
Lecture 24: Machine Learning and HPC
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)

Abhinav Bhatele (CMSC714) LIVE RECORDING

Presentation and Final report format

• Upload pdf slides on ELMS after your presentation

• Introduce your project so that it is understandable by a CS audience

• Present what you are implementing or evaluating (serial / parallel algorithms)

• Progress so far

• Results (performance / performance analysis)

• Final report

• Upload code and pdf report to ELMS

• E-mail Abhinav and Joy how you are distributing your virtual dollars (100) among your teammates with
justification

2

Abhinav Bhatele (CMSC714) LIVE RECORDING

Summary of last lecture

• Discrete-event simulations (DES)

• Parallel DES: conservative vs. optimistic

• Trace-driven network simulations: model event sequences

• Simulation of epidemic diffusion: agent-based, time-stepped modeling

3

Abhinav Bhatele (CMSC714) LIVE RECORDING

Why machine learning for HPC?

• Proliferation of performance data

• On-node hardware counters

• Switch/network port counters

• Power measurements

• Traces and profiles

• Supercomputing facilites’ data

• Job queue logs, performance

• Sensors: temperature, humidity, power

4

Abhinav Bhatele (CMSC714) LIVE RECORDING

Types of ML-related tasks in HPC

• Auto-tuning: parameter search

• Find a well performing configuration

• Predictive models: time, energy, …

• Predict system state in the future

• Time-series analysis

• Identifying root causes/factors

5

Abhinav Bhatele (CMSC714) LIVE RECORDING

Investigating performance variability

• Identify users to blame, important network counters

• Predict future performance based on historical time-series data

6

1

1.5

2

2.5

3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
Pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Abhinav Bhatele (CMSC714) LIVE RECORDING

Identifying best performing code variants

• Many computational science and
engineering (CSE) codes rely on solving
sparse linear systems

• Many choices of numerical methods

• Optimal choice w.r.t. performance depends
on several things:

• Input data and its representation, algorithm and its
implementation, hardware architecture

7

LLNL-PRES-xxxxxx
2

Overview of the problem

Platform

⋯

−∆𝑢 = 1
−div(𝜎(u)) = 0

curl curl E + E = 𝑓
-grad(𝛼 div(F)) + 𝛽 F = f

⁞

Preconditioner
Linear Solver

??

models

� Many computational science
and engineering (CSE) code rely
on solving sparse linear systems

� Many choices of numerical
methods

� Performance of a method
depends on
— input data
— data representation
— algorithm
— Implementation
— platform

� Choosing an optimal method for
a given problem is challenging

Abhinav Bhatele (CMSC714) LIVE RECORDING

Auto-tuning with limited training data

8

0

10

20

30

40

50

60

70

80

90

1 10 100 1000

N
um
be
r
of
co
nf
gu
ra
tio
ns

Execution time (s)

Kripke: Performance variation due to input parameters

Abhinav Bhatele (CMSC714) LIVE RECORDING

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

8

0

10

20

30

40

50

60

70

80

90

1 10 100 1000

N
um
be
r
of
co
nf
gu
ra
tio
ns

Execution time (s)

Kripke: Performance variation due to input parameters

Abhinav Bhatele (CMSC714) LIVE RECORDING

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

8

0

10

20

30

40

50

60

70

10 20 30 40

N
um
be
r
of
ru
ns

Execution time (s)

Quicksilver: Performance variation due to external factors

Abhinav Bhatele (CMSC714) LIVE RECORDING

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

• Surrogate models + transfer learning

8

0

10

20

30

40

50

60

70

10 20 30 40

N
um
be
r
of
ru
ns

Execution time (s)

Quicksilver: Performance variation due to external factors

Abhinav Bhatele (CMSC714) LIVE RECORDING

Deep neural networks

• Neural networks can be used to model complex functions

• Several layers that process “batches” of the input data

9

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3

Abhinav Bhatele (CMSC714) LIVE RECORDING

Parallel/distributed training

• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs

10

Abhinav Bhatele (CMSC714) LIVE RECORDING

Parallel/distributed training

• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

How to Train Your Neural Network: A Comparative Evaluation
Anonymous Author(s)

ABSTRACT
The �eld of deep learning has witnessed a remarkable shift towards
extremely compute- and memory-intensive neural networks. These
newer larger models have enabled researchers to advance state-
of-the-art tools across a variety of �elds. This phenomenon has
spurred the development of algorithms for distributed training of
neural networks over a larger number of hardware accelerators. In
this paper, we discuss and compare current state-of-the-art frame-
works for large scale distributed deep learning. First, we survey
current practices in distributed learning and identify the di�er-
ent types of parallelism used. Then, we present empirical results
comparing their performance on large image and language train-
ing tasks. Additionally, we address their statistical e�ciency and
memory consumption behavior. Based on our results, we discuss
algorithmic and implementation portions of each framework which
hinder performance.

