High Performance Computing Systems (CMSC714)

Lecture 12: Fat-tree and Dragonfly Networks

Abhinav Bhatele, Department of Computer Science

Summary of last lecture

- Key requirements of HPC networks
 - extremely low latency, high bandwidth, scalable
 - low network diameter, high bisection bandwidth
- Torus networks (less common now)
 - Network diameter grows as $O(\sqrt[3]{N})$ where N is the number of nodes
- Different types of routing algorithms:
 - Shortest path vs. non-minimal
 - Static vs. dynamic

Abhinav Bhatele (CMSC714)

- Most popular network topology
 - Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Router/switch radix = number of ports = k

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Router/switch radix = number of ports = k

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Pod = group of switches = k/2 switches

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714)

Most popular network topology

• Low network diameter, high bandwidth

Abhinav Bhatele (CMSC714)

Max. number of pods = k

Fat-tree networks on the top500 list

Infiniband EDR/FDR/HDR, Intel Omni-Path

https://www.top500.org/statistics/list, November 2020

Interconnect System Share

Interconnect Performance Share

Abhinav Bhatele (CMSC714)

LIVE RECORDING

4

Routing on a fat-tree

- Until recently, most fat-tree installations used static routing
 - Destination-mod-k (D-mod-k) routing
- Adaptive routing is now starting to be used

Abhinav Bhatele (CMSC714)

Abhinav Bhatele (CMSC714)

Single-rail single-plane fat-tree (tapered)

Abhinav Bhatele (CMSC714)

Dual-rail single-plane fat-tree

Abhinav Bhatele (CMSC714)

Single-rail single-plane fat-tree

Abhinav Bhatele (CMSC714)

Dual-rail dual-plane fat-tree

Abhinav Bhatele (CMSC714)

Dragonfly network

IBM PERCS network

All-to-all connections within each group

One supernode in the PERCS topology

Abhinav E

3hatele (CMSC71	4)
-----------	--------	----

IBM PERCS network

All-to-all connections within each group

One supernode in the PERCS topology

Cray Aries network

• Row and column all-to-all connections within each group

Aries Router

Abhinav Bhatele (CMSC714)

Cray Aries network

Row and column all-to-all connections within each group

Row all-to-all (green) links

Abhinav Bhatele (CMSC714)

Cray Aries network

Row and column all-to-all connections within each group

Abhinav Bhatele (CMSC714)

٠	٠	0

٠	۰

Network comparisons

	Network topology	#nodes/router	#links/router	Maximum system size (#nodes)
	All-to-all (A2A) dragonfly	k/4	k/2 (L), k/4 (G)	$(k/2 + 1)^2 \times (k/4 + 1) \times k/4$
nulation	Row-column (RC) dragonfly	SIGSINA/BADS '1	19,2k/Be(L),5k201(G)	hicago,34, Ψ (k/6+1) × k/6
	Express mesh (3D, gap=1)	k/4	3k/4	$(k/4 + 1)^3 \times k/4$
	Fat-tree (three-level)	k/2	k/2	$k/2 \times k/2 \times k$

allel Sim

UNIVERSITY OF MARYLAND

Questions?

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu