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« Main idea: to argue that CPU is not that bad in scientific computing compared to GPGPU

* the performance gap between an Nvidia GTX280 processor and the Intel Core i7 960 processor narrows
to only 2.5x on average

Google Trends for GPGPU (General Propose Graphic Processing Unit)
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INntroduction

* CPU v.s. GPU architecture: very different philosophy
* CPU: fast response-time to a single task
* GPU: a large degree of data parallelism, latency tolerant

* GPU is (claimed to be) suitable for throughput computing
* throughput computing: complete a large task in a short time period
* All scientific computing programs fall in this category

* a number of papers claim that GPUs perform 10X to 1000X better than
CPUs on a number of throughput kernels/applications



INntroduction

* reexamine claims that GPUs perform much better than CPUs; after
tuning the code for BOTH CPU and GPU, found that the GPU only
performs 2.5X better than CPU

* analyze the difference between CPU and GPU and identify the key
architecture features that benefit throughput computing workloads

* provide a systematic characterization of throughput computing
kernels regarding 1) the types of parallelism available 2) the compute
and bandwidth requirements 3) the access pattern and 4) the
synchronization needs

* |dentify the important software optimization techniques for efficient
utilization of CPU and GPU platforms



Workload: Throughput Computing Kernel

| Kernel [l Application SIMD | TLP | Characteristics
SGEMM (SGEMM) [48] Linear algebra Regular Across 2D Tiles Compute bound after tiling
Monte Carlo (MC) [34, 9] Computational Finance Regular Across paths Compute bound
Convolution (Conv) [16, 19] Image Analysis Regular Across pixels Compute bound; BW bound for small filters
FFT (FFT) [17, 21] Signal Processing Regular Across smaller FFTs Compute/BW bound depending on size
SAXPY (SAXPY) [46] Dot Product Regular Across vector BW bound for large vectors
LBM (LBM) [32, 45] Time Migration Regular Across cells BW bound
Constraint Solver (Solv) [14] Rigid body physics Gather/Scatter Across constraints Synchronization bound
SpMV (SpMYV) [50, 8, 47) Sparse Solver Gather Across non-zero BW bound for typical large matrices
GIK (GJK) [38] Collision Detection Gather/Scatter Across objects Compute Bound
Sort (Sort) [15, 39, 40] Database Gather/Scatter Across elements Compute bound
Ray Casting (RC) [43] Volume Rendering Gather Across rays 4-8MB first level working set,
over S00MB last level working set
Search (Search) [25] Database Gather/Scatter Across queries Compute bound for small tree, BW
bound at bottom of tree for large tree
Histogram (Hist) [53] Image Analysis Requires Across pixels Reduction/synchronization bound
conflict detection
Bilateral (Bilat) [52] Image Analysis Regular Across pixels Compute Bound

Table 1: Throughput computing kernels characteristics. The referred papers contains the best previous reported performance

numbers on CPU/GPU platforms. Our optimized performance numbers are at least on par or better than those numbers.




Plattorm

* CPU (Intel Core 17-960) v.s. GPU (Nvidia GTX 280)

Num. Frequency Num. BW SP SIMD | DP SIMD Peak SP Scalar Peak SP SIMD Peak DP SIMD

PE (GHz) Transistors | (GB/sec) width width FLOPS (GFLOPS) | Flops (GFLOPS) | Flops (GFLOPS)
Core 17-960 4 3.2 0.7B 32 4 2 25.6 102.4 51.2
GTX280 30 1.3 1.4B 141 8 | 116.6 311.1/933.1 77.8

Table 2: Corei7 and GTX280 specifications. BW: local DRAM bandwidth, SP: Single-Precision Floating Point, DP: Double-Precision
Floating Point.

* SIMD (Single Instruction Multiple Data)
* CPU: Intrinsic instructions, Out-of-order, etc.
* GPU: Warp (32 threads at the same time)



Result (after tuning both CPU/GPU codes)

* GPU 2.5x faster than CPU on average

* GJK, Bilat, SAXPY:
* >5x (suitable for GPU)

e Solv, Sort;
* CPU version faster

Normalized to Core i7
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(a) Relative Performace

Figure 1: Comparison between Core i7 and GTX280 Perfor-
mance.



Analysis

* Categorize the kernels by their computing characteristics
* Bandwidth-bound: SAXPY, SpMV, LBM
* Compute-bound: SGEMM, Conv, FFT, Bilat
* Cache-bound: Sort, Search
* Gather/Scatter: GJK, RC
* Reduction and Synchronization: Hist, Solv
* Fixed Function: Bilat, MC



Bandwidth-bound: SAXPY, SpMV, LBM

* SAXPY (Scalar Alpha X Plus Y), SpMV (Sparse Matrix * Vectors),
LBM (Lattice Boltzmann method in CFD)

* SAXPY & LBM:

* sets that require much global memory accesses without much compute
* are purely banawidth bound

* Platform peak memory bandwidth ratio: 4.7X
* Speedup: SAXPY - 5.1X, LBM - 5.0X
* SpMV: 1.9X

* Reason: in CPU, column index fit In cache




Software Optimization Techniques

* For CPU:
* multithreading
* cache blocking
* reorganization of memory accesses for SIMD-Ification

* For GPU:

* minimizing global synchronization
* using local shared buffers



Conclusion

* CPUs and GPUs are much closer in performance (2.5X) than the
previously reported orders of magnitude difference

* many factors affect the reported performance

* Characterization of kernels: compute/bandwidth, cache,
gather/scatter, synchronization, fixed functional units

* Guideline for performance optimization on CPU and GPU
programs

* Future: Power efficiency



Questions?



