
Lecture 12: Fat-tree and Dragonfly Networks
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)

Abhinav Bhatele (CMSC714) LIVE RECORDING

Summary of last lecture

• Key requirements of HPC networks

• extremely low latency, high bandwidth, scalable

• low network diameter, high bisection bandwidth

• Torus networks (less common now)

• Network diameter grows as O() where N is the number of nodes

• Different types of routing algorithms:

• Shortest path vs. non-minimal

• Static vs. dynamic

3 N

2

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Compute
Nodes

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Compute
Nodes

Router/switch radix = number of ports = k

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Compute
Nodes

Router/switch radix = number of ports = k

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Level 1

Compute
Nodes

Router/switch radix = number of ports = k

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Level 1

Level 2

Compute
Nodes

Router/switch radix = number of ports = k

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Level 1

Level 2

Compute
Nodes

Router/switch radix = number of ports = k
Pod = group of switches = k/2 switches

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Level 1

Level 2

Compute
Nodes

Router/switch radix = number of ports = k
Pod = group of switches = k/2 switches

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Level 1

Level 2

Level 3

Compute
Nodes

Router/switch radix = number of ports = k
Pod = group of switches = k/2 switches

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree network

3

Level 1

Level 2

Level 3

Compute
Nodes

Router/switch radix = number of ports = k
Pod = group of switches = k/2 switches Max. number of pods = k

• Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714) LIVE RECORDING

Fat-tree networks on the top500 list

• Infiniband EDR/FDR/HDR, Intel Omni-Path

4

https://www.top500.org/statistics/list, November 2020

https://www.top500.org/statistics/list
https://www.top500.org/statistics/list

Abhinav Bhatele (CMSC714) LIVE RECORDING

Routing on a fat-tree

• Until recently, most fat-tree installations used static routing

• Destination-mod-k (D-mod-k) routing

• Adaptive routing is now starting to be used

5

Abhinav Bhatele (CMSC714) LIVE RECORDING

Variations on a full bandwidth fat-tree

6

Single-rail single-plane fat-tree

Abhinav Bhatele (CMSC714) LIVE RECORDING

Variations on a full bandwidth fat-tree

6

Single-rail single-plane fat-tree (tapered)

Abhinav Bhatele (CMSC714) LIVE RECORDING

Variations on a full bandwidth fat-tree

6

Dual-rail single-plane fat-tree

Abhinav Bhatele (CMSC714) LIVE RECORDING

Variations on a full bandwidth fat-tree

7

Single-rail single-plane fat-tree

Abhinav Bhatele (CMSC714) LIVE RECORDING

Variations on a full bandwidth fat-tree

7

Dual-rail dual-plane fat-tree

Abhinav Bhatele (CMSC714) LIVE RECORDING

Dragonfly network

8

Router 0 Router 1 Router 2 Router 31

12 nodes

Group 0 Group 1 Group 2 Group 31

0 1 2 .. 0 1 2 ..

0 1 2 .. 0 1 2 ..

Rack 0 Rack 1 Rack 582

To
 0

-1
8

To
 1

9-
37

Abhinav Bhatele (CMSC714) LIVE RECORDING

IBM PERCS network

• All-to-all connections within each group

9

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

One supernode in the PERCS topology

Abhinav Bhatele (CMSC714) LIVE RECORDING

IBM PERCS network

• All-to-all connections within each group

9

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

One supernode in the PERCS topology

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

Abhinav Bhatele (CMSC714) LIVE RECORDING

Cray Aries network

• Row and column all-to-all connections within each group

10

Rank-2 All-to-all network
Link bandwidth - 5.25 GB/s/
direction

3-link bundles between each
Aries pair leads to 15.75
GB/s of uni-directional
bandwidth

Rank-1 All-to-all network
Link bandwidth - 5.25 GB/s/

direction
Network Tiles

Processor Tiles

Rank-1 network

Rank-2 network

Rank-3 network

Aries NICs

Aries Router

Compute Nodes

A Group with 96 routers

Abhinav Bhatele (CMSC714) LIVE RECORDING

Cray Aries network

• Row and column all-to-all connections within each group

10

Rank-2 All-to-all network
Link bandwidth - 5.25 GB/s/
direction

3-link bundles between each
Aries pair leads to 15.75
GB/s of uni-directional
bandwidth

Rank-1 All-to-all network
Link bandwidth - 5.25 GB/s/

direction
Network Tiles

Processor Tiles

Rank-1 network

Rank-2 network

Rank-3 network

Aries NICs

Aries Router

Compute Nodes

A Group with 96 routers

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Abhinav Bhatele (CMSC714) LIVE RECORDING

Cray Aries network

• Row and column all-to-all connections within each group

10

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Rank-2 All-to-all network
Link bandwidth - 5.25 GB/s/
direction

3-link bundles between each
Aries pair leads to 15.75
GB/s of uni-directional
bandwidth

Rank-1 All-to-all network
Link bandwidth - 5.25 GB/s/

direction
Network Tiles

Processor Tiles

Rank-1 network

Rank-2 network

Rank-3 network

Aries NICs

Aries Router

Compute Nodes

A Group with 96 routers

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Abhinav Bhatele (CMSC714) LIVE RECORDING

Network comparisons

11

Table 1: Assignment of router ports (radix = k) to nodes and links in order to ensure balance between injection and global
network bandwidth. This also determines the maximum possible system size in terms of the number of nodes. Note: L refers
to local links, and G refers to global links in a dragon�y topology.

Network topology #nodes/router #links/router Maximum system size (#nodes)

All-to-all (A2A) dragon�y k/4 k/2 (L), k/4 (G) (k/2 + 1)2 ⇥ (k/4 + 1) ⇥ k/4
Row-column (RC) dragon�y k/6 2k/3 (L), k/6 (G) (k/3 + 1)4 ⇥ (k/6 + 1) ⇥ k/6
Express mesh (3D, gap=1) k/4 3k/4 (k/4 + 1)3 ⇥ k/4
Fat-tree (three-level) k/2 k/2 k/2 ⇥ k/2 ⇥ k

We identify di�erent constraints that are typically applied when
designing networks in practice, and describe these constraints in
terms of the choices a network designer would make for the num-
ber of nodes, routers and links in the system. Each constraint �xes
one or more quantities that de�ne the system – number of nodes,
routers, and/or links. We then build systems that use one of three
scalable HPC network topologies – dragon�y [24] (two variations),
express mesh [19] (a dense mesh-based network), and fat-tree [25],
and apply the same constraints to them (we refer to this method-
ology as iso-{*} analysis in the rest of the paper). Note that we
study two variations of the dragon�y topology – one has all-to-all
links connecting all the routers in a group, implemented in the
IBM PERCS system [6] and the Cray Slingshot network [2], and the
other has all-to-all links connecting routers in each row/column in
a group, implemented in the Cray Cascade (XC) system [15].

Each network and the corresponding system is constructed using
�ve di�erent iso-X con�gurations which results in twenty systems
in total. Predicted performance on these systems is then compared
using parallel discrete-event simulations (PDES) of the network
models and replay of relevant HPC workloads composed of execu-
tion traces from di�erent parallel application motifs. We �nd that
di�erent network topologies emerge as the best performers under
di�erent iso-X constraints. We also compare the performance per
dollar of di�erent systems using relative costs for the routers and
links, derived from market data.

Most previouswork [9, 19, 20, 28, 32] assume a balanced injection-
to-global bandwidth constraint and then evaluate systems for that
particular scenario. To the best of our knowledge, this is the �rst
study that undertakes a comprehensive evaluation of network
topologies across many practically relevant iso-{*} scenarios (Ta-
ble 2). The novel contributions of this work are:
• Identifying di�erent constraints that are applied when design-
ing networks in practice, and describing these constraints in
terms of the number of nodes, routers and/or links in the sys-
tem (iso-{*} con�gurations).

