
Lecture 19: Parallel Sorting
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)



Abhinav Bhatele (CMSC714) LIVE RECORDING

Summary of last lecture

• Goal of auto-tuning: performance portability

• Selecting code variants, application/system parameters

• Model free vs. model-based

• Modeling: analytical, empirical, machine learning

2



Abhinav Bhatele (CMSC714) LIVE RECORDING

Parallel Sorting

• Sorting is used in many HPC codes

• For example, figuring out which particles/atoms are within a cutoff radius

• Two broad categories of parallel sorting algorithms:

• Merge-based

• Splitter-based

3



Abhinav Bhatele (CMSC714) LIVE RECORDING

Review Bitonic Sort

• Merge-based algorithm: sort by 
merging bitonic sequences

• Bitonic sequence: increases 
monotonically then decreases 
monotonically

• At each step, merge a bitonic 
sequence

4

9 6 1 5 14 7 15 11 2 12 13 4 16 8 3 10

6 9 5 1 7 14 15 11 2 12 13 4 8 16 10 3

1 5 6 9 15 14 11 7 2 4 12 13 16 10 8 3

1 5 6 7 9 11 14 15 16 13 12 10 8 4 3 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



Abhinav Bhatele (CMSC714) LIVE RECORDING

Review QuickSort

• Choose a pivot element from the unsorted list

• Move all elements < pivot before the pivot and all elements > pivot after the pivot

• Recursively apply this to the sublists before and after pivot

5



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Sample Sort

• Generalization of QuickSort

• Instead of selecting one pivot, we select s-1 samples randomly

• This provides us with s-1 “splitters”

• Once sorted, these s-1 splitters create s buckets

• Keys are then placed in the appropriate bucket

• Call sample sort or quick sort recursively

6



Abhinav Bhatele (CMSC498X/CMSC818X) LIVE RECORDING

Parallel Sample Sort

• Assumption: keys are distributed across all processors in the beginning

• Sample s keys randomly from each process

• Bring all keys s * p keys to one process

• select p-1 splitters from this sorted sample

• Send all splitters to all processes

• Processes exchange data based on buckets

• Call some fast sorting algorithm locally

7



Abhinav Bhatele (CMSC714) LIVE RECORDING

Parallel Radix Sort

• Instead of comparing keys in entirety, looks at k bits of each key in every step

• k-bit radix sort looks at k bits in one step

• Move from least significant to most significant bits

• k bits leads to putting keys into 2k buckets in a step

• Parallel version:

• These buckets are assigned to p processes and key movement leads to all-to-all communication

• To balance buckets across processes: use histograms to decide assignment of buckets to processes

8



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?