KEYWORDS
neural networks, deep learning, distributed training, GPUs, perfor-
mance, survey
ACM Reference Format:
Anonymous Author(s). 2021. How to Train Your Neural Network: A Com-
parative Evaluation. In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’21), November 14–19,
2021, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/nnnn/nnnn.nnnn

1 INTRODUCTION
The previous decade witnessed an explosion in the development of
machine learning algorithms. In particular, deep learning (DL), a
subset of machine learning focused on using neural networks for
function approximation, has gained widespread popularity. Deep
neural networks (DNNs) have enabled the advancement of the
state of the art in a plethora of research areas: ranging from visual
recognition [33, 58, 63, 66, 74] and natural language processing [13,
44, 50, 68] to computational chemistry and computer systems [5,
22, 24, 39, 41, 64, 65, 69]. Their popularity stems from the DNN’s
ability to automatically learn low-dimensional representations from
high-dimensional unstructured data such as images, text and audio.
Given enough data, the representations learned by these models are
often superior to handcrafted features designed by domain experts.

The advances in accelerator technology, increased memory ca-
pacity per accelerator, and faster networks have encouraged users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/nnnn/nnnn.nnnn

of deep learning to train neural networks with increasingly larger
numbers of parameters. Figure 1 shows the increasing number of
parameters in the largest networks since 2012. Often times, it is
impossible to train such networks on a single accelerator either
due to large execution time or insu�cient memory capacity to �t
these models. The latter problem is further exacerbated for con-
temporary neural architectures. For example, GPT-2, an extremely
popular neural network used in NLP requires 84 GB of GPU DRAM
for training. This has motivated recent works in parallelizing the
task of deep learning: training large models using multiple GPUs
on a single node [21, 30] or across multiple nodes connected by a
network [14, 25, 36, 43, 51, 57, 72].

107

108

109

1010

1011

1012

2012 2014 2016 2018 2019 2020

N
um
be
r
of
pa
ra
m
et
er
s

Year

Increase in size of neural networks

AlexNet
VGG-16 GNMT Bert-large

GPT-2

Turing-LM

GPT-3

Figure 1: Neural networks have continued to grow in size
in terms of the number of parameters. Recent language net-
works have further contributed to this trend.

Di�erent parallel frameworks o�er di�erent strengths and weak-
nesses in terms of performance (execution time for training), mem-
ory consumption, and statistical e�ciency. Ben-Nun et al. [4] sur-
veyed parallel DL frameworks and the di�erent ways of exploiting
the concurrency in neural networks in 2018. However, many new
frameworks have emerged in the last three years, and the authors
limited their discussion to a qualitative discussion. In this paper, we
survey the most popular parallel DL frameworks available today
and perform an empirical evaluation for the ones with open-source
implementations to compare various metrics. This comparative
evaluation can help users of deep learning select the best parallel
framework for their training tasks.

We �rst present a comprehensive qualitative survey of the state
of the art in parallel deep learning. We classify approaches for
parallelization into three categories (de�ned in Section 2): data
parallelism, intra-layer parallelism (sometimes referred to as model
parallelism), and inter-layer parallelism (sometimes referred to as
pipelining,). We present the advantages and disadvantages of using
each approach, and discuss the capabilities of di�erent frameworks
that implement each type of parallelism.

An end user who needs a scalable DL framework for their train-
ing experiments needs to know which frameworks provide the

1

Abhinav Bhatele (CMSC714) LIVE RECORDING

Parallel/distributed training

• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (batches)

• Many layers in DNNs

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

How to Train Your Neural Network: A Comparative Evaluation
Anonymous Author(s)

ABSTRACT
The �eld of deep learning has witnessed a remarkable shift towards
extremely compute- and memory-intensive neural networks. These
newer larger models have enabled researchers to advance state-
of-the-art tools across a variety of �elds. This phenomenon has
spurred the development of algorithms for distributed training of
neural networks over a larger number of hardware accelerators. In
this paper, we discuss and compare current state-of-the-art frame-
works for large scale distributed deep learning. First, we survey
current practices in distributed learning and identify the di�er-
ent types of parallelism used. Then, we present empirical results
comparing their performance on large image and language train-
ing tasks. Additionally, we address their statistical e�ciency and
memory consumption behavior. Based on our results, we discuss
algorithmic and implementation portions of each framework which
hinder performance.

KEYWORDS
neural networks, deep learning, distributed training, GPUs, perfor-
mance, survey
ACM Reference Format:
Anonymous Author(s). 2021. How to Train Your Neural Network: A Com-
parative Evaluation. In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’21), November 14–19,
2021, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/nnnn/nnnn.nnnn

1 INTRODUCTION
The previous decade witnessed an explosion in the development of
machine learning algorithms. In particular, deep learning (DL), a
subset of machine learning focused on using neural networks for
function approximation, has gained widespread popularity. Deep
neural networks (DNNs) have enabled the advancement of the
state of the art in a plethora of research areas: ranging from visual
recognition [33, 58, 63, 66, 74] and natural language processing [13,
44, 50, 68] to computational chemistry and computer systems [5,
22, 24, 39, 41, 64, 65, 69]. Their popularity stems from the DNN’s
ability to automatically learn low-dimensional representations from
high-dimensional unstructured data such as images, text and audio.
Given enough data, the representations learned by these models are
often superior to handcrafted features designed by domain experts.