• Design and analysis of HPC systems based on four di�erent
network topologies in each of �ve iso-X con�gurations using
discrete-event simulations of relevant HPC workloads.

• Study of cost-performance tradeo�s of the designed systems
and con�gurations using relative costs for routers and links,
derived from market data.

2 HIGH-PERFORMANCE NETWORKS
In this section, for completeness, we describe three scalable, high-
speed interconnection network topologies that have been proposed

for use in HPC systems. For each network topology, we also de-
scribe the construction of a balanced con�guration of the system. A
balanced con�guration ensures a balance between injection band-
width and global network bandwidth.

Dragon�y:The dragon�y topologywas proposed byKim et al. [24],
motivated by the arrival of high-radix routers in the market. This
topology uses a set of high-radix routers to create a logical group
which then connects with other groups giving the impression of a
densely connected network. There are two ways in which routers
within a group can be connected and we refer to them by di�erent
names in this paper. In an “all-to-all” (A2A) dragon�y, within a
group, each router is connected to every other router by a direct
link. In a “row-column” (RC) dragon�y, within a group, routers
are arranged in logical rows and columns, and routers within each
row and column are connected in an all-to-all fashion. The A2A
dragon�y has been implemented by IBM in the PERCS system [6],
and by Cray in the Shasta system (Slingshot network [2]). The
RC dragon�y has been implemented by Cray in the Cascade (XC)
systems [15]. The dragon�y topology is known to be highly scalable,
i.e. very large systems can be constructed given a �xed router
radix, without increasing the network diameter. However, especially
for large systems, the need for adaptive non-minimal routing to
tackle congestion and lack of shortest-path diversity can impact
the observed performance on this network.

In a dragon�y network, some ports on each router are assigned
to compute nodes, local links (connections to other routers in the
same logical group), and global links (connections to routers in other
groups). Assuming the radix of each router to bek , we can derive the
optimal division of ports between compute nodes and network links
(local and global) such that the network load is balanced. In the A2A
dragon�y, in the shortest path between a source-destination pair,
the maximum number of local links traversed is two for each global
link and injection port (to which a compute node is connected).
Hence, k/4 ports each should be assigned to compute nodes and
global links, and k/2 ports should be assigned to local links to
achieve a balanced con�guration. This determines the maximum
system size which is derived in the third column in Table 1. In the
RC dragon�y, for each global link and injection port, a maximum
of four local links are traversed when using shortest-path routing.
Hence, k/6 ports each should be assigned to compute nodes and
global links, and 2k/3 ports should be assigned to local links to
achieve a balanced con�guration.

Express mesh: Express mesh is derived from an n-dimensional
mesh topology by adding links within each dimension to reduce

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

2

the network diameter [19]. It is inspired by and a generalization of
express cubes proposed by Dally [13]. In an n-dimensional mesh,
each router is connected to 2 ⇥ n other routers, two in each di-
mension. In an express mesh, within each dimension, additional
links are used to connect a router to some or all routers (whose
coordinates di�er only in the speci�c dimension). The number of
additional connections depends on a gap parameter, �. When � = 1,
there are all-to-all connections between all routers that only di�er
in one mesh coordinate; in this case express mesh is the same as
the HyperX topology [5].

A balanced construction of a three-dimensional (3D) express
mesh with � = 1 necessitates assigning k/4 ports to compute nodes
and the remaining 3k/4 ports to network links (divided equally
among all dimensions in a cuboidal shape). This is because the
maximum number of hops in a 3D express mesh with � = 1 is three.
Similar to n-dimensional mesh, express mesh is suitable for near-
neighbor communication, but also provides high global bandwidth
using the additional links. However, like dragon�y, lack of shortest-
path diversity can negatively impact performance in express mesh
networks also.

