NAMD: Biomolecular Simulation on Thousands of Processors

James C. Phillips* Gengbin Zheng' Sameer Kumar' Laxmikant V. Kalé

*Beckman Institute, University of Illinois at Urbana-Champaign.
'Department of Computer Science and Beckman Institute, University of Illinois at Urbana-Champaign.

Molecular Dynamics (MD)

- Predict material properties.

- Drug discovery

- Model biomolecular interaction

- Used when real world experiments are too expensive / time consuming.

- Cheaper/quicker alternative to buying lab equipment and manufacturing a
material/drug/biomolecule.

The Molecular Dynamics Cycle

Set initial Calculate potential
energy of each

particle pair

conditions
(position/velocity)

Calculate
Calculate net force

on each particle

acceleration of
each particle

Accurate MD simulations - factors?

1. Setting good initial conditions using some well known distribution in Physics
like the Boltzmann distribution.

2. Having good approximations of potential energy for every pair of particles.

3. Having a small time quanta for the integrating step that calculates position
and velocity from acceleration. Usually, kept as 1 femtosecond (10*-15
second).

Parallelization Strategy

3D Space is divided into equal sized cubes called
home patches. Each home patch has 26
neighbours.

1 home patch with it's 26
neighbours

Parallelization Strategy

Size of each home patch is set to the cutoff
radius (12A). Thus, forces between two
molecules are calculated only if they are in the
same or neighbouring home patches.

1 home patch with it's 26
neighbours

Parallelization Strategy

However, the fixed size of each cube prevents
over-decomposition. For eg: with ATPase (a very
large MD simulation) we can just have 704
patches.

1 home patch with it's 26
neighbours

Parallelization Strategy

NAMD thus employs force decomposition as
well. For each pair of neighbouring cubes, a

non-bonded force computation object is created.
There are 26/2=13 such objects per home patch.

Therefore we have a total of 13+1=14 charm++
chares per home patch.

1 home patch with it's 26
neighbours

Load Balancing

- Particles are moving, thus they can change their home patches with time.

- NAMD implements dynamic load balancing.

- Initially patches are distributed according to a recursive coordinate bisection
scheme.

- Aggressive load balancing in the first 500 steps (frequency = 100 steps)

- Then (frequency = 4000 steps).

L.oad Balancing in practice

NAMD 2.5 ApoA1 PME MTS Benchmark LeMieux 512 Processors

T
E
[« %
(5]
o
0]
2
[
Q
[
E
=
(]
(o]
@
[
>
<
o
[
o
@
(=]
o
=)

PME (Particle Mesh Ewald) in NAMD

- PME is an algorithm for full electrostatics calculation.

- This means calculation of forces between molecules not in neighbouring
home patches is also done.

- NAMD includes PME in it's codebase. The paper talks about the
optimizations they made for PME calculation in NAMD.

- NAMD can thus operate in three modes, Cutoff (without PME), PME (PME
every step), MTS (PME every 4 steps).

Communication Libraries

2800

considerable amount of speedup. L

ms | 32.1ms 39 87: 4 419
32.5ms | 28.8ms 362 7 4 467

- On the PSC Leimux cluster, the authors ocessors
) _ |||-
noted that Charm++ with native MPI N | 2k Al | oze
was very slow due to expensive 2 | 4 Z?;iii Z).iﬁliif o6 | 440 || o0 | an
510 3 65.7ms 63.0 ms 427 445 205 213
MP]_]probe calls. 1024 4 419ms | 36.1ms | 670 | 778 | 322 | 373
1023 3 35.1ms 33.9ms 9¢ ‘- 83 397
- They implemented Charm++ on top of 9 | 3 | 267me | 2rms | 1050 | 1187 | S0t | 545
g o o g 2048 4 31.8ms | 25.9ms 08: 42: 520
the native Elan communication Ilbrary 1800 3 25.8ms | 22.3ms | 1087 | 1261 | 521 | 605
2250 3 19.7ms 18.4 ms 2 78: 733
on this cluster and observed a a0 | || ke | ZRGme || Bob\ M2 | W16) 405
4

From the charm++ github repo.

1. The way a parallel program written in Charm++ will communicate:

O netlrts- : Charm++ communicates using the regular TCP/IP stack (UDP packets), which works everywhere
but is fairly slow. Use this option for networks of workstations, clusters, or single-machine development and
testing.

O gni-, pamilrts-, verbs-, ofi-, ucx- :Charm++ communicates using direct calls to the machine's
communication primitives. Use these versions on machines that support them for best performance.

o0 mpi- : Charm++ communicates using MPI calls. This will work on almost every distributed machine, but
performance is often worse than using the machine's direct calls referenced above.

O multicore- : Charm++ communicates using shared memory within a single node. A version of Charm++
built with this option will not run on more than a single node.

Performance results

Titne/step
|| 5
24.89s 29.49s 28.08 s 494 | 0.434
207.4ms | 249.3ms | 234.6 ms

105.5ms | 135.5ms | 121.9ms

55.4ms | 72.9ms | 63.8ms

54.8ms | 69.5ms | 63.0ms

33.4ms | 45.1ms | 36.1ms

29.8 ms 38.7ms 33.9ms

25.7ms | 44.7ms | 32.9ms

21.2ms | 28.2ms | 24.7ms

25.8ms | 46.7ms | 25.9ms

18.6ms | 25.8ms | 22.3ms

15.6ms | 23.5ms 18.4 ms

22.6ms | 44.6ms | 27.2ms

22.1ms | 43.6ms | 32.1ms

22.6ms | 39.6ms | 28.8ms

p—

28
256
512
510
1024
1023
1536
1536
2048
1800
2250
2400
2800
3000

NAMD performance on 327K atom ATPase benchmark system for Charm++ on ELAN

Questions?

