
CMSC 330:
Organization of Programming Languages

Administrivia

1CMSC330 Spring 2022

Course Goals

• Describe and compare programming language features
∙ And understand how language designs have evolved

• Choose the right language for the job
• Write better code
∙ Code that is shorter, more efficient, with fewer bugs

• In short:
∙ Become a better programmer with a better
understanding of your tools.

CMSC330 Spring 2022 2

Course Activities
• Learn different types of languages
• Learn different language features and tradeoffs
∙ Programming patterns repeat between languages

• Study how languages are specified
∙ Syntax, Semantics — mathematical formalisms

• Study how languages are implemented
∙ Parsing via regular expressions (automata theory) and context

free grammars
∙ Mechanisms such as closures, tail recursion, lazy evaluation,

garbage collection, …
• Language impact on computer security

3CMSC330 Spring 2022

Syllabus

• Dynamic/ Scripting languages (Ruby)
• Functional programming (OCaml)
• Regular expressions & finite automata
• Context-free grammars & parsing
• Lambda Calculus and Operational Semantics
• Safe, “zero-cost abstraction” programming (Rust)
• Secure programming
• Scoping, type systems, parameter passing, comparing

language styles; other topics

4CMSC330 Spring 2022

Calendar / Course Overview

• Tests
∙ 4 quizzes, 2 midterm exams, 1 final exam ALL ONLINE
∙ Do not schedule your interviews on exam dates

• Lecture quizzes
∙ On ELMS, due by the end of the day of lecture

• Projects
∙ Project 0 - OUT NOW!
∙ Project 1 – Ruby
∙ Project 2-5 – OCaml (and parsing, automata)
∙ Project 6 – Security
� P1, P2, and P4 are split in two parts

5CMSC330 Spring 2022

Quiz time!

• According to IEEE Spectrum Magazine which is the “top”
programming language of 2021?

A. Java
B. R
C. Python
D. C++

CMSC330 Spring 2022 7

Quiz time!

• According to IEEE Spectrum Magazine which is the “top”
programming language of 2021?

A. Java
B. R
C. Python
D. C++

CMSC330 Spring 2022 8

Discussion Sections
• Discussions will be in-person

• Discussion sections will deepen understanding of
concepts introduced in lecture

• Oftentimes discussion section will consist of programming
exercises

• There will also be be quizzes, and some lecture material
in discussion section

9CMSC330 Spring 2022

Project Grading

• Projects will be graded using the Gradescope
∙ Software versions on these machines are canonical

• Develop programs on your own machine
∙ Your responsibility to ensure programs run correctly on

gradescope
• See web page for Ruby, OCaml, etc. versions we use, if

you want to install at home

10CMSC330 Spring 2022

Rules and Reminders

• Use lecture notes as your text
∙ Videos of lectures will be recorded for later reference
∙ You will be responsible for everything in the notes, even if it is not

directly covered in class!
• Keep ahead of your work
∙ Get help as soon as you need it

� Office hours, Piazza (email as a last resort)

• Avoid distractions, to yourself and your classmates
∙ Keep cell phones quiet

11CMSC330 Spring 2022

Academic Integrity

• All written work (including projects) done on your own
∙ Do not copy code from other students
∙ Do not copy code from the web
∙ Do not post your code on the web

• Cheaters are caught by auto-comparing code
• Work together on high-level project questions
∙ Discuss approach, pointers to resources: OK
∙ Do not look at/describe another student’s code
∙ If unsure, ask an instructor!

• Work together on practice exam questions
12CMSC330 Spring 2022

CMSC 330:
Organization of Programming Languages

Overview

13CMSC330 Spring 2022

Plethora of programming languages

• LISP: (defun double (x) (* x 2))

• Prolog: size([],0).
size([H|T],N) :- size(T,N1), N is N1+1.

• OCaml: List.iter (fun x -> print_string x)
 [“hello, ”; s; "!\n”]

• Smalltalk: (#(1 2 3 4 5) select:[:i | i even])

CMSC330 Spring 2022 14

All Languages are (sort of) Equivalent

• A language is Turing complete if it can compute any
function computable by a Turing Machine

• Essentially all general-purpose programming languages
are Turing complete
∙ I.e., any program can be written in any programming language

• Therefore this course is useless?!
∙ Learn one programming language, always use it

15CMSC330 Spring 2022

Studying Programming Languages

• Will make you a better programmer
∙ Programming is a human activity

� Features of a language make it easier or harder to program for a specific
application

∙ Ideas or features from one language translate to, or are later
incorporated by, another
� Many “design patterns” in Java are functional programming techniques

∙ Using the right programming language or style for a problem may
make programming
� Easier, faster, less error-prone

16CMSC330 Spring 2022

Studying Programming Languages

• Become better at learning new languages
∙ A language not only allows you to express an idea, it also shapes

how you think when conceiving it

∙ You may need to learn a new (or old) language
� Paradigms and fads change quickly in CS

� Also, may need to support or extend legacy systems

17CMSC330 Spring 2022

Changing Language Goals

• 1950s-60s – Compile programs to execute efficiently
∙ Language features based on hardware concepts