Fat-tree: The fat-tree topology was proposed by Leiserson in 1985
to connect parallel machines [25], and has been widely used in
HPC systems of di�erent sizes in the last three decades. The logical
network represents an n-ary tree where the bandwidth between
nodes of the tree increases as we get closer to the root. Since, com-
modity network routers have a �xed number of ports, the idea
is implemented by grouping many routers together at the higher
levels to give the impression of a large router with “fat” or high
bandwidth links. These top-level routers in the fat-tree are typically
referred to as core or director-class switches. This implementation
of the fat-tree topology is also referred to as a Clos network.

In a balanced construction of this network, each leaf-level router
assigns k/2 ports to compute nodes and the remaining k/2 ports are
used to connect to routers at the next higher level. While fat-tree
provides high bisection bandwidth, it requires additional routers as
compared to other topologies, and thus, is typically more expensive.
Further, it is not as scalable as the dragon�y network, i.e. for a
given router radix, the largest system that can be constructed with
a fat-tree is noticeably smaller than the dragon�y topology.

The balanced construction of each network determines the maxi-
mum possible system size in terms of the number of compute nodes
or end-points that can be constructed using routers with a given
radix (equations provided in the fourth column in Table 1). Figure 1
presents the largest system that can be constructed using routers
with a certain number of ports and di�erent network topologies. It
is clear that dragon�y networks can support the highest number
of nodes. At lower router radix, fat-tree and 3D express mesh can
be used to build similar-sized systems but beyond a certain router
radix, express mesh has an advantage.

3 DEFINING THE DESIGN SPACE
As described in Section 1, networks are typically evaluated and
compared under the balanced injection-to-global bandwidth con-
straint [9, 19, 20, 28, 32]. In this work, we identify additional con-
straints that are often applied when designing and con�guring

1000

10000

100000

1x106

1x107

1x108

1x109

1x1010

3640 48 64 96 128

Sy
st
em
si
ze
(t
ot
al
nu
m
be
r
of
no
de
s)

Router radix (number of ports per router)

A2A dragonfy
RC dragonfy

3D express mesh
3-level fat-tree

Figure 1: Plot showing the largest systems that can be built
using di�erent network topologies with increase in the
number of ports per router.

networks in practice. We describe these constraint scenarios in
terms of the choices network designers make with respect to the
number of nodes, routers and links in the system.

When selecting and con�guring an interconnection network for
an HPC system, there is a large space of con�gurable parameters
that includes the number of routers, number of links, number of
nodes connected to a router, ratio of injection to link bandwidth,
number of ports on each router etc. In this study, we choose number
of nodes, routers and links as the three primary con�gurable pa-
rameters since they determine the system size. We �x the number
of ports per router or the router radix to 40 (commodity hardware
available in the market at the time of publication). We �x the router
radix because it is typically constrained by the technology avail-
able at the time of designing the machine. We assume that each
system uses the same type of nodes, routers and links. Below, we
describe �ve iso-X con�gurations, and provide practical motivations
for them. X represents the quantities or parameters (nodes, routers
and links) kept constant across the di�erent network topologies.

Iso-nodes (Iso-N): It is common for network designers to be pro-
vided with a target system size in terms of the number of nodes,
with �exibility to choose the number of routers and links. This is be-
cause researchers and customers are often interested in comparing
di�erent systems with the same peak �oating point performance
(which essentially translates to having the same number of nodes).
Hence, in this con�guration, we �x the number of nodes at 12,000 –
a number we expect to see in systems leading up to exascale. With a
50 T�op/s node, a 12,000-node system will have a peak performance
of 600 P�op/s. With even more powerful nodes, the same system
could easily provide an Exa�op/s of peak performance. We call this
con�guration iso-nodes, and since the number of routers and links
can be chosen for each network topology independently, we try to
balance the injection versus global system bandwidth.

Using a 40-port network router, we design four systems, each
using one of the four network topologies under consideration –
A2A dragon�y, RC dragon�y, express mesh or fat-tree (rows 1–4 in
Table 2). To ensure balance, an A2A dragon�y built using 40-port
routers uses 10 ports for compute nodes, 20 ports for local links,

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

3

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

