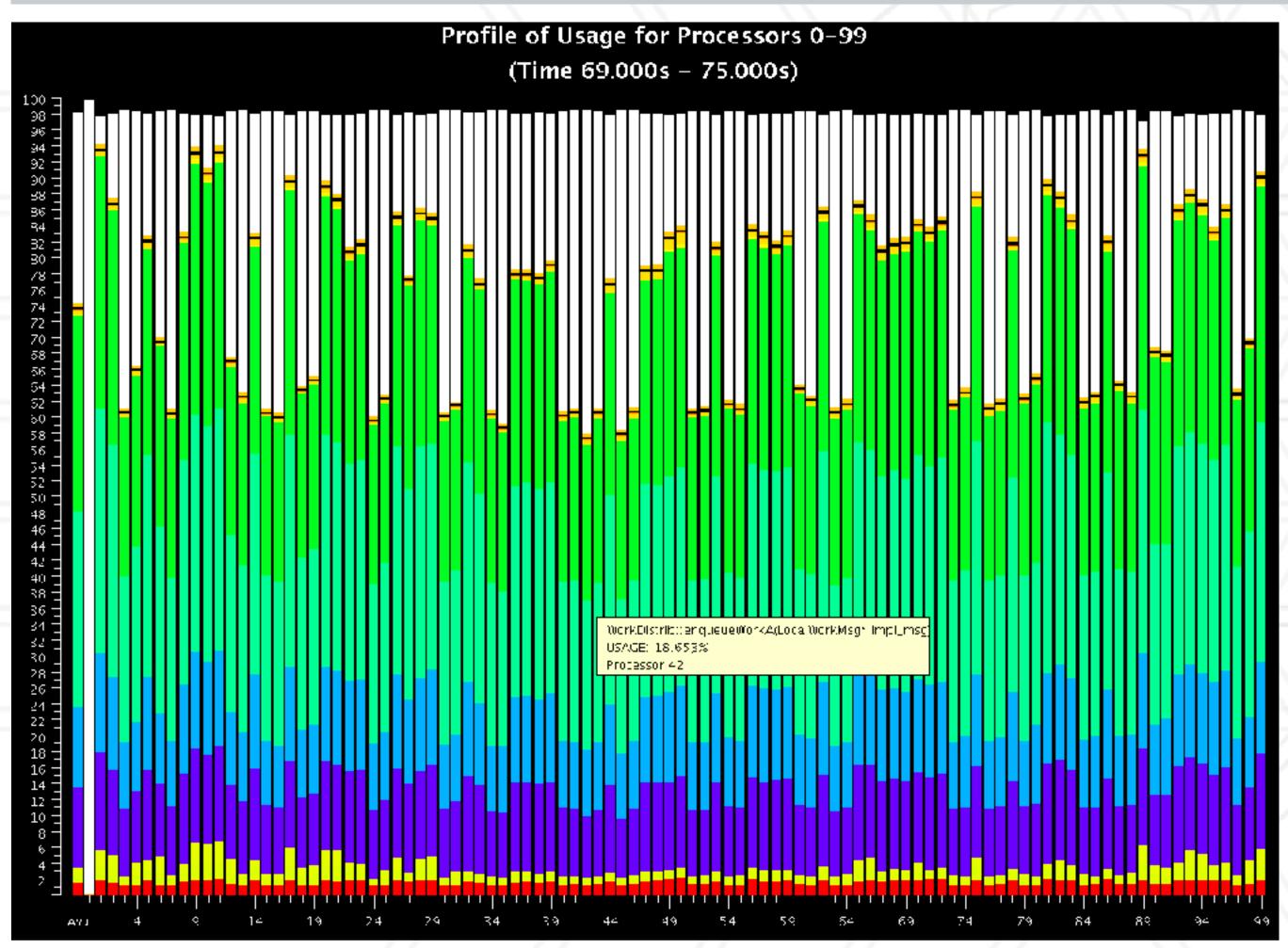

- For Charm++/Adaptive MPI programs
- Instrumentation library
 - Records data at the granularity of chares (Charm++ objects)
- Java-based GUI

Abhinav Bhatele (CMSC714)