The advances in accelerator technology, increased memory ca-
pacity per accelerator, and faster networks have encouraged users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/nnnn/nnnn.nnnn

of deep learning to train neural networks with increasingly larger
numbers of parameters. Figure 1 shows the increasing number of
parameters in the largest networks since 2012. Often times, it is
impossible to train such networks on a single accelerator either
due to large execution time or insu�cient memory capacity to �t
these models. The latter problem is further exacerbated for con-
temporary neural architectures. For example, GPT-2, an extremely
popular neural network used in NLP requires 84 GB of GPU DRAM
for training. This has motivated recent works in parallelizing the
task of deep learning: training large models using multiple GPUs
on a single node [21, 30] or across multiple nodes connected by a
network [14, 25, 36, 43, 51, 57, 72].

107

108

109

1010

1011

1012

2012 2014 2016 2018 2019 2020

N
um
be
r
of
pa
ra
m
et
er
s

Year

Increase in size of neural networks

AlexNet
VGG-16 GNMT Bert-large

GPT-2

Turing-LM

GPT-3

Figure 1: Neural networks have continued to grow in size
in terms of the number of parameters. Recent language net-
works have further contributed to this trend.

Di�erent parallel frameworks o�er di�erent strengths and weak-
nesses in terms of performance (execution time for training), mem-
ory consumption, and statistical e�ciency. Ben-Nun et al. [4] sur-
veyed parallel DL frameworks and the di�erent ways of exploiting
the concurrency in neural networks in 2018. However, many new
frameworks have emerged in the last three years, and the authors
limited their discussion to a qualitative discussion. In this paper, we
survey the most popular parallel DL frameworks available today
and perform an empirical evaluation for the ones with open-source
implementations to compare various metrics. This comparative
evaluation can help users of deep learning select the best parallel
framework for their training tasks.

We �rst present a comprehensive qualitative survey of the state
of the art in parallel deep learning. We classify approaches for
parallelization into three categories (de�ned in Section 2): data
parallelism, intra-layer parallelism (sometimes referred to as model
parallelism), and inter-layer parallelism (sometimes referred to as
pipelining,). We present the advantages and disadvantages of using
each approach, and discuss the capabilities of di�erent frameworks
that implement each type of parallelism.

An end user who needs a scalable DL framework for their train-
ing experiments needs to know which frameworks provide the

1

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

How to Train Your Neural Network: A Comparative Evaluation SC ’21, November 14–19, 2021, St. Louis, MO, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Summary of Literature Review on Parallel Deep Learning

Framework Type of Parallelism Largest
Accelerator Count

Largest Trained Network
(No. of Parameters)

FlexFlow Hybrid 64 GPUs 24M⇤

PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B

⇤Note: FlexFlow does not provide a parameter size for the largest network it trains. We have
defaulted to the largest network with a known network size cited in their paper.

framework. Convolutions are also parallelized in [46] with a hy-
brid parallelism by extending data parallelism with parallelism
in the spatial domain. For language-based models Megatron[57]
achieves a similar parallelism by partitioning the blocks in trans-
former layers across processors. Megatron has been increasingly
used as language models become more common and larger (see
Figure 1). It has shown up to 74% weak scaling coe�cient on 512
GPUs.

Dividing layer tensor dimensions across processors is, however,
very sensitive to the layer type. For instance, fully connected layers
involve an all-to-all computation and therefore all-to-all commu-
nication, which is more expensive the data parallelism’s allreduce.
Thus, it is hard to generalize coarser grained intra-layer parallelism
for models with custom layers. To combat this some methods look
strictly at compute graph operations and not model layers [27].

3.3 Inter-Layer Parallelism
True inter-layer parallelism can only be achieved by pipelining i.e.
having multiple mini-batches active in the system at any given
instance. There are two ways to achieve pipelining : with and
without �ushing. In this section, we discuss the pros and cons
of both approaches. We also provide an overview of frameworks
that implement these approaches.

3.3.1 Pipelining with Flushing. Pipelining with �ushing divides a
mini-batch into micro-batches of equal size. These micro-batches
are injected one by one into the system. GPUs accumulate gra-
dients from all the micro-batches in the system. A GPU updates
it’s weights only after it has �nished the backward pass of the
last micro-batch. The next mini-batch and its corresponding micro-
batches are injected after all the GPUs have �nished updating their
weights. This approach to pipelining is also called micro-batching.
The number of micro-batches is usually kept to be much larger than
the number of workers so that each worker. Ensuring optimum
hardware utilization requires having a large mini-batch size. To
maintain statistical e�ciency at large mini-batch sizes, the same set
of solutions discussed in Section 3.1.3 can be used. Flushing creates
bubbles in the pipeline which leads to lower hardware utilization.

A load balanced mapping of layers to GPUs is absolutely critical to
maximize performance. The load balancing algorithm must also be
communication-aware. This is because activations and gradients
exchanged at GPU boundaries can be in the magnitudes of GBs for
large neural networks. An e�cient implementation of pipelining
with �ushing must have load balancing support.

This ideawas �rst introduced byHuang et al. in GPipe [21]. Using
GPipe they trained a 557M parameter neural network - AmoebaNet-
B [52] on the ImageNet [54] dataset and surpassed the state of the
art in a number of downstream image classi�cation tasks. TorchG-
Pipe [30] is an uno�cial open-source implementation of GPipe built
on the PyTorch [47] backend. GEMS (GPU-Enabled Memory Aware
Model-Parallelism System) [23] introduces a novel approach to in-
crease hardware utilization. This framework proposes an algorithm
to train two neural networks concurrently using pipelining with-
out �ushing on multiple GPUs. They double the throughput of the
system by overlapping the forward and backward passes of the two
neural networks. We refer the reader to their paper for the details of
their implementation. Recently ZeRO [51] and Megatron [57] also
extended support for this approach towards inter-layer parallelism.
TorchGPipe [30] provides a load balancing algorithm that seeks to
balance the net execution time of the forward and backward pass of
a micro-batch on each GPU. However, their algorithm ignores the
communication overhead of exchanging tensors across GPU bound-
aries. Megatron divides the layers of a transformer across GPUs.
This strategy is optimal because all the layers of a transformer
are identical. ZeRO also provides an identical strategy that divides
the layers equally across GPUs. Additionally they also support a
load balancing algorithm that equalizes GPU memory consump-
tion across GPUs. While Megatron and ZeRO support pipelining,
it is not their preferred mode of execution for parallelizing neural
networks.

3.3.2 Pipelining without Flushing. In this approach, the number
of mini-batches active in the system is kept constant. As soon as
a mini-batch �nishes it’s backward pass on the �rst GPU, a new
mini-batch is injected into the system to maintain full pipeline
occupancy. Unlike pipelining with �ushing, weight updates on a
GPU take place as soon as it is done with the backward pass of a

5

Abhinav Bhatele (CMSC714) LIVE RECORDING

Different approaches

• Data Parallelism: Each process has a copy of the
entire NN and processes different data

• All reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to
different processes/GPUs

• Point-to-point communication (activations and gradients)
between processes/GPUs managing different layers

11

Abhinav Bhatele (CMSC714) LIVE RECORDING

Different approaches

• Data Parallelism: Each process has a copy of the
entire NN and processes different data

• All reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to
different processes/GPUs

• Point-to-point communication (activations and gradients)
between processes/GPUs managing different layers

11

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

How to Train Your Neural Network: A Comparative Evaluation SC ’21, November 14–19, 2021, St. Louis, MO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1GPU 0

GPU 1

GPU 2

GPU 3

1 1 1

Data Parallelism

1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

All-reduce communication

Time

Figure 2: Processing of mini-batches over time in data par-
allelism. Each GPU has a copy of all the layers (shown in
di�erent colors) and di�erent mini-batches (numbered) are
processed by di�erent GPUs.

To achieve true parallelism, more than one mini-batch should be
active on di�erent GPUs at a time since the processing of a mini-
batch across layers is sequential and can’t be parallelized. This is
called pipelining. The maximum number of mini-batches active in
the system at any given point of time is called the pipeline limit.
Figure 3 shows inter-layer parallelism in action with four GPUs
and a pipeline limit of four. Just like intra-layer parallelism, inter-
layer parallelism makes it possible to train models whose memory
requirements exceed the DRAM capacity of a single GPU.

1GPU 0

GPU 1

GPU 2

GPU 3

1

1

1

2

2

2

2

3

3

4

4

Inter-layer Parallelism with Pipelining

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4 5

5

5

5

6

6

6

7

7

8

3

3

4

4

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

Time

Figure 3: Processing of micro-batches in inter-layer paral-
lelism. Each GPU holds one or more layers in the network
and all mini-batches pass through all the layers/GPUs.

2.3 Related Work
Pouyanfar et al. [48] and Ben-Nun et al. [4] comprehensively sur-
vey established techniques in sequential deep learning as well as
distributed. Another survey [61] covers work in processing neu-
ral networks e�ciently. Distributed training on big data software
stacks (such as Spark and Hadoop) is explored by Lu et al. [37]. The

network demands of parallel training are presented in [3] where typ-
ical communication workloads are pro�led and characterized. Tang
et al. [62] further character distributed training communication via
analytical models and survey current practices.

3 LITERATURE SURVEY
In this section we present a survey of current state-of-the-art tech-
niques and implementations for each type of distributed learning.
Table 1 provides an overview of each discussed framework.

3.1 Data Parallelism
Data parallelism has been the go-to algorithm for parallelizing
neural network training. Although it is a natural step in improving
performance of deep learning models, it is not without its �aws.

3.1.1 Collective Communication Bo�leneck. Data parallelism hinges
on a synchronous all-reduce operation to gather the gradients
across all GPUs. Naturally, this can become a bottleneck for contem-
porary neural networks having a large number of parameters. This
problem is further exacerbated by the increasing computational
capabilities of hardware accelerators. The ensuing decrease in the
computation to communication ratio increases the severity of this
problem.

Initial attempts to reduce the communication overhead targeted
the asynchronization of the stochastic gradient descent (SGD) al-
gorithm [10, 12, 45]. However, Chen et al. [6] demonstrate that
synchronous SGD and its variants converged faster with higher
accuracy than their asynchronous counterparts.

E�orts tominimize communication bottlenecks continued. Zhang
et al. [73] devise a strategy known as Wait-Free Backpropagation
(WFBP) to interleave GPU computation and communication. WFBP
reduces bursts in network tra�c and lowers overall network strain.
Using WFBP, Zhang et al. achieve speed-ups in training times in
16 and 32 single-GPU machines. WFBP has become the de-facto
approach for data parallelism frameworks.

PyTorch DistributedDataParallel (DDP) [36], Horovod [55] and
Livermore Big Arti�cial Neural Network (LBANN) [17] toolkit are
three open source frameworks designed to assist in transitioning
models into a distributed environment. Out of these frameworks
PyTorch DDP has been extremely popular among the deep learn-
ing community due to its seamless integration with PyTorch [47].
Horovod is an implementation of WFBP for TensorFlow by Uber.
LBANN accelerates parallelized deep learning by taking advantage
of high performance computing hardware. These implementations
share an uncanny similarity in the way they optimize WFBP. In-
stead of having an individual all-reduce call for each parameter
tensor, they fuse parameter tensors into �xed size bins. All reduce
calls are made at the granularity of these fused parameter bins. This
increases network bandwidth utilization and thus the overall per-
formance of these frameworks. Although the fused tensor bin-size
is kept as a tunable hyperparameter, Li et al. [36] demonstrate that
the default bucket size of PyTorch DDP i.e. 25MB is a reasonable
choice for e�cient scaling.

3.1.2 Memory Redundancy. Given the abundance of large training
datasets, neural networks with increasingly larger number of pa-
rameters have led to tremendous gains in performance on a variety

3

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

How to Train Your Neural Network: A Comparative Evaluation SC ’21, November 14–19, 2021, St. Louis, MO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1GPU 0

GPU 1

GPU 2

GPU 3

1 1 1

Data Parallelism

1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

All-reduce communication

Time

Figure 2: Processing of mini-batches over time in data par-
allelism. Each GPU has a copy of all the layers (shown in
di�erent colors) and di�erent mini-batches (numbered) are
processed by di�erent GPUs.

To achieve true parallelism, more than one mini-batch should be
active on di�erent GPUs at a time since the processing of a mini-
batch across layers is sequential and can’t be parallelized. This is
called pipelining. The maximum number of mini-batches active in
the system at any given point of time is called the pipeline limit.
Figure 3 shows inter-layer parallelism in action with four GPUs
and a pipeline limit of four. Just like intra-layer parallelism, inter-
layer parallelism makes it possible to train models whose memory
requirements exceed the DRAM capacity of a single GPU.

1GPU 0

GPU 1

GPU 2

GPU 3

1

1

1

2

2

2

2

3

3

4

4

Inter-layer Parallelism with Pipelining

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4 5

5

5

5

6

6

6

7

7

8

3

3

4

4

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

Time

Figure 3: Processing of micro-batches in inter-layer paral-
lelism. Each GPU holds one or more layers in the network
and all mini-batches pass through all the layers/GPUs.

2.3 Related Work
Pouyanfar et al. [48] and Ben-Nun et al. [4] comprehensively sur-
vey established techniques in sequential deep learning as well as
distributed. Another survey [61] covers work in processing neu-
ral networks e�ciently. Distributed training on big data software
stacks (such as Spark and Hadoop) is explored by Lu et al. [37]. The

network demands of parallel training are presented in [3] where typ-
ical communication workloads are pro�led and characterized. Tang
et al. [62] further character distributed training communication via
analytical models and survey current practices.

3 LITERATURE SURVEY
In this section we present a survey of current state-of-the-art tech-
niques and implementations for each type of distributed learning.
Table 1 provides an overview of each discussed framework.

3.1 Data Parallelism
Data parallelism has been the go-to algorithm for parallelizing
neural network training. Although it is a natural step in improving
performance of deep learning models, it is not without its �aws.

3.1.1 Collective Communication Bo�leneck. Data parallelism hinges
on a synchronous all-reduce operation to gather the gradients
across all GPUs. Naturally, this can become a bottleneck for contem-
porary neural networks having a large number of parameters. This
problem is further exacerbated by the increasing computational
capabilities of hardware accelerators. The ensuing decrease in the
computation to communication ratio increases the severity of this
problem.

Initial attempts to reduce the communication overhead targeted
the asynchronization of the stochastic gradient descent (SGD) al-
gorithm [10, 12, 45]. However, Chen et al. [6] demonstrate that
synchronous SGD and its variants converged faster with higher
accuracy than their asynchronous counterparts.

E�orts tominimize communication bottlenecks continued. Zhang
et al. [73] devise a strategy known as Wait-Free Backpropagation
(WFBP) to interleave GPU computation and communication. WFBP
reduces bursts in network tra�c and lowers overall network strain.
Using WFBP, Zhang et al. achieve speed-ups in training times in
16 and 32 single-GPU machines. WFBP has become the de-facto
approach for data parallelism frameworks.

