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Summary of last lecture

• Task-based programming models and Charm++

• Key principles:

• Over-decomposition, virtualization

• Message-driven execution

• Automatic load balancing, checkpointing, fault tolerance
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Tracing tools
• Record all the events in the program with timestamps

• Events: function calls, MPI events, etc.
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Vampir visualization: https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server
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MPI trace visualization
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Projections Performance Analysis Tool

• For Charm++/Adaptive MPI programs

• Instrumentation library

• Records data at the granularity of chares (Charm++ objects)

• Java-based GUI
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Time Profile

6
Figure 3. Time profile for ApoA1 on 1k processors of Blue Gene/L (with PME) in Projections
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Figure 4. NAMD performs well on any given
number of processors (Plot shows ApoA1
running on Blue Gene/L, with PME on a range
of processor counts varying from 207 to 255)

this decomposition is called 2-Away-X, 2-Away-XY or 2-
Away-XYZ etc. depending on which dimension uses k = 2.
The choice of which decomposition to use for a particu-
lar run is decided by the program depending on the atoms-
to-processor ratio and other machine-dependent heuristics.
NAMD also gives the user flexibility to choose the decom-
position for certain scenarios where the automatic choices
do not give the best results.

Neither the number of cells nor the number of compute
objects need to be equal to the exact number of processors.
Typically, the number of cells is smaller than the number of
processors, by an order of magnitude, which still generates
adequate parallelism (because of the separation of “com-
pute” objects) to allow the load balancer to optimize com-

munication, and distribute work evenly. As a result, NAMD
is able to exploit any number of available processors. Fig. 4
shows the performance of the simulation of ApoA1 on vary-
ing numbers of Blue Gene/L (BG/L) processors in the range
207-255. In contrast, schemes that decompose particles into
P boxes, where P is the total number of processors may
limit the number of processors they can use for a particular
simulation: they may require P to be a power of two or be
a product of three numbers with a reasonable aspect ratio.

We now describe a few features of NAMD and analyze
how they are helpful in scaling performance to a large num-
ber of processors.

2.1 Adaptive Overlap of Communication

and Computation

NAMD uses a message-driven runtime system to ensure
that multiple modules can be composed concurrently with-
out losing efficiency. In particular, idle times in one module
can be exploited by useful computations in another. Fur-
thermore, NAMD uses asynchronous reductions, whenever
possible (such as in the calculation of energies). As a result,
the program is able to continue without sharp reductions
in utilization around barriers. For example, Fig. 3 shows a
time profile of a simulation of ApoA1 on 1024 processors of
BG/L (This figure was obtained by using the performance
analysis tool Projections [10] available in the CHARM++
framework). A time profile shows vertical bars for each
(consecutive) time interval of 100 us, activities executed by
the program added across all the processors. The red (dark)
colored “peaks” at the bottom correspond to the force in-
tegration step, while the dominant blue (light) colored re-
gions represent non-bonded computations. The pink and
purple (dark at the top) shade appearing in a thin layer ev-
ery 4 steps represent the PME computation. One can notice

https://charm.readthedocs.io/en/latest/projections/manual.html
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Usage Profile & Histogram View

7



Abhinav Bhatele (CMSC714) LIVE RECORDING

Usage Profile & Histogram View

7



Abhinav Bhatele (CMSC714) LIVE RECORDING

Outlier Analysis
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Scripting for multi-run comparisons
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No of Cores 8 16 32 64 128 256 512 1024 2048
Desmond ApoA1 256.8 126.8 64.3 33.5 18.2 9.4 5.2 3.0 2.0
NAMD ApoA1 199.25 104.96 50.69 26.49 13.39 7.12 4.21 2.53 1.94
Desmond DHFR 41.4 21.0 11.5 6.3 3.7 2.0 1.4
NAMD DHFR 27.25 14.99 8.09 4.31 2.37 1.5 1.12 1.03

Table 10. Comparison of benchmark times (ms/step) for NAMD (running on 2.6 GHz Opterons) and
Desmond (running on 2.4 GHz Opterons)