� Integers, reals, goto statements

∙ Programmers cheap; machines expensive
� Computation was the primary constrained resource

� Programs had to be efficient because machines weren’t
∙ Note: this still happens today, just not as pervasively

18CMSC330 Spring 2022

Changing Language Goals

• Today
∙ Language features based on design concepts

� Encapsulation, records, inheritance, functionality, assertions

∙ Machines cheap; programmers expensive
� Scripting languages are slow(er), but run on fast machines
� They’ve become very popular because they ease the programming

process

∙ The constrained resource changes frequently
� Communication, effort, power, privacy, …
� Future systems and developers will have to be nimble

19CMSC330 Spring 2022

Language Attributes to Consider
• Syntax
∙ What a program looks like

• Semantics
∙ What a program means (mathematically), i.e., what it computes

• Paradigm and Pragmatics
∙ How programs tend to be expressed in the language

• Implementation
∙ How a program executes (on a real machine)

20CMSC330 Spring 2022

21

Syntax

• The keywords, formatting expectations, and structure of
the language
∙ Differences between languages usually superficial

� C / Java if (x == 1) { … } else { … }
� Ruby if x == 1 … else … end
� OCaml if (x = 1) then … else …

∙ Differences initially jarring; overcome with experience

• Concepts such as regular expressions, context-free
grammars, and parsing handle language syntax

CMSC330 Spring 2022

22

Semantics

• What does a program mean? What does it compute?
∙ Same syntax may have different semantics in different

languages!

• Can specify semantics informally (in prose) or formally
(in mathematics)

Physical Equality Structural Equality

Java a == b a.equals(b)
C a == b *a == *b
Ruby a.equal?(b) a == b
OCaml a == b a = b

CMSC330 Spring 2022

Why Formal Semantics?

• Textual language definitions are often incomplete and
ambiguous
∙ Leads to two different implementations running the same

program and getting a different result!
• A formal semantics is a mathematical definition of what

programs compute
∙ Benefits: concise, unambiguous, basis for proof

• We will consider operational semantics
∙ Consists of rules that define program execution
∙ Basis for implementation, and proofs of program correctness
∙ E.g., used by WebAssembly

24https://webassembly.github.io/spec/core/exec/conventions.html#formal-notationCMSC330 Spring 2022

https://webassembly.github.io/spec/core/exec/conventions.html#formal-notation

25

Paradigm

• There are many ways to compute something
∙ Some differences are superficial

� For loop vs. while loop

∙ Some are more fundamental
� Recursion vs. looping
� Mutation vs. functional update
� Manual vs. automatic memory management

• Language’s paradigm favors some computing methods
over others. This class:
- Imperative - Resource-controlled (zero-cost)
- Functional - Scripting/dynamic

CMSC330 Spring 2022

Imperative Languages

• Also called procedural or von Neumann
• Building blocks are procedures and statements
∙ Programs that write to memory are the norm

int x = 0;
while (x < y) x = x + 1;

∙ FORTRAN (1954)
∙ Pascal (1970)
∙ C (1971)

26CMSC330 Spring 2022

Functional (Applicative) Languages

• Favors immutability
∙ Variables are never re-defined
∙ New variables a function of old ones (exploits recursion)

• Functions are higher-order
∙ Passed as arguments, returned as results

∙ LISP (1958)
∙ ML (1973)
∙ Scheme (1975)
∙ Haskell (1987)
∙ OCaml (1987)

27CMSC330 Spring 2022

OCaml

• A (mostly-)functional language
∙ Has objects, but won’t discuss (much)
∙ Developed in 1987 at INRIA in France
∙ Dialect of ML (1973)

• Natural support for pattern matching
∙ Generalizes switch/if-then-else – very elegant

• Has full featured module system
∙ Much richer than interfaces in Java or headers in C

• Includes type inference
∙ Ensures compile-time type safety, no annotations

28CMSC330 Spring 2022

Dynamic (Scripting) Languages

• Rapid prototyping languages for common tasks
∙ Traditionally: text processing and system interaction

• “Scripting” is a broad genre of languages
∙ “Base” may be imperative, functional, OO…

• Increasing use due to higher-layer abstractions
∙ Originally for text processing; now, much more

∙ sh (1971)
∙ perl (1987)
∙ Python (1991)
∙ Ruby (1993)

30

#!/usr/bin/ruby
while line = gets do

csvs = line.split /,/
if(csvs[0] == "330") then
...

