
Minghui Liu Feb 18 2021

Scaling Applications to Massively
Parallel Machines Using Projections
Performance Analysis Tool
Laxmikant V. Kale ́, Gengbin Zheng, Chee Wai Lee, Sameer Kumar

Motivation
Scale complex applications to large number of processors

• How to understand and optimize performance of complex applications
running on thousands of cores

• The authors’ approach:

• Use visual and analytical feedbacks

• Created a visualization component called Projections for Charm++

Charm++ Runtime
Two tracing modes

• Log mode

• Each event is recorded in full detail, including timestamp

• An “event” is entry method call, or message packing, unpacking, etc.

• Summary mode

• A few lines of information per processor

• Sum, max, avg execution time, number of times called, etc. for each entry
method

Summary View

Average utilization over time

Graph View
 Overview

Color intensity utilization over selected time interval

Projections
Visualization

Projections
Visualization

Histogram

frequency of entry methods or messages

Timeline

A sequence of entry methods for each processor

Usage Profile View

Stacked column bar showing time spent in

different activities for selected processors

NAMD
Nanoscale Molecular Dynamics

• Simulates large biomolecular systems

• Each time step:

• Compute forces on each atom

• Integrate forces to update atom positions (cutoff radius)

• Atoms are partitioned into cubes (dimension slightly larger than cutoff radius) called home
patches

• Create a force computation object for each pair of neighboring cubes

• Each processor receives a number of neighboring cubes/patches, compute objects are
distributed to a processor owning at least one home patch

NAMD
Optimization 1 - Grainsize Analysis

• Benchmark: 92,000 atoms, 57 seconds on one processor

• Cannot scale beyond 1,000 processors

• Analysis using projection revealed:

• Most computation time was spent in force-computation objects, not uniform,
range from 1 - 41 microseconds

• Ideal should be 28 microseconds on 2,000 processors

• Culprit: electrostatic force computations between cubes that have a common face

• Solution: split these objects into multiple pieces

NAMD
Optimization 2 - Load Balancing

• Distribution of atoms over space is relatively non-uniform

• Was using Charm++’s measurement-based load balancing framework that
supports runtime load and communication tracing

• Can admit different strategies as plugins during a single run

• Greedy strategy

65-70%

95%

Start of load balancing Greedy Refinement

NAMD
Optimization 2 - Load Balancing

• Result on 1024 processors were not satisfying, the load on processors was
different that what the load balancer had predicted

• The greedy strategy ignored existing placement of objects entirely to achieve
close to optimal mapping, background load and cache performance were
very different after massive object migration

• Solution: add another load balancing phase immediately after the greedy
reallocation, which used a simpler “refinement” strategy: only move
processors significantly above avg load (5%) so not to disturb the
performance context

45%

60%

NAMD
Optimization 2 - Load Balancing

• Due to quirks in the background load, processor 500 - 600 underloaded

• Does not impact performance much, but overloaded processors do

• The refinement strategy did not change this, but improved overall utilization

NAMD
Optimization 3 - Stretched Entry Method

• Identified the “stretched” entry method problem using timeline view

• Occur on PSC Lemieux while running on large number of processors

• Process 900, 933 methods took 20 - 30 ms (usually 2-3ms or less)

• Entry method blocked on send operation, caused by mistuned library

• OS daemon interference problem

25% idle time

Overloaded

Processor

Communication hiccups

CPAIMD
Car-Parrinello ab initio molecurar dynamics

• Used to study key chemical and biological processes

• Restricted by the number of states, 3-D FFT is communication intensive, cannot
scale to thousands of processors

• Objects are electron orbitals/states, each represent Fourier coefficients in 3D g-
space

• Each virtual processor being a plane of g-space, which is not very dense, only a
fraction of the cube is non-zero

• Initial mapping mapped planes uniformly across processors

• Solution: explicitly consider the load caused by each plane, result in better mapping

Next Gen Supercomputers
2002

• IBM BlueGene/L: 64,000 dual-processor nodes, 360 teraflops peak
performance

• IBM BlueGene/C (Cyclop), 1M floating point units fed by 8M instruction
streams, 1 petaflops peak performance

• Challenges

• Write parallel programs that exploits this power

• Analyze their performance

Next Gen Supercomputers
BigSim

• To evaluate parallel applications and performance analysis tools on
supercomputers, authors crated a parallel simulator: BigSim

• Employ the projections framework on BigSim

• Cannot generate 64,000 log files, I/O overheads and memory cost

• Use summary mode, more compact trace data

• Global reduction that collects and combines all trace data into one file

• Generate detailed log, only for a specified range of processors

Next Gen Supercomputers
NAMD on Blue Gene/L

• NAMD shown to scale to 3,000 processors but not beyond

• ER-GRE benchmark, 36,573 atoms, simulates space of 92x92x92
(ångström)

• Using NAMD’s one-way decomposition strategy: 8x8x8 number of cells given
the cutoff distance of 12 , 7168 cell to cell interactions to calculate

• Not enough work to distribute across 64,000 processors, some would be idle

Å3

Å3

Next Gen Supercomputers
NAMD on Blue Gene/L

• Three-away decomposition: three cells span the cutoff distance

• Every cell compute interactions with every cell that is three-away

• Produces 13,824 cells, more than 2 million cell-to-cell interactions

• Easily distributed across 64,000 nodes

• LeanMD: models the cutoff
computation

• Run on PSC Lemieux
simulated BlueGene/L using
node size 1K - 64K

• On 32K processors utilization
stabilizes at about 50%

• Speedup saturate starting
from 16K processors

• Load imbalance: most
processors have load of 2ms,
some as high as 11ms

• Calculate expected performance
based on load imbalance alone

• Very close to the authors’s
predicted performance, indicating
that load imbalance is the major
performance issue

• This type of analysis is possible
thanks to the rich trace data
produced by the simulator