6 Future Work

Figure 8. Percentage increase of different
parts of NAMD with increase in number of
processors (ApoA1 on BG/L and XT3, with-
out PME)

The needs of biomolecular modeling community require
us to pursue strong scaling i.e. we must strive to scale the
same molecular system to an ever larger number of proces-
sors. We have demonstrated very good scalability with the
techniques described in this paper, but challenges remain,
especially if we have to exploit the petascale machines for
the same problems. To analyze if this is feasible and what
avenues are open for further optimizations, we carried out a

performance study of scaling that we summarize below.
We used the the summary data provided by Projections

which gives detailed information about the time elapsed in
the execution of each function in the program and also the
time for which each processor is idle. This data, collected
on the Cray XT3 machine at PSC and the BG/L machine at
IBM for 1 to 4,096 processors, is shown in Fig. 8.

To simplify the figures, functions involved in similar or
related activities are grouped together. The first observation
is that the idle time rises rapidly beyond 256 processors.
This is mostly due to load imbalance, based on further anal-
ysis. One of the next challenges is then to develop load
balancers that attain better performance while not spend-
ing much time or memory in the load balancing strategy it-
self. Also, there is a jump in the non-bonded work from
256 to 512 which can be attributed to the change in the
decomposition strategy from 2-Away-X to 2-Away-XY at
that point which doubles the number of cells. Since the es-
sential computational work involved in non-bonded force
evaluation does not increase, we believe that this increase
can be reduced by controlling the overhead in scheduling
a larger number of objects. The other important slowdown
is because of the increase in communication overhead as
we move across the processors. Looking back at Table 1
we see that from 512 to 16K processors, the computation
time per processor should ideally decrease 32-fold but does
not. This can be attributed in part to the communication
volume (per processor) decreasing only by a factor of about
10. Although some of this is inevitable with finer-grained
parallelization, there might be some room for improvement.

7 Summary

The need for strong scaling of fixed-size molecular sys-
tems to machines with ever-increasing number of proces-
sors has created new challenges for biomolecular simula-
tions. Further, some of the systems being studied now in-
clude several million atoms. We presented techniques we
developed or used, to overcome these challenges. These
included dealing with interaction among two of our adap-
tive strategies: generation of spanning trees and load bal-
ancing. We also presented new techniques for reducing
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Limitations of current analysis tools

• Support their own unique format(s)

• Limited support for saving or automating analysis

• Most tools only support viewing one dataset at a time

• Lack capabilities to sub-select and focus on specific parts of larger datasets

10

hpcviewer’s GUI
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hpcviewer’s GUI

Do not enable programmatic analysis of the data 
by the end user
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Hatchet

• A Python-based library to enable programmatic analysis

• Creates an in-memory representation of the graph

• Leverage pandas which supports multi-dimensional tabular datasets

• Use graph as structured index to index pandas dataframes

• A set of operators to sub-select and/or aggregate profile data

• A set of operators to compare multiple datasets
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Pandas and dataframes
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for data analysis
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Pandas and dataframes

• Pandas is an open-source Python library 
for data analysis

• Dataframe: two-dimensional tabular data 
structure

• Supports many operations borrowed from SQL 
databases

12
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Pandas and dataframes

• Pandas is an open-source Python library 
for data analysis

• Dataframe: two-dimensional tabular data 
structure

• Supports many operations borrowed from SQL 
databases

• MultiIndex enables working with high-
dimensional data in a 2D data structure
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Central data structure: a GraphFrame

• Consists of a structured index 
graph object and a pandas 
dataframe

• Graph stores caller-callee 
relationships

• Dataframe stores all numerical 
and categorical data
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useful orderings (like pre-order, post-order, etc.), if we want to pay
the cost of a graph traversal (or sort) to generate more structured
keys. We default to only guaranteeing uniqueness and not order in
our keys.

3.2 Graphframe
The central data structure in the Hatchet library is a Graphframe,
which combines the structured index Graphwith a pandas DataFrame.
Figure ?? shows the two objects in a graphframe – a graph object
(the index), and a dataframe object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: In Hatchet, the graphframe consists of a graph and
a dataframe object.