Time Profile

Time Interval (0.100ms)

https://charm.readthedocs.io/en/latest/projections/manual.html

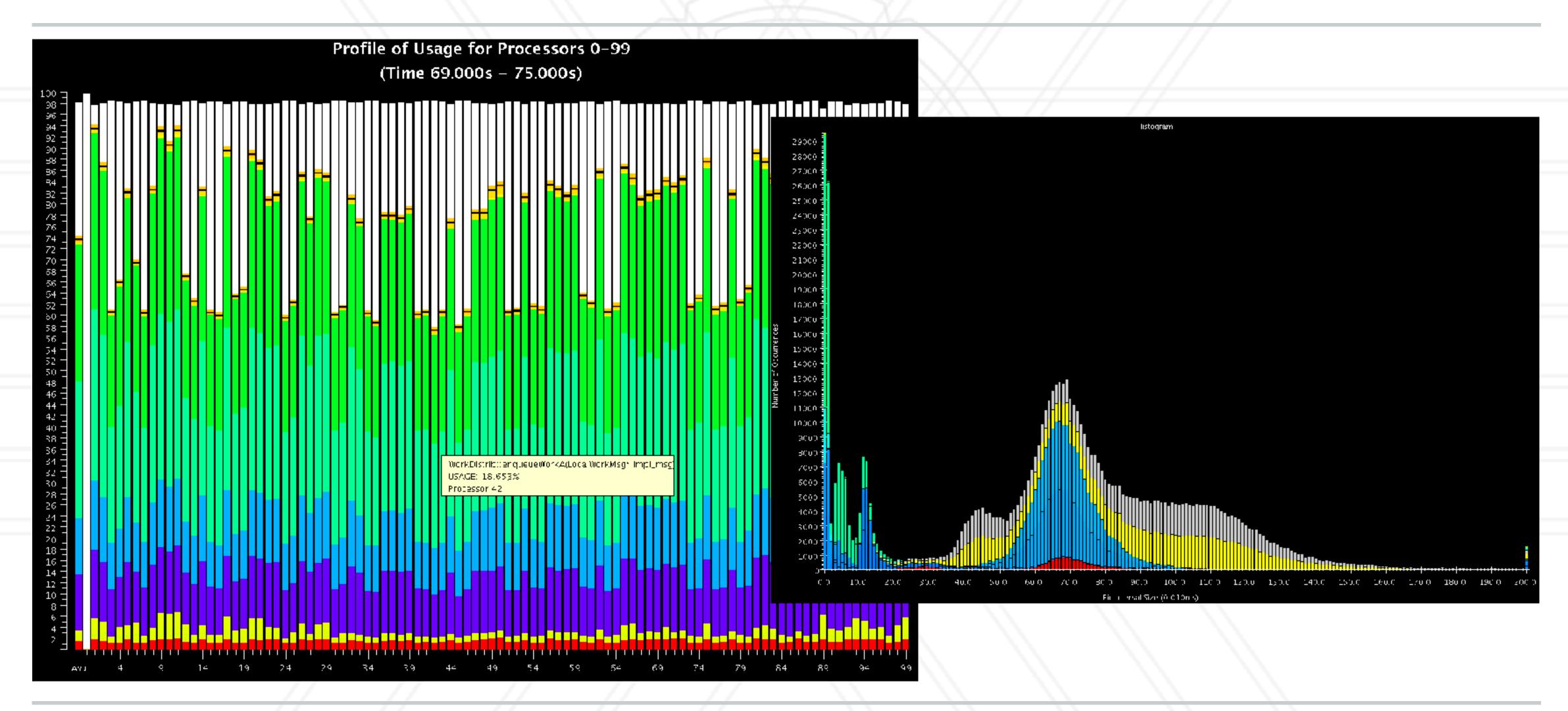


Abhinav Bhatele (CMSC714)

