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Molecular Dynamics (MD)

- Predict material properties.

- Drug discovery

- Model biomolecular interaction

- Used when real world experiments are too expensive / time consuming.

- Cheaper/quicker alternative to buying lab equipment and manufacturing a
material/drug/biomolecule.



The Molecular Dynamics Cycle
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Accurate MD simulations - factors?

1. Setting good initial conditions using some well known distribution in Physics
like the Boltzmann distribution.

2. Having good approximations of potential energy for every pair of particles.

3. Having a small time quanta for the integrating step that calculates position
and velocity from acceleration. Usually, kept as 1 femtosecond (10*-15
second).



Parallelization Strategy

3D Space is divided into equal sized cubes called
home patches. Each home patch has 26
neighbours.

1 home patch with it's 26
neighbours



Parallelization Strategy

Size of each home patch is set to the cutoff
radius (12A). Thus, forces between two
molecules are calculated only if they are in the
same or neighbouring home patches.

1 home patch with it's 26
neighbours



Parallelization Strategy

However, the fixed size of each cube prevents
over-decomposition. For eg: with ATPase (a very
large MD simulation) we can just have 704
patches.

1 home patch with it's 26
neighbours



Parallelization Strategy

NAMD thus employs force decomposition as
well. For each pair of neighbouring cubes, a

non-bonded force computation object is created.
There are 26/2=13 such objects per home patch.

Therefore we have a total of 13+1=14 charm++
chares per home patch.

1 home patch with it's 26
neighbours



Load Balancing

- Particles are moving, thus they can change their home patches with time.

- NAMD implements dynamic load balancing.

- Initially patches are distributed according to a recursive coordinate bisection
scheme.

- Aggressive load balancing in the first 500 steps (frequency = 100 steps)

- Then (frequency = 4000 steps).



L.oad Balancing in practice

NAMD 2.5 ApoA1 PME MTS Benchmark LeMieux 512 Processors
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PME (Particle Mesh Ewald) in NAMD

- PME is an algorithm for full electrostatics calculation.

- This means calculation of forces between molecules not in neighbouring
home patches is also done.

- NAMD includes PME in it's codebase. The paper talks about the
optimizations they made for PME calculation in NAMD.

- NAMD can thus operate in three modes, Cutoff (without PME), PME (PME
every step), MTS (PME every 4 steps).



Communication Libraries
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From the charm++ github repo.

1. The way a parallel program written in Charm++ will communicate:

O netlrts- : Charm++ communicates using the regular TCP/IP stack (UDP packets), which works everywhere
but is fairly slow. Use this option for networks of workstations, clusters, or single-machine development and
testing.

O gni-, pamilrts-, verbs-, ofi-, ucx- :Charm++ communicates using direct calls to the machine's
communication primitives. Use these versions on machines that support them for best performance.

o0 mpi- : Charm++ communicates using MPI calls. This will work on almost every distributed machine, but
performance is often worse than using the machine's direct calls referenced above.

O multicore- : Charm++ communicates using shared memory within a single node. A version of Charm++
built with this option will not run on more than a single node.




Performance results
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NAMD performance on 327K atom ATPase benchmark system for Charm++ on ELAN



Questions?




