Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on
CPU and GPU

Benjie Miao Feb. 25, 2021



Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU

. Victor W Lee’, Changkyu Kimf, Jatin Chhugani’, Michael Deisher",
Daehyun Kim*, Anthony D. Nguyen’, Nadathur Satish, Mikhail Smelyanskiy®,
a p e r I I O r I I I a | O I I Srinivas Chennupaty*, Per Hammarlund+, Ronak Singhal- and Pradeep Dubey*
victor.w.lee @intel.com

“Throughput Computing Lab, *Intel Architecture Group,
Intel Corporation Intel Corporation

Conference: ISCA'10 (Top-tier conference in Computer Architecture)
» Author: Victor W Lee, et. al. Intel Corporation (12 authors in all)

« Main idea: to argue that CPU is not that bad in scientific computing compared to GPGPU

* the performance gap between an Nvidia GTX280 processor and the Intel Core i7 960 processor narrows
to only 2.5x on average

Google Trends for GPGPU (General Propose Graphic Processing Unit)

Interest over time ¥ o<

GPGPU becomes an extremely hot topic at the end of 2009

Dec 2009

General-purpose computing o...

| JAMJ”’VWVV“’ Wity



Paper Outline

* Introduction

* Methodology
* The workload: Throughput Computing Kernel
* Performance Benchmark Platform

* Result & Analysis
* Performance comparison (GPU v.s. CPU)
* Performance gap analysis

* Conclusion



INntroduction

* CPU v.s. GPU architecture: very different philosophy
* CPU: fast response-time to a single task
* GPU: a large degree of data parallelism, latency tolerant

* GPU is (claimed to be) suitable for throughput computing
* throughput computing: complete a large task in a short time period
* All scientific computing programs fall in this category

* a number of papers claim that GPUs perform 10X to 1000X better than
CPUs on a number of throughput kernels/applications



INntroduction

* reexamine claims that GPUs perform much better than CPUs; after
tuning the code for BOTH CPU and GPU, found that the GPU only
performs 2.5X better than CPU

* analyze the difference between CPU and GPU and identify the key
architecture features that benefit throughput computing workloads

* provide a systematic characterization of throughput computing
kernels regarding 1) the types of parallelism available 2) the compute
and bandwidth requirements 3) the access pattern and 4) the
synchronization needs

* |dentify the important software optimization techniques for efficient
utilization of CPU and GPU platforms



Workload: Throughput Computing Kernel

| Kernel [l Application SIMD | TLP | Characteristics
SGEMM (SGEMM) [48] Linear algebra Regular Across 2D Tiles Compute bound after tiling
Monte Carlo (MC) [34, 9] Computational Finance Regular Across paths Compute bound
Convolution (Conv) [16, 19] Image Analysis Regular Across pixels Compute bound; BW bound for small filters
FFT (FFT) [17, 21] Signal Processing Regular Across smaller FFTs Compute/BW bound depending on size
SAXPY (SAXPY) [46] Dot Product Regular Across vector BW bound for large vectors
LBM (LBM) [32, 45] Time Migration Regular Across cells BW bound
Constraint Solver (Solv) [14] Rigid body physics Gather/Scatter Across constraints Synchronization bound
SpMV (SpMYV) [50, 8, 47) Sparse Solver Gather Across non-zero BW bound for typical large matrices
GIK (GJK) [38] Collision Detection Gather/Scatter Across objects Compute Bound
Sort (Sort) [15, 39, 40] Database Gather/Scatter Across elements Compute bound
Ray Casting (RC) [43] Volume Rendering Gather Across rays 4-8MB first level working set,
over S00MB last level working set
Search (Search) [25] Database Gather/Scatter Across queries Compute bound for small tree, BW
bound at bottom of tree for large tree
Histogram (Hist) [53] Image Analysis Requires Across pixels Reduction/synchronization bound
conflict detection
Bilateral (Bilat) [52] Image Analysis Regular Across pixels Compute Bound

Table 1: Throughput computing kernels characteristics. The referred papers contains the best previous reported performance

numbers on CPU/GPU platforms. Our optimized performance numbers are at least on par or better than those numbers.




Plattorm

* CPU (Intel Core 17-960) v.s. GPU (Nvidia GTX 280)

Num. Frequency Num. BW SP SIMD | DP SIMD Peak SP Scalar Peak SP SIMD Peak DP SIMD

PE (GHz) Transistors | (GB/sec) width width FLOPS (GFLOPS) | Flops (GFLOPS) | Flops (GFLOPS)
Core 17-960 4 3.2 0.7B 32 4 2 25.6 102.4 51.2
GTX280 30 1.3 1.4B 141 8 | 116.6 311.1/933.1 77.8

Table 2: Corei7 and GTX280 specifications. BW: local DRAM bandwidth, SP: Single-Precision Floating Point, DP: Double-Precision
Floating Point.

* SIMD (Single Instruction Multiple Data)
* CPU: Intrinsic instructions, Out-of-order, etc.
* GPU: Warp (32 threads at the same time)



Result (after tuning both CPU/GPU codes)

* GPU 2.5x faster than CPU on average

* GJK, Bilat, SAXPY:
* >5x (suitable for GPU)

e Solv, Sort;
* CPU version faster

Normalized to Core i7
[ T R T S [ O ¥ I 1 1

(a) Relative Performace

Figure 1: Comparison between Core i7 and GTX280 Perfor-
mance.



Analysis

* Categorize the kernels by their computing characteristics
* Bandwidth-bound: SAXPY, SpMV, LBM
* Compute-bound: SGEMM, Conv, FFT, Bilat
* Cache-bound: Sort, Search
* Gather/Scatter: GJK, RC
* Reduction and Synchronization: Hist, Solv
* Fixed Function: Bilat, MC



Bandwidth-bound: SAXPY, SpMV, LBM

* SAXPY (Scalar Alpha X Plus Y), SpMV (Sparse Matrix * Vectors),
LBM (Lattice Boltzmann method in CFD)

* SAXPY & LBM:

* sets that require much global memory accesses without much compute
* are purely banawidth bound

* Platform peak memory bandwidth ratio: 4.7X
* Speedup: SAXPY - 5.1X, LBM - 5.0X
* SpMV: 1.9X

* Reason: in CPU, column index fit In cache




Software Optimization Techniques

* For CPU:
* multithreading
* cache blocking
* reorganization of memory accesses for SIMD-Ification

* For GPU:

* minimizing global synchronization
* using local shared buffers



Conclusion

* CPUs and GPUs are much closer in performance (2.5X) than the
previously reported orders of magnitude difference

* many factors affect the reported performance

* Characterization of kernels: compute/bandwidth, cache,
gather/scatter, synchronization, fixed functional units

* Guideline for performance optimization on CPU and GPU
programs

* Future: Power efficiency



Questions?



