
A Comparison of Sorting 
Algorithms for the Connection 

Machine CM-2 
presented by Benjamin Black



Optimizing sorting on CM-2

● CM-2: hypercube network connect
● Algorithms to optimize

○ Bitonic sort
○ Sample sort
○ Radix sort



Primitives

● Arithmetic (Map)
● Send across network
● Scan (Cumulative sum)
● Cube swap (send along each dimension of hypercube)



Bitonic-sort

● Similar to merge-sort except 
every other sub-sequence is 
sorted in reverse order

● Key operation-bitonic merge
○ Naturally organized like a 

hypercube
○ Most efficient for small numbers of 

keys

Blelloch et. al. 1991



Bitonic sort optimizations

● Optimization pipelined-bitonic sort
○ Multiple keys per processor
○ exchange all keys before they are needed



Radix sort

● Iterated bucket sort
● In place sort
● Need to know not only which bucket each key is in, but which rank the key is 

within each bucket
● Counting rank for each bucket be done with a Scan operation



Optimizing radix sort

● More efficient to calculate all ranks 
internally for each processor, 
combine across processors

● Choosing parameter r



Sample Sort

● Divide and conquer algorithm--Similar to quicksort
● Quicksort:

○ find 1 pivot value using a random strategy
○ Divide input below and above pivot point
○ Sort each half independently. 

● Sample sort
○ Sample p-1 pivot values using a random strategy (p is the number of processors)
○ Sort pivot values
○ Send all pivot values to all processors
○ Divide input on each processors into the p buckets in parallel

■ binary search
○ Sort each bucket on each processor



Sample sort optimizations

● Oversampling: 
○ To make evenly sized buckets, s(p-1) 

samples are selected, where p is the 
number of processors and s is the 
oversampling ratio.

○ Pivots are the samples in the s, 2s, 3s, 
… (p-1)s ranks in the sample

○ Chose value 64 for s empirically for 
16384 keys per processor

Blelloch et. al. 1991



Final results