CMSC330 Spring 2022

Ruby

• An imperative, object-oriented scripting language
∙ Full object-orientation (even primitives are objects!)
∙ And functional-style programming paradigms
∙ Dynamic typing (types hidden, checked at run-time)
∙ Similar in flavor to other scripting languages (Python)

• Created in 1993 by Yukihiro Matsumoto (Matz)
∙ “Ruby is designed to make programmers happy”

• Core of Ruby on Rails web programming framework
∙ a key to Ruby’s popularity

31CMSC330 Spring 2022

Theme: Software Security

• Security is a big issue today
• Features of the language can help (or hurt)
∙ C/C++ lack of memory safety leaves them open for many

vulnerabilities: buffer overruns, use-after-free errors, data
races, etc.
∙ Type safety is a big help, but so are abstraction and isolation, to

help enforce security policies, and limit the damage of possible
attacks

• Secure development requires vigilance
∙ Do not trust inputs – unanticipated inputs can effect surprising

results! Therefore: verify and sanitize

33CMSC330 Spring 2022

Zero-cost Abstractions in Rust

• A key motivator for writing code in C and C++ is the low
(or zero) cost of the abstractions use
∙ Data is represented minimally; no metadata required
∙ Stack-allocated memory can be freed quickly
∙ Malloc/free maximizes control – no GC or mechanisms to support

it are needed
• But no-cost abstractions in C/C++ are insecure
• Rust language has safe, zero-cost abstractions
∙ Type system enforces use of ownership and lifetimes
∙ Used to build real applications – web browsers, etc.

CMSC330 Spring 2022 34

Other Language Paradigms

• We are not covering them all in CMSC330!
• Parallel/concurrent/distributed programming
∙ Cilk, Fortress, Erlang, MPI (extension), Hadoop (extension);

more on these in CMSC 433
• Logic programming
∙ Prolog, λ-prolog, CLP, Minikanren, Datalog

• Object-oriented programming
∙ Simula, Smalltalk, C++, Java, Scala

• Many other languages over the years, adopting various
styles

CMSC330 Spring 2022 36

Other Languages
• There are lots of other languages w/ various features

∙ COBOL (1959) – Business applications
� Imperative, rich file structure

∙ BASIC (1964) – MS Visual Basic
� Originally designed for simplicity (as the name implies)
� Now it is object-oriented and event-driven, widely used for UIs

∙ Logo (1968) – Introduction to programming
∙ Forth (1969) – Mac Open Firmware

� Extremely simple stack-based language for PDP-8
∙ Ada (1979) – The DoD language

� Real-time
∙ Postscript (1982) – Printers- Based on Forth

39CMSC330 Spring 2022

Implementation

• How do we implement a programming language?
∙ Put another way: How do we get program P in some language L

to run?

• Two broad ways
∙ Compilation
∙ Interpretation

40CMSC330 Spring 2022

Compilation

• Source program translated (“compiled”) to another
language
∙ Traditionally: directly executable machine code

� gcc, clang

∙ Bytecode, Portable Code
� Javac

def greet(s)
 print("Hello, ”)
 print(s)
 print("!\n”)
end

11230452
23230456
01200312
…

“world” “Hello, world!”

41CMSC330 Spring 2022

Interpretation

• Interpreter executes each instruction in source
program one step at a time
∙ No separate executable

def greet(s)
 print("Hello, ”)
 print(s)
 print("!\n”)
end

“world”

“Hello, world!”

42CMSC330 Spring 2022

Quiz: What do you think?

• Which of the following languages has implementations as
a compiler and an interpreter?

• C
• Python
• Java
• All of the above

CMSC330 Spring 2022 43

Quiz: What do you think?

• Which of the following languages has implementations as
a compiler and an interpreter?

• C
• Python
• Java
• All of the above

CMSC330 Spring 2022 44

A language often has a
canonical kind of
implementation, but there
can be others

45

• Important features
∙ Regular expression handling
∙ Objects

� Inheritance

∙ Closures/code blocks
∙ Immutability
∙ Tail recursion
∙ Pattern matching

� Unification

∙ Abstract types
∙ Garbage collection

• Declarations
∙ Explicit
∙ Implicit

• Type system
∙ Static
∙ Polymorphism
∙ Inference

∙ Dynamic
∙ Type safety

CMSC330 Spring 2022

Defining Paradigm: Elements of PLs

Attributes of a Good Language

• Cost of use
∙ Program execution (run time), program translation, program

creation, and program maintenance

• Portability of programs
∙ Develop on one computer system, run on another

• Programming environment
∙ External support for the language
∙ Libraries, documentation, community, IDEs, …

50CMSC330 Spring 2022

Attributes of a Good Language

• Clarity, simplicity, and unity
∙ Provides both a framework for thinking about algorithms and a

means of expressing those algorithms

• Orthogonality
∙ Every combination of features is meaningful
∙ Features work independently

• Naturalness for the application
∙ Program structure reflects the logical structure of algorithm

51CMSC330 Spring 2022

Attributes of a Good Language

• Support for abstraction
∙ Hide details where you don’t need them
∙ Program data reflects the problem you’re solving

• Security & safety
∙ Should be very difficult to write unsafe programs

• Ease of program verification
∙ Does a program correctly perform its required function?

52CMSC330 Spring 2022

Summary

• Programming languages vary in their
∙ Syntax
∙ Semantics
∙ Style/paradigm and pragmatics
∙ Implementation

• They are designed for different purposes
∙ And goals change as the computing landscape changes, e.g., as

programmer time becomes more valuable than machine time
• Ideas from one language appear in others

54CMSC330 Spring 2022