PyTorch DistributedDataParallel (DDP) [36], Horovod [55] and
Livermore Big Arti�cial Neural Network (LBANN) [17] toolkit are
three open source frameworks designed to assist in transitioning
models into a distributed environment. Out of these frameworks
PyTorch DDP has been extremely popular among the deep learn-
ing community due to its seamless integration with PyTorch [47].
Horovod is an implementation of WFBP for TensorFlow by Uber.
LBANN accelerates parallelized deep learning by taking advantage
of high performance computing hardware. These implementations
share an uncanny similarity in the way they optimize WFBP. In-
stead of having an individual all-reduce call for each parameter
tensor, they fuse parameter tensors into �xed size bins. All reduce
calls are made at the granularity of these fused parameter bins. This
increases network bandwidth utilization and thus the overall per-
formance of these frameworks. Although the fused tensor bin-size
is kept as a tunable hyperparameter, Li et al. [36] demonstrate that
the default bucket size of PyTorch DDP i.e. 25MB is a reasonable
choice for e�cient scaling.

3.1.2 Memory Redundancy. Given the abundance of large training
datasets, neural networks with increasingly larger number of pa-
rameters have led to tremendous gains in performance on a variety

3

Abhinav Bhatele (CMSC714) LIVE RECORDING

Different approaches

• Data Parallelism: Each process has a copy of the
entire NN and processes different data

• All reduce operation to synchronize gradients

• Intra-layer Parallelism: Distribute the work within
a layer between multiple processes/GPUs

• Inter-layer Parallelism: Distribute entire layers to
different processes/GPUs

• Point-to-point communication (activations and gradients)
between processes/GPUs managing different layers

11

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

How to Train Your Neural Network: A Comparative Evaluation SC ’21, November 14–19, 2021, St. Louis, MO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1GPU 0

GPU 1

GPU 2

GPU 3

1 1 1

Data Parallelism

1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

All-reduce communication

Time

Figure 2: Processing of mini-batches over time in data par-
allelism. Each GPU has a copy of all the layers (shown in
di�erent colors) and di�erent mini-batches (numbered) are
processed by di�erent GPUs.

To achieve true parallelism, more than one mini-batch should be
active on di�erent GPUs at a time since the processing of a mini-
batch across layers is sequential and can’t be parallelized. This is
called pipelining. The maximum number of mini-batches active in
the system at any given point of time is called the pipeline limit.
Figure 3 shows inter-layer parallelism in action with four GPUs
and a pipeline limit of four. Just like intra-layer parallelism, inter-
layer parallelism makes it possible to train models whose memory
requirements exceed the DRAM capacity of a single GPU.

1GPU 0

GPU 1

GPU 2

GPU 3

1

1

1

2

2

2

2

3

3

4

4

Inter-layer Parallelism with Pipelining

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4 5

5

5

5

6

6

6

7

7

8

3

3

4

4

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

Time

Figure 3: Processing of micro-batches in inter-layer paral-
lelism. Each GPU holds one or more layers in the network
and all mini-batches pass through all the layers/GPUs.

2.3 Related Work
Pouyanfar et al. [48] and Ben-Nun et al. [4] comprehensively sur-
vey established techniques in sequential deep learning as well as
distributed. Another survey [61] covers work in processing neu-
ral networks e�ciently. Distributed training on big data software
stacks (such as Spark and Hadoop) is explored by Lu et al. [37]. The

network demands of parallel training are presented in [3] where typ-
ical communication workloads are pro�led and characterized. Tang
et al. [62] further character distributed training communication via
analytical models and survey current practices.

3 LITERATURE SURVEY
In this section we present a survey of current state-of-the-art tech-
niques and implementations for each type of distributed learning.
Table 1 provides an overview of each discussed framework.

3.1 Data Parallelism
Data parallelism has been the go-to algorithm for parallelizing
neural network training. Although it is a natural step in improving
performance of deep learning models, it is not without its �aws.

3.1.1 Collective Communication Bo�leneck. Data parallelism hinges
on a synchronous all-reduce operation to gather the gradients
across all GPUs. Naturally, this can become a bottleneck for contem-
porary neural networks having a large number of parameters. This
problem is further exacerbated by the increasing computational
capabilities of hardware accelerators. The ensuing decrease in the
computation to communication ratio increases the severity of this
problem.

Initial attempts to reduce the communication overhead targeted
the asynchronization of the stochastic gradient descent (SGD) al-
gorithm [10, 12, 45]. However, Chen et al. [6] demonstrate that
synchronous SGD and its variants converged faster with higher
accuracy than their asynchronous counterparts.

E�orts tominimize communication bottlenecks continued. Zhang
et al. [73] devise a strategy known as Wait-Free Backpropagation
(WFBP) to interleave GPU computation and communication. WFBP
reduces bursts in network tra�c and lowers overall network strain.
Using WFBP, Zhang et al. achieve speed-ups in training times in
16 and 32 single-GPU machines. WFBP has become the de-facto
approach for data parallelism frameworks.

