
THIS IS JUST A FOR EXTRA PRACTICE. DO NOT SUBMIT TO THE SUBMIT SERVER
Specifications

For this assignment you will implement methods for the classes MultipleChoice, ArrayUtilities, House and Neighborhood. You will
find the classes in the sysImplementation package. A description of each method is provided below. A driver (that you can ignore if you
know what to implement) and associated output is provided at the end. This driver is not part of the code distribution. Regarding the code
you need to implement:

• You don’t need to add comments to your code, but you must have good variable names, indentation and you should avoid code
duplication.

• At this point you may want to look at the classes you will find in sysImplementation. We have provided a shell for each method
you need to implement. You can also see the instance variables associated with each class.

• During the implementation of the above classes, you can add instance variables, constants (static final) and private methods.
• You can assume parameters are valid, unless we indicate otherwise (e.g., if the parameter is null throw …).
• You can create a StringBuffer out of another (e.g., new StringBuffer(anotherStringBuffer)) or by using a string (e.g., new

StringBuffer(aString)).
• You must provide an implementation for every method you need to implement, otherwise your code will not work in the submit

server. If you don’t know what to do for a method, leave the body empty (void method) and for a method returning a value,
return any value that makes the code compile.

MultipleChoice Class Specification

This class provides multiple choice questions, where each method represents a question. To answer a question, replace the statement

throw new UnsupportedOperationException("Not Implemented");

with a return statement that returns a character. The following is an example of the kind of question we will provide, and the answer you
need to provide:

 /* What we will provide */
 public static char question1() {
 /* Question #1

 This course is:

 a. cmsc106
 b. cmsc131
 c. cmsc200
 d. None of the above

 */
 throw new UnsupportedOperationException("Not Implemented");
 }

/* You will replace the throw statement with a return and a character */
 public static char question1() {
 /* Question #1

 This course is:

 a. cmsc106
 b. cmsc131
 c. cmsc200
 d. None of the above

 */
 return 'b';
 }

ArrayUtilities Class Specification

This class defines the methods:

1. getFirstAndLastRowCopies - The method’s prototype is provided below. The method returns a two-dimensional array with
two rows, where the first row and second row, are copies of the first and last row of the data array, respectively. If the data
array has less than 2 rows, the method will return null. The data array is a ragged array (where the size of a row will be at least
1) and data will never be null. This method will not throw any exceptions.

public static char[][] getFirstAndLastRowCopies(char[][] data)

2. getIndexFirstRowAllSameCharacter - The method’s prototype is provided below. The method returns the index of the first
row of the data array where all the characters in the row are the same, and -1 if there is no row where all the characters are the
same. The data array is a ragged array (where the size of a row will be at least 1) and data will never be null. A row with only
one character is considered to be a row where all the characters are the same. This method will not throw any exceptions.

public static int getIndexFirstRowAllSameCharacter(char[][] data)

House Class Specification

The House class represents a house. A house has an address (address instance variable), a year it was built (built instance variable),
and the names of residents of the house (residents instance variable). The declaration of each variable follows.

 private String address;
 private int built;

 private StringBuffer residents;

The class methods are:

1. Constructor - Takes a string (representing the address) and an integer (representing the year the house was built) as parameters,
and initializes the corresponding instance variables, accordingly. It creates a StringBuffer object and assigns it to the residents
instance variable. You can assume the parameters are valid (e.g., address is not null)

2. Copy Constructor - Creates a deep copy.
3. addResident - Appends the provided string parameter to the residents Stringbuffer if the string parameter is not null. Do not add

any delimeter (e.g., a comma) as part of the append process. The method always returns a reference to the current object and no
exception will be thrown by this method.

4. getAddress - get method for address.
5. getBuilt - get method for built.
6. toString() - We have provided this method; do not modify it, otherwise you might not pass release / secret tests.

Neighborhood Class Specification

The Neighborhood class represents a neighborhood. A neighborhood has a name (name instance variable), an array of references to
House objects (houses instance variable), and the current number of House objects (currHouses instance variable). Keep in mind
that the current number of houses is not necessarily the same as the length of houses array. The declaration of each variable follows.

 private String name;
 private House[] houses;
 private int currHouses;

The class methods are:

1. Constructor - Takes a string (representing the neighborhood’s name) and an integer (representing the maximum number of
houses we can have) as parameters. It creates an array of House references with a size corresponding to the integer parameter.
It initializes the current number of houses (currHouses instance variable) to 0. Remember that arrays of references are
initialized to null by default (you don’t need to perform such initialization).