Because of the way we have architected the Hatchet structured
index Graph, we can insert Node objects directly into the pandas
data frame. The nodes are indexed and sorted using their basic
comparison operators, which operate on their key attribute. Thus,
the �rst column in the dataframe (the node) is the index column.
As a convenience, we may also add columns (like name) based on
attributes from each node’s FrameID. For example, in the �gure, we
have added the name and nid columns from the FrameID subclass
for HPCToolkit. This allows us to use regular pandas operations
(selection, �ltering) on these values directly. As we will see later, the
node column itself also allows various graph-semantic functions to
be used, as well.

Finally, in addition to the identifying information for each node,
we also add columns for each associated performance metric (inclu-
sive and exclusive time in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on
a tree can create edges, turning the tree into a graph. Additionally,
output from tools such as callgrind is already in the form of a DAG.
Hatchet’s directed graph could be connected or have multiple dis-
connected components. Each entity in the graph, such as a callsite,
procedure frame, or function, is stored as a node and the caller-
callee relationships are stored as directed edges. Each node in the
graph can have one or multiple parents and children.

Bene�ts of Dataframes: We use a pandas dataframe to store all
the numerical and categorical data associated with each node. Pro-
�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or thread. In such cases, each node

in the call tree or graph has metrics per-MPI process and/or thread
and this data needs to be stored and indexed hierarchically. To index
the rows of the data frame in such cases, a MultiIndex consisting
of the structured index for the node and MPI rank or thread ID is
used. In the most general case, a row in the data frame is indexed
by a process and/or thread ID (and any other needed identi�ers in
even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the Dataframe. The risk this poses in our API
is that client code can extract a subset of a Dataframe and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all dataframes that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The Graphframe API is responsible for ensuring that
operations between any two Graphframes use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the
new frame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
dataframe together.

One further consequence of our index model is that to use two
dataframes together, we require that their graphs be uni�ed. That is,
that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that they must be in the same graph
for comparison to make sense. We accomplish this by traversing
the graphs and computing their union according to their connec-
tivity and FrameID values (described further in the API section).
Incidentally, this type of restriction is not unusual in pandas, where
comparing two data frames frequently requires reconciling their
indexes, as well. We abstract the details of these graph operations
in Hatchet through the GraphFrame API, which determines when
and how Graphframes should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, that GraphFrame models the edge
relationships between nodes in the structured data, and a dataframe
storing the numerical (performance metrics such as time, PAPI
counters data, etc.) and categorical data (e.g., load module, �le, line
number) associated with each node. The generality of what can
be stored in a pandas dataframe enables Hatchet to store almost
any kind of contextual information recorded during sampling by
diverse pro�ling tools.

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
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The central data structure in the Hatchet library is a Graphframe,
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(the index), and a dataframe object storing the metrics associated
with each node.
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Because of the way we have architected the Hatchet structured
index Graph, we can insert Node objects directly into the pandas
data frame. The nodes are indexed and sorted using their basic
comparison operators, which operate on their key attribute. Thus,
the �rst column in the dataframe (the node) is the index column.
As a convenience, we may also add columns (like name) based on
attributes from each node’s FrameID. For example, in the �gure, we
have added the name and nid columns from the FrameID subclass
for HPCToolkit. This allows us to use regular pandas operations
(selection, �ltering) on these values directly. As we will see later, the
node column itself also allows various graph-semantic functions to
be used, as well.

Finally, in addition to the identifying information for each node,
we also add columns for each associated performance metric (inclu-
sive and exclusive time in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
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(instead of a tree) for two reasons. First, subsequent operations on
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output from tools such as callgrind is already in the form of a DAG.
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connected components. Each entity in the graph, such as a callsite,
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�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or thread. In such cases, each node

in the call tree or graph has metrics per-MPI process and/or thread
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to graph nodes into the Dataframe. The risk this poses in our API
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using copy-on-write to simplify the management of the graph and
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One further consequence of our index model is that to use two
dataframes together, we require that their graphs be uni�ed. That is,
that they share the same index. This should be obvious when con-
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