PyTorch DistributedDataParallel (DDP) [36], Horovod [55] and
Livermore Big Arti�cial Neural Network (LBANN) [17] toolkit are
three open source frameworks designed to assist in transitioning
models into a distributed environment. Out of these frameworks
PyTorch DDP has been extremely popular among the deep learn-
ing community due to its seamless integration with PyTorch [47].
Horovod is an implementation of WFBP for TensorFlow by Uber.
LBANN accelerates parallelized deep learning by taking advantage
of high performance computing hardware. These implementations
share an uncanny similarity in the way they optimize WFBP. In-
stead of having an individual all-reduce call for each parameter
tensor, they fuse parameter tensors into �xed size bins. All reduce
calls are made at the granularity of these fused parameter bins. This
increases network bandwidth utilization and thus the overall per-
formance of these frameworks. Although the fused tensor bin-size
is kept as a tunable hyperparameter, Li et al. [36] demonstrate that
the default bucket size of PyTorch DDP i.e. 25MB is a reasonable
choice for e�cient scaling.

3.1.2 Memory Redundancy. Given the abundance of large training
datasets, neural networks with increasingly larger number of pa-
rameters have led to tremendous gains in performance on a variety

3

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

How to Train Your Neural Network: A Comparative Evaluation SC ’21, November 14–19, 2021, St. Louis, MO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1GPU 0

GPU 1

GPU 2

GPU 3

1 1 1

Data Parallelism

1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

All-reduce communication

Time

Figure 2: Processing of mini-batches over time in data par-
allelism. Each GPU has a copy of all the layers (shown in
di�erent colors) and di�erent mini-batches (numbered) are
processed by di�erent GPUs.

To achieve true parallelism, more than one mini-batch should be
active on di�erent GPUs at a time since the processing of a mini-
batch across layers is sequential and can’t be parallelized. This is
called pipelining. The maximum number of mini-batches active in
the system at any given point of time is called the pipeline limit.
Figure 3 shows inter-layer parallelism in action with four GPUs
and a pipeline limit of four. Just like intra-layer parallelism, inter-
layer parallelism makes it possible to train models whose memory
requirements exceed the DRAM capacity of a single GPU.

1GPU 0

GPU 1

GPU 2

GPU 3

1

1

1

2

2

2

2

3

3

4

4

Inter-layer Parallelism with Pipelining

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4 5

5

5

5

6

6

6

7

7

8

3

3

4

4

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

Time

Figure 3: Processing of micro-batches in inter-layer paral-
lelism. Each GPU holds one or more layers in the network
and all mini-batches pass through all the layers/GPUs.

2.3 Related Work
Pouyanfar et al. [48] and Ben-Nun et al. [4] comprehensively sur-
vey established techniques in sequential deep learning as well as
distributed. Another survey [61] covers work in processing neu-
ral networks e�ciently. Distributed training on big data software
stacks (such as Spark and Hadoop) is explored by Lu et al. [37]. The

network demands of parallel training are presented in [3] where typ-
ical communication workloads are pro�led and characterized. Tang
et al. [62] further character distributed training communication via
analytical models and survey current practices.

3 LITERATURE SURVEY
In this section we present a survey of current state-of-the-art tech-
niques and implementations for each type of distributed learning.
Table 1 provides an overview of each discussed framework.

3.1 Data Parallelism
Data parallelism has been the go-to algorithm for parallelizing
neural network training. Although it is a natural step in improving
performance of deep learning models, it is not without its �aws.

3.1.1 Collective Communication Bo�leneck. Data parallelism hinges
on a synchronous all-reduce operation to gather the gradients
across all GPUs. Naturally, this can become a bottleneck for contem-
porary neural networks having a large number of parameters. This
problem is further exacerbated by the increasing computational
capabilities of hardware accelerators. The ensuing decrease in the
computation to communication ratio increases the severity of this
problem.

Initial attempts to reduce the communication overhead targeted
the asynchronization of the stochastic gradient descent (SGD) al-
gorithm [10, 12, 45]. However, Chen et al. [6] demonstrate that
synchronous SGD and its variants converged faster with higher
accuracy than their asynchronous counterparts.

E�orts tominimize communication bottlenecks continued. Zhang
et al. [73] devise a strategy known as Wait-Free Backpropagation
(WFBP) to interleave GPU computation and communication. WFBP
reduces bursts in network tra�c and lowers overall network strain.
Using WFBP, Zhang et al. achieve speed-ups in training times in
16 and 32 single-GPU machines. WFBP has become the de-facto
approach for data parallelism frameworks.

PyTorch DistributedDataParallel (DDP) [36], Horovod [55] and
Livermore Big Arti�cial Neural Network (LBANN) [17] toolkit are
three open source frameworks designed to assist in transitioning
models into a distributed environment. Out of these frameworks
PyTorch DDP has been extremely popular among the deep learn-
ing community due to its seamless integration with PyTorch [47].
Horovod is an implementation of WFBP for TensorFlow by Uber.
LBANN accelerates parallelized deep learning by taking advantage
of high performance computing hardware. These implementations
share an uncanny similarity in the way they optimize WFBP. In-
stead of having an individual all-reduce call for each parameter
tensor, they fuse parameter tensors into �xed size bins. All reduce
calls are made at the granularity of these fused parameter bins. This
increases network bandwidth utilization and thus the overall per-
formance of these frameworks. Although the fused tensor bin-size
is kept as a tunable hyperparameter, Li et al. [36] demonstrate that
the default bucket size of PyTorch DDP i.e. 25MB is a reasonable
choice for e�cient scaling.