LIVE RECORDING

6

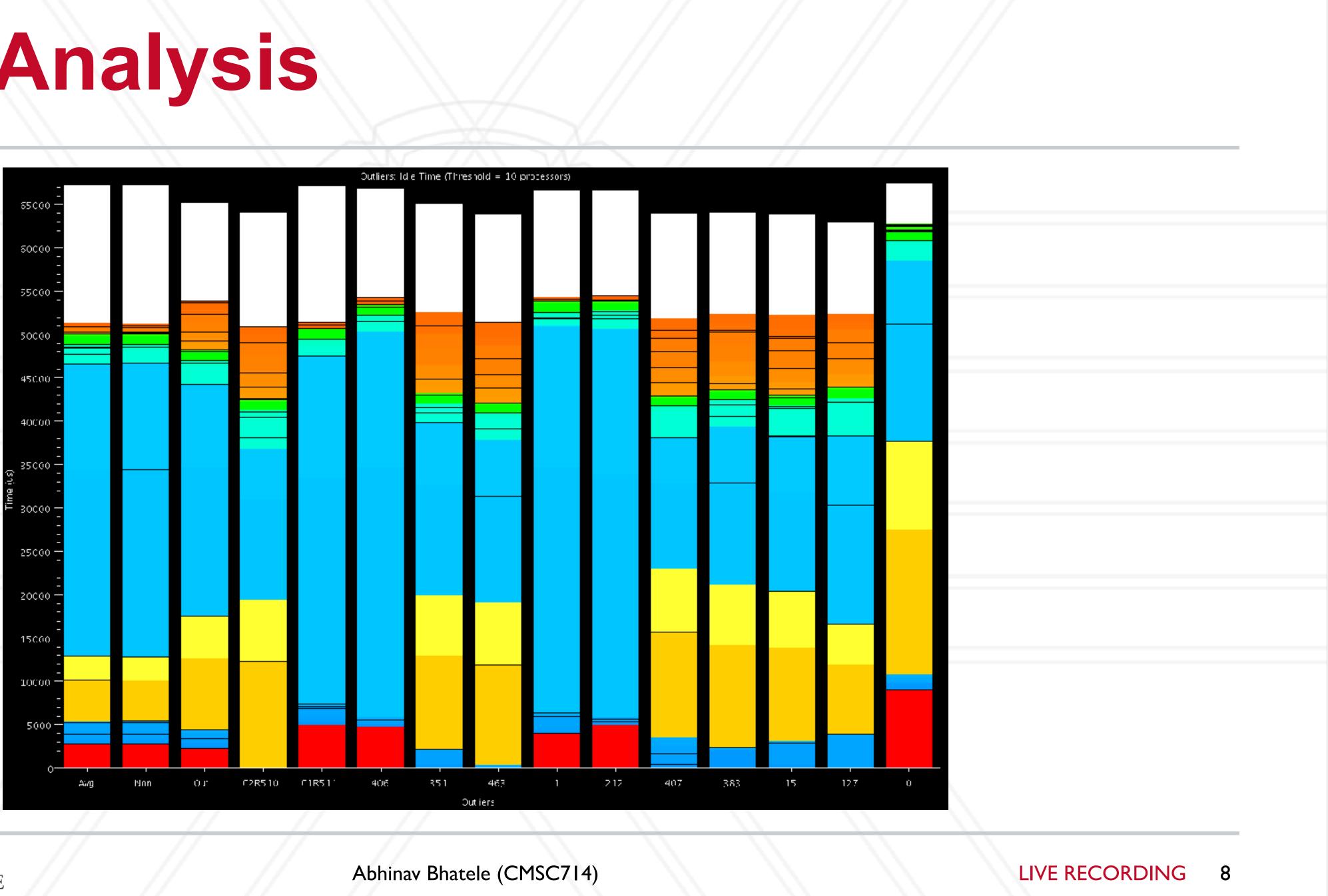
Usage Profile & Histogram View



COMPUTER SCIENCE

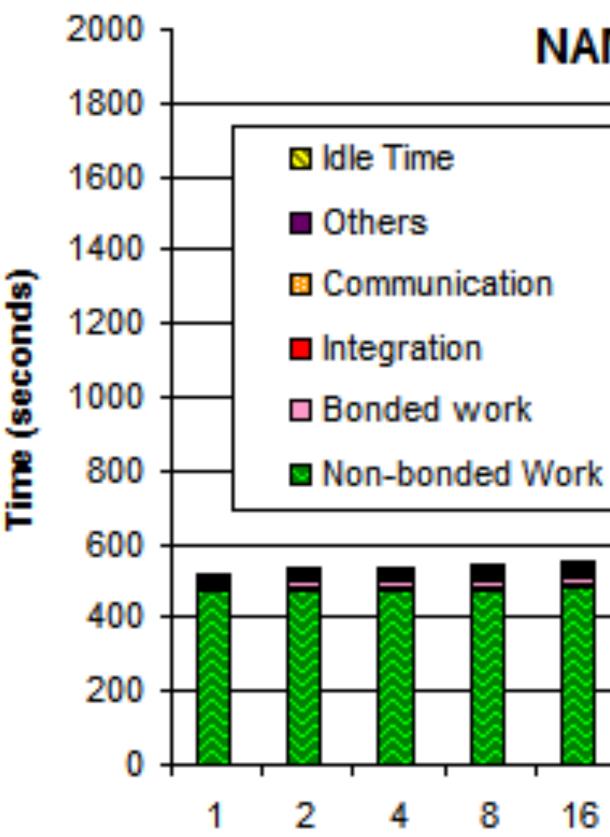
Abhinav Bhatele (CMSC714)

Usage Profile & Histogram View


COMPUTER SCIENCE

Abhinav Bhatele (CMSC714)

LIVE RECORDING


7

Outlier Analysis

Scripting for multi-run comparisons

Abhinav Bhatele (CMSC714)

Processors

NAMD on Blue Gene/L 256 512 1024 2048 4096 64 128 32

Limitations of current analysis tools

- Support their own unique format(s)
- Limited support for saving or automating analysis
- Most tools only support viewing one dataset at a time
- Lack capabilities to sub-select and focus on specific parts

000	hmc	
odp parses	lar specific.h	
13		
76	inline void globalSumArray(float *dest, int ien)	
77		
78	QMP_sum_float_array(dest, len);	
75		
50		
51	//! Low level hook to QMP_global_sum	
52		
53	수는 그는 것 같아요. 이 의 수는 것 같아요. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	
6 54		
55		
50		
57	/// Global sum on a multi1d	
88	template <class t=""></class>	
89	inline void globalSumArray(multi1d <t>& dest)</t>	
90	승규는 것 같은 것 같은 것 같은 것 같은 것에서 한 것이 있는 것 같은 것이 없는 것 같은 것이 없는 것 같은 것이다. 것은 것 같은 것이 없는 것 같은 것이다.	
41		
		34.4
	*	

Scopes 🕺 🕅	≄ samples (I) ∇	# samples (E)	
Le main	5.80eC5 57.5%	1	10
▼ ₽> void Chroma::doHMC <chroma::hmctrjparams>(QCP::muld1d<qdf< td=""><td>5.70005 95.8%</td><td></td><td></td></qdf<></chroma::hmctrjparams>	5.70005 95.8%		
loop at hmc.cc: 311-435	5.65405 95-08		
TRy Chroma::AbsHMCTrj < QDP::multi1d < QDP::OLattice < QDP::PScala	5.65eC5 95.C%		
The Chromattiat ColMatSTSLeap frogRecursive integrator toperator ()	5.25e05 88.2%		
Ioop at icm_sts_leapfrog_recursive.cc: 129-131	4.85003 81.58		
🔻 🖶 Chroma: LatColMatExpSdtintegrator:: operator:)(Chroma::A	4.25008 71.48		
loop at icm_exp_sdt.cc: 85-88	4.25e05 71.4%		
Chroma:: LCMMDIntegratorSteps::leapP(0DP::multi1d <	4.25eC5 71.4%		
▼ ዙ Chroma:: 1 woF lavorExactWilsonTypeFermMonomial<	3.30e05 55.5%	_	
TR> Chroma::TwoFlavorExactWilsonTypeFermMonomia	2.30005 38.78		
▼	2.20e65 37.0%		
loop at syssolver_mdagm_cg.h: 56–70	2.2CeC5 37.Ct		
T D: Chroma: SystemSolverResults_t.Chroma::Inv	2.2CeC5 37.C8		
🔻 🔛 Chroma:::SystemSolverResults_t Chroma::li	2.2CeC5 37.0%	1.00e04 1.78	1
▼ loop at inveg2.cc: 147-182	1.85eC5 31.1%	5.0003 0.88	£
Chroma::EvenOddPrecWilsonLinOp::or	1.05eC5 17.6%	1.00604 1.78	
Et Chroma::EvenOddPrecWilsonLinOp.com	7.0CeC4 11.8%	1.50004 2.58	ŧ
[I] globalSumArray	5.00eC3 0.6%		
[I] vaxpy3	5.00e03 C.8%	5.00e03 0.8%	
► [I] local_sumsq			
(-)	20000 - 50		

hpcviewer's GUI

Abhinav Bhatele (CMSC714)

10

Limitations of current analysis tools

- Support their own unique format(s)
- Limited support for saving or automating analysis
- Most tools only support viewing one dataset at a time
- Lack capabilities to sub-select and focus on specific parts

Do not enable programmatic analysis of the data by the end user

000	hme	
cdp pars	calar.specific.h	
	/5 //! Low level nobk to QMP_global_sum	
	75 Inline void globalSumArray(float *dest, int ien)	
	77 1	
	78 QMP_sum_float_array(dest, len);	
	79]	
	10	
	31 //! Low level hook to QMP_global_sum	
	32 inline void globalSumArray(double *dest, int len)	
	33 1	
0	34 QMP_sum_couble_array(cest, len);	
	5]	
	15	
	37 //! Global sum on a multi1c	
	8B template <class t=""></class>	
	inline void globalSumArray(multi1d <t>& dest)</t>	
	11 11 The implementation here is relying on the structure being nacked	
-		34-2

