Isoefficiency : Measuring the
Scalability of Parallel Algorithms
and Architectures

Ananth Y. Grama, Anshul Gupta, and Vipin Kumar
University of Minnesota

presented by Rui Xu
03/10/2021

Overview

* Scalable parallel systems

* The isoefficiency function
» Terminology, definitions, and assumptions
» Cost-optimal
» Degree of concurrency

* |soefficiency analysis
»Comparing two parallel algorithms
» Effects of machine specific parameter
» Impact of concurrency on scalability
» Impact of contention for shared data structures

* Summary

* Increasing the number of processors reduces
Scalable parallel efficiency

systems * Increasing the problem size increases efficiency

 Scalable parallel systems: keep efficiency
constant by increasing both

______ _ . —
{ i B T
| 30} | Table 1. Efficiency as a function of n and p for adding
25 o n numbers on p-processor hypercubes.
g2 - _en=512
- L en=30 p=1 p=4 p=8 p=16 p=32
| o192 ||
‘0[P e n=564 1.0 .80 57 33 A7
5F gt e =N=64 n=192 1.0 92 .80 .60 38
0 5 10 15 20 25 30 3 40 n=512 1.0 97 91 .80 62
Processors

Figure 1. Speedup versus number of processors for adding a list of
numbers on a hypercube.

plp =Ti + T, Terminology

- In +1,
I'p = —
P * Terminology and definition
» Sequential execution time (T,): the execution time to run
Y pl an algorithm on a single processor
0 = ﬁ T+ T, » Parallel execution time (T,): the execution time of the
corresponding parallel algorithm on p identical processors
¢ » Total overhead (T,): the sum total of time spent by all
FE = — processors doing work which is not done by the
P . sequential algorithm
=T +1 T » The speedup (S): ratio of sequential execution time to the
. parallel execution time
T 115k » The efficiency (E): ratio of the speedup to the number of

processors used

Definitions

* Assuming the sequential execution time T; = W X t., where W is the
problem size and t, is the cost of executing each operation

1
Ty
Wt,

E =
1+

»If W = constant and p increases, E decreases because the total overhead
T will increase

»If p = constant and W increases, E increases for scalable parallel systems
because Ty grows slower than @(W)

The isoefficiency function

* Highly scalable system: W needs to grow only linearly
with respect to p to maintain E at a desired value (W =

KTg, where Kis a function of Eand t_)

W =1{(p) is the isoefficiency function, assuming that the
efficiency of the parallel systems can be kept constant

* A small isoefficiency function means highly scalable, i.e.

W = @(p3) which means the problem size should grow
0(p3) to maintain the same efficiency

Cost-optimal

* A parallel system is cost-optimal if and only if the product of the
number of processors and the parallel execution time is proportional
to the execution time of the best serial algorithm on a single
pProcessor:

pT, x W
or
W T,

* The lower bound of W= @(p), which is ideally scalable parallel
system

Degree of concurrency

 If C(W) is an algorithm's degree of concurrency, then given a problem
of size W, at most C(W) processors can be employed effectively.

* For example, given a problem of size W, at most @(W?/3) pocessors
can be used, so given p processors, the size of the problem should be

at least @(p3/2) in order to use all the processors.

* Thus, isoefficiency function due to concurrency is @(p3/2)

e System's overall isoefficiency function is the maximum of the
isoefficiency functions due to concurrency, communication, and other
overhead

Isoefficiency analysis: stripe based matrix-
vector product on a hypercube

* The problem of multiplying an n X n matrix with ann X 1 vector
* Problem size, W = n?

e Parallel execution time Tp n-

=t,— +t;logp+tyn
p
Matrix A Vector x
* Total overhead T, =t .plogp +t,np " :
| T 3
« W = Kt.plog(p) and W = K*t,,*p* T R)
: p
* So isoefficiency function is G(pz) T -
Pp-l p-1

(a) Imitial partitioning of the matrix
and the starting vector x

Isoefficiency analysis: checkerboard based
matrix-vector product on a hypercube

Parallel execution time Tp = r% + 1, 42t log/p + :wu.%log /P
| N
3
Total overhead T, = toplogp + Styn\/plogp
Mlatrix lA | Vector x
29t% 1 o LR I v
W = Ktsplog(p) and W = K* 77 plog“p by T
1 'v"lTi <1E- i ’
Il isoefficiency is @ (plog?
Overall isoefficiency is @(plog“p) | + .
Py

The checkerboard algorithm has a higher scalability

(a) Imitial data distribution and communication
steps to align the vector along the diagonal

Effects of machine specific parameter

* The effects of processor and communication speeds

* Cooley-Tukey algorithm for computing n-point, single dimensional
unordered radix-2 FFT

* |soefficiency function: W = t plog(p) and W = Cp‘log(p), where

E ot
- 1-Et,
* If C< 1: O(plog(p)) else: O(p‘log(p))

* And Cis hardware dependent parameter, which depends on CPU
speed and communication bandwidth

C

Impact of concurrency on scalability

* Dijkstra’s All Pair’s Shortest Path Algorithm
* The best-known serial algorithm takes O(n3) time

* A simple parallel version by executing a single-source shortest-path
problem independently on each processor with O(n?) time

* This simple algorithm can use at most n processors

* And since the problem size is O(n3), problem size must grow at least
@(p3) to use more processors and maintain constant efficiency

e So in this algorithm, isoefficiency is dominated by concurrency and
absence of communication here is no longer an advantage

Impact of contention for shared data structures

* Dynamic load balancing
* Isoefficiency due to communication overhead is @(plogzp)

* Only one processor can access the global variable at a time; we must also
analyze the system’s isoefficiency due to contention

* At some point, the shared variable access becomes a bottleneck, and the
overall execution time cannot be reduced further

* We can eliminate this bottleneck by increasing W at a rate such that the
ratio between W/p and O(p log W) remains the same

* Thus, isoefficiency due to contention is @(pzlog p)
* Overall isoefficiency is @(leog P)

Summary

* If the problem size grows at the rate specified by the isoefficiency
function, then the system’s speedup is linear

* For a class of parallel systems, the isoefficiency function specifies the
relationship between the problem size’s growth rate and the number
of processors on which the problem executes in minimum time

