
Lecture 14: Autotuning
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)



Abhinav Bhatele (CMSC714) LIVE RECORDING

Summary of last lecture

• Isoefficiency

• Helps us understand scalability and computation-communication tradeoffs

• Performance modeling

• Analytical: LogP, alpha-beta model

2

to = K × t1



Abhinav Bhatele (CMSC714) LIVE RECORDING

Autotuning

• Ultimate goal: performance portability — reasonable performance as we move from 
one architecture to the next

• Generation and exploration of a search space to identify the best performing option

• Evaluated through models or empirical measurement

• Search space:

• Code variants

• Application parameters

• System parameters

3



Abhinav Bhatele (CMSC714) LIVE RECORDING

Different approaches

• Empirical autotuning

• Execute each code variant or parameter combinations to identify the best performing one

• Can also use runtime prediction models instead of running code

• Code variants

• Code organization, data structures, algorithms

• Parallelization strategies

• Data movement optimization: data placement, blocking/tiling

4



Abhinav Bhatele (CMSC714) LIVE RECORDING

Exploring the search space

• Brute force: try every option in the search space empirically

• How to limit the search space to a subset?

• Model-free: simulated annealing, genetic algorithms

• Model-based: analytical/empirical/machine learning models

• Limited by accuracy of models

5



Abhinav Bhatele (CMSC714) LIVE RECORDING

Software Engineering Challenges

• Offline auto-tuning can make compilation slow

• Many variants need to be executed

• Empirical auto-tuning involves the developer in the process

• Build process for auto-tuned code can be complex

• Debugging auto-tuned code can be challenging

6



Abhinav Bhatele (CMSC714) LIVE RECORDING

Libraries

• Isolate performance-critical sections behind a standard API

• ATLAS, Spiral, FFTW

• Automatically Tuned Linear Algebra Software based on Automated Empirical 
Optimization of Software (AEOS)

• Goal: Portable efficient implementation of BLAS

• Blocking factor, different source code implementations

• Goal: Generate an L1 cache-contained matrix multiply kernel

7



Abhinav Bhatele (CMSC714) LIVE RECORDING

Application-level Tools

• Tools allow expressing tunable parameters and exposing code variants

• If performance depends on input, tuning must be done at runtime

• Active Harmony, UMD

• Apollo, LLNL

8

https://computing.llnl.gov/projects/apollo



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?