Calling Context View Callers View Flat View

Scopes 👰 🔠	⇒ samples (I) ∇	# samples (E)	3
(# main	5.80e05 57.5%	1	h
▼ ₽> void Chromu::doHMC <chroma::hmctrjparams>(QCP::multi1d<qdf< td=""><td>5.7CeC5 95.8%</td><td></td><td></td></qdf<></chroma::hmctrjparams>	5.7CeC5 95.8%		
Ioop at hmc.cc: 311-435	5.65405 95-08		11
TRy Chroma::AbsHMCTrj < QDP::multi1d < QDP::OLattice < QDP::PScala	5.65005 95.08		
🔻 👺 Chromatti at ColMatSTSLeap frogRecursive integrator toperator().	5.25005 88.2%		
Ioop at icm_sts_leapfrog_recursive.cc: 129-131	4.85003 81.58		U
🔻 🖶 Chroma: LatColMatExpSdtintegrator::operator()(Chroma::A	4.25605 71.48		
Icop at icm_exp_sdt.cc: 85-88	4.25eC5 71.4%		
Chroma::LCMMDintegratorSteps::leapP(QDP::multild <	4.25eC5 71.4%		
▼ 勝 Chroma::1woFlavorExactWilsonTypeFermMonomial<	3.30e05 55.5%		
TR: Chroma::TwoFlavorExactWilsonTypeFermMonomia	2.30005 38.78		
▼ B> Chroma::MdagM5ysSolverCG < QDP::01attice < QI	2.20e65 37.0%		
loop at syssolver_mdagm_cg.h: 56–70	2.2CeC5 17.C%		
The Chroma: SystemSolverResults_t Chroma: Inv	2.20e05 37.0%		
🛡 🔛 Chroma:::SystemSolverResults_t Chroma::h	2.2CeC5 37.0%	1.00604 1.78	E.
Ioop at inveg2.cc: 147-182	1.85605 31.1%		S
Chroma::EvenOddPrecWilsonLinOp::op	1.05eCS 17.6%	PERSONAL AREAS	
Et Chroma::EvenOddPrecWilsonLinOp.:or	7.0CeC4 11.8%	1.50604 2.5%	
[I] globalSumArray	5.00eC3 0.8%		
► (I) vaxpy3	5.00e03 0.8%	5.00e03 0.8%	14
[I] local sumsq			+
)++	Second a de	24-	-

hpcviewer's GUI

10

Hatchet


- A Python-based library to enable programmatic analysis
- Creates an in-memory representation of the graph
- Leverage pandas which supports multi-dimensional tabular datasets
 - Use graph as structured index to index pandas dataframes
- A set of operators to sub-select and/or aggregate profile data
- A set of operators to compare multiple datasets

Abhinav Bhatele (CMSC714)

Abhinav Bhatele (CMSC714)

 Pandas is an open-source Python library for data analysis

- Pandas is an open-source Python library for data analysis
- Dataframe: two-dimensional tabular data structure
 - Supports many operations borrowed from SQL databases

Cal	
\mathbf{CO}	umns


		node	name	time (inc)	time	
	0	{'name': 'main'}	main	200.0	10.0	
	1	{'name': 'physics'}	physics	60.0	40.0	
a	2	{'name': 'mpi'}	mpi	20.0	5.0	
Rows	3	{'name': 'psm2'}	psm2	15.0	30.0	
	4	{'name': 'solvers'}	solvers	100.0	10.0	
	5	{'name': 'hypre'}	hypre	65.0	30.0	
	6	{'name': 'mpi'}	mpi	35.0	20.0	
	7	{'name': 'psm2'}	psm2	25.0	60.0	

- Pandas is an open-source Python librar for data analysis
- Dataframe: two-dimensional tabular data structure
 - Supports many operations borrowed from SQL databases