3.1.2 Memory Redundancy. Given the abundance of large training
datasets, neural networks with increasingly larger number of pa-
rameters have led to tremendous gains in performance on a variety

3

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

How to Train Your Neural Network: A Comparative Evaluation SC ’21, November 14–19, 2021, St. Louis, MO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1GPU 0

GPU 1

GPU 2

GPU 3

1 1 1

Data Parallelism

1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

All-reduce communication

Time

Figure 2: Processing of mini-batches over time in data par-
allelism. Each GPU has a copy of all the layers (shown in
di�erent colors) and di�erent mini-batches (numbered) are
processed by di�erent GPUs.

To achieve true parallelism, more than one mini-batch should be
active on di�erent GPUs at a time since the processing of a mini-
batch across layers is sequential and can’t be parallelized. This is
called pipelining. The maximum number of mini-batches active in
the system at any given point of time is called the pipeline limit.
Figure 3 shows inter-layer parallelism in action with four GPUs
and a pipeline limit of four. Just like intra-layer parallelism, inter-
layer parallelism makes it possible to train models whose memory
requirements exceed the DRAM capacity of a single GPU.

1GPU 0

GPU 1

GPU 2

GPU 3

1

1

1

2

2

2

2

3

3

4

4

Inter-layer Parallelism with Pipelining

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4 5

5

5

5

6

6

6

7

7

8

3

3

4

4

Layer 1 Forward Pass

Layer 2 Forward Pass

Layer 3 Forward Pass

Layer 4 Forward Pass

Layer 1 Backward Pass

Layer 2 Backward Pass

Layer 3 Backward Pass

Layer 4 Backward Pass

Time

Figure 3: Processing of micro-batches in inter-layer paral-
lelism. Each GPU holds one or more layers in the network
and all mini-batches pass through all the layers/GPUs.

2.3 Related Work
Pouyanfar et al. [48] and Ben-Nun et al. [4] comprehensively sur-
vey established techniques in sequential deep learning as well as
distributed. Another survey [61] covers work in processing neu-
ral networks e�ciently. Distributed training on big data software
stacks (such as Spark and Hadoop) is explored by Lu et al. [37]. The

network demands of parallel training are presented in [3] where typ-
ical communication workloads are pro�led and characterized. Tang
et al. [62] further character distributed training communication via
analytical models and survey current practices.

3 LITERATURE SURVEY
In this section we present a survey of current state-of-the-art tech-
niques and implementations for each type of distributed learning.
Table 1 provides an overview of each discussed framework.

3.1 Data Parallelism
Data parallelism has been the go-to algorithm for parallelizing
neural network training. Although it is a natural step in improving
performance of deep learning models, it is not without its �aws.

3.1.1 Collective Communication Bo�leneck. Data parallelism hinges
on a synchronous all-reduce operation to gather the gradients
across all GPUs. Naturally, this can become a bottleneck for contem-
porary neural networks having a large number of parameters. This
problem is further exacerbated by the increasing computational
capabilities of hardware accelerators. The ensuing decrease in the
computation to communication ratio increases the severity of this
problem.

Initial attempts to reduce the communication overhead targeted
the asynchronization of the stochastic gradient descent (SGD) al-
gorithm [10, 12, 45]. However, Chen et al. [6] demonstrate that
synchronous SGD and its variants converged faster with higher
accuracy than their asynchronous counterparts.

E�orts tominimize communication bottlenecks continued. Zhang
et al. [73] devise a strategy known as Wait-Free Backpropagation
(WFBP) to interleave GPU computation and communication. WFBP
reduces bursts in network tra�c and lowers overall network strain.
Using WFBP, Zhang et al. achieve speed-ups in training times in
16 and 32 single-GPU machines. WFBP has become the de-facto
approach for data parallelism frameworks.

PyTorch DistributedDataParallel (DDP) [36], Horovod [55] and
Livermore Big Arti�cial Neural Network (LBANN) [17] toolkit are
three open source frameworks designed to assist in transitioning
models into a distributed environment. Out of these frameworks
PyTorch DDP has been extremely popular among the deep learn-
ing community due to its seamless integration with PyTorch [47].
Horovod is an implementation of WFBP for TensorFlow by Uber.
LBANN accelerates parallelized deep learning by taking advantage
of high performance computing hardware. These implementations
share an uncanny similarity in the way they optimize WFBP. In-
stead of having an individual all-reduce call for each parameter
tensor, they fuse parameter tensors into �xed size bins. All reduce
calls are made at the granularity of these fused parameter bins. This
increases network bandwidth utilization and thus the overall per-
formance of these frameworks. Although the fused tensor bin-size
is kept as a tunable hyperparameter, Li et al. [36] demonstrate that
the default bucket size of PyTorch DDP i.e. 25MB is a reasonable
choice for e�cient scaling.

3.1.2 Memory Redundancy. Given the abundance of large training
datasets, neural networks with increasingly larger number of pa-
rameters have led to tremendous gains in performance on a variety

3

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