2. addHouse - Takes as parameters a string (address, representing a house address), an integer (built, representing when the
house was built), and an integer (whereIndex, representing the index value of the array entry that will be used to add the new

House object). The method will create a House object and assign it to the specified array entry, if the address parameter is not
null, if the whereIndex parameter is a valid index (one between 0 (inclusive) and the length of the array – 1 (inclusive)), and if
the array entry associated with whereIndex is currently set to null (i.e., there is no House object associated with that entry). If
any of these conditions are not met, the method will throw an IllegalArgumentException (any message is fine). If all
conditions are met, the new House object will be assigned to the array entry and the number of houses will be increased. The
method returns a reference to the current object. Notice that whereIndex is an index (not a position in the array), therefore, a
whereIndex value of 2 means the House object will be assigned to the third array entry.

3. findHouse - Returns true if there is a house with the specified address parameter and false otherwise.
4. getHouses - The addHouse method may add houses at different positions of the array, and not necessarily from the beginning

of the array, in a contiguous fashion. For example, you can have a house in the first array entry, no house in the second array
entry (entry set to null) and a house in the next entry. The getHouses method returns a new array with copies (deep copies) of
the House objects present in the Neighborhood object. House object references will appear contiguously in the returned array
and the size of the returned array corresponds to the currHouses value.

5. atLeastTwoHousesBuiltSameYear - This method will return true if there are at least two houses that were built in the same
year and false otherwise. Feel free to use the getHouses() method during the implementation of this method (although you
don’t need to).

6. toString() - We have provided this method; do not modify it, otherwise you might not pass release / secret tests
Driver / Expected Output (Feel free to ignore)

Driver

public static void main(String[] args) {
 String answer = "";

 House house = new House("CollegePark", 1983);
 house.addResident("Kelly").addResident("George");
 answer += house + "\n";

 House copy = new House(house);
 copy.addResident("Sammy");
 answer += copy + "\n";
 answer += "========================\n\n";

 Neighborhood neighborhood = new Neighborhood("GardensView", 5);
 answer += neighborhood;
 answer += "\n*Adding houses*\n";
 neighborhood.addHouse("Elm St 1", 1986, 1);
 neighborhood.addHouse("Oak St 1", 1971, 3);
 answer += neighborhood;
 answer += "\nFound House: " + neighborhood.findHouse("Elm St 1");

 House[] houses = neighborhood.getHouses();
 answer += "\nHow many: " + houses.length + "\n";
 answer += houses[0] + "\n";
 answer += houses[1] + "\n";
 answer += "========================\n\n";

 char[][] data = { {'a', 'b', 'c', 'd'},
 {'e', 'e', 'e'},
 {'h'},
 {'e', 'e', 'e'},
 {'i', 'j', 'k', 'l', 'm'} };

 char[][] result = ArrayUtilities.getFirstAndLastRowCopies(data);
 answer += "GettingFirstAndLastRowCopies:\n";
 answer += Arrays.toString(result[0]) + "\n";
 answer += Arrays.toString(result[1]) + "\n";

 answer += "\nGettingIndexFirstRowAllSameCharacter:\n";
 answer += "Index: " +
 ArrayUtilities.getIndexFirstRowAllSameCharacter(data);
 System.out.println(answer);
}

Output

House [address=CollegePark,
built=1983, residents=KellyGeorge]
House [address=CollegePark,
built=1983,
residents=KellyGeorgeSammy]
========================

Name: GardensView
maxHouses: 5
currHouses: 0
Houses Info:
Empty(No House)
Empty(No House)
Empty(No House)
Empty(No House)
Empty(No House)

Adding houses
Name: GardensView
maxHouses: 5
currHouses: 2
Houses Info:
Empty(No House)
House [address=Elm St 1,
built=1986, residents=]
Empty(No House)
House [address=Oak St 1,
built=1971, residents=]
Empty(No House)

Found House: true
How many: 2
House [address=Elm St 1,
built=1986, residents=]
House [address=Oak St 1,
built=1971, residents=]
========================

GettingFirstAndLastRowCopies:
[a, b, c, d]
[i, j, k, l, m]

GettingIndexFirstRowAllSameCharacte
r:
Index: 1