Index			x // //C	Columns				
ry			node	name	time (inc)	time		
		0	{'name': 'main'}	main	200.0	10.0		
		1	{'name': 'physics'}	physics	60.0	40.0		
ata		2	{'name': 'mpi'}	mpi	20.0	5.0		
R	Rows	3	{'name': 'psm2'}	psm2	15.0	30.0		
		4	{'name': 'solvers'}	solvers	100.0	10.0		
		5	{'name': 'hypre'}	hypre	65.0	30.0		
		6	{'name': 'mpi'}	mpi	35.0	20.0		
		7	{'name': 'psm2'}	psm2	25.0	60.0		

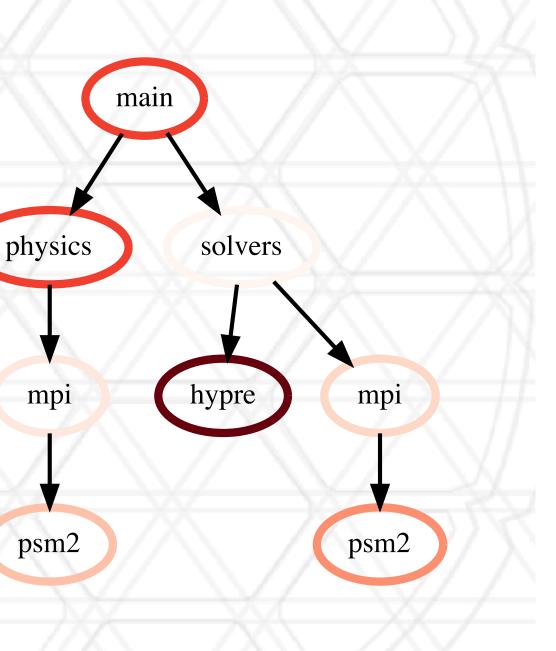
- Pandas is an open-source Python librar for data analysis
- Dataframe: two-dimensional tabular da structure
 - Supports many operations borrowed from SQL databases
- MultiIndex enables working with highdimensional data in a 2D data structure

		ndex	//C</th <th colspan="6">Columns</th>	Columns					
ry			node	name	time (inc)	time			
		0	{'name': 'main'}	main	200.0	10.0			
ata		1	{'name': 'physics'}	physics	60.0	40.0			
ata	2	{'name': 'mpi'}	mpi	20.0	5.0				
	Rows	3	{'name': 'psm2'}	psm2	15.0	30.0			
	4	{'name': 'solvers'}	solvers	100.0	10.0				
		5	{'name': 'hypre'}	hypre	65.0	30.0			
\times		6	{'name': 'mpi'}	mpi	35.0	20.0			
re		7	{'name': 'psm2'}	psm2	25.0	60.0			

Central data structure: a GraphFrame

- Consists of a structured index graph object and a pandas dataframe
- Graph stores caller-callee relationships
- Dataframe stores all numerical and categorical data

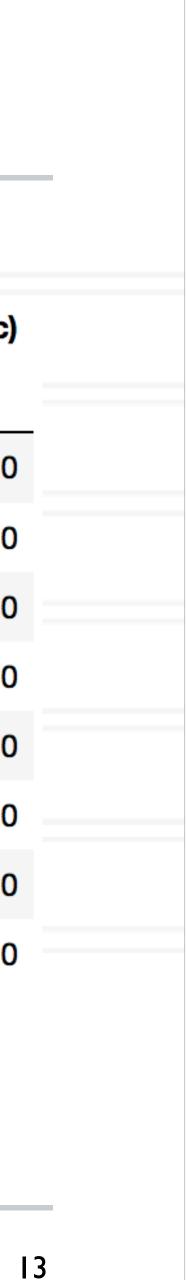
Abhinav Bhatele (CMSC714)



Central data structure: a GraphFrame

- Consists of a structured index graph object and a pandas dataframe
- Graph stores caller-callee relationships
- Dataframe stores all numerical and categorical data

Abhinav Bhatele (CMSC714)



Central data structure: a GraphFrame

- Consists of a structured index graph object and a pandas dataframe
- Graph stores caller-callee relationships
- Dataframe stores all numerical and categorical data

		name	nid	node	time	time (inc)
main	node					
	main	main	0	main	40.0	200.0
	physics	physics	1	physics	40.0	60.0
physics solvers	mpi	mpi	2	mpi	5.0	20.0
	psm2	psm2	3	psm2	15.0	15.0
mpi hypre mpi	solvers	solvers	4	solvers	0.0	100.0
	hypre	hypre	5	hypre	65.0	65.0
psm2 psm2	mpi	mpi	6	mpi	10.0	35.0
	psm2	psm2	7	psm2	25.0	25.0

UNIVERSITY OF MARYLAND

Questions?

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu