
CMSC 330 Spring 2022

CMSC 330: Organization of Programming
Languages

Functional Programming with OCaml

1

CMSC330 Spring 2022

What is a functional language?

A functional language:

• defines computations as mathematical functions
• discourages use of mutable state

State: the information maintained by a computation
Mutable: can be changed

x = x + 1 ?

2

CMSC330 Spring 2022

Functional vs. Imperative
Functional languages

• Higher level of abstraction: What to compute, not how
• Immutable state: easier to reason about (meaning)
• Easier to develop robust software

Imperative languages

• Lower level of abstraction: How to compute, not what
• Mutable state: harder to reason about (behavior)
• Harder to develop robust software

3

CMSC330 Spring 2022

Commands specify how to compute, by destructively changing state:

x = x+1;
a[i] = 42;
p.next = p.next.next;

The fantasy of changing state (mutability)
• It's easy to reason about: the machine does this, then this...

The reality?
• Machines are good at complicated manipulation of state
• Humans are not good at understanding it!

Imperative Programming

4

CMSC330 Spring 2022

Functions/methods may mutate state, a side effect

int cnt = 0;

int f(Node *r) {
r->data = cnt;
cnt++;
return cnt;

}

Imperative Programming: Reality

Mutation breaks referential transparency: ability to replace an
expression with its value without affecting the result

f(x) + f(x) + f(x) ≠ 3 * f(x)

5

CMSC330 Spring 2022

Imperative Programming: Reality
Worse: There is no single state

• Programs have many threads, spread across many cores,
spread across many processors, spread across many
computers...

• each with its own view of memory

So: Can’t look at one piece of code and reason about its behavior

6

Thread 1 on CPU 1 Thread 2 on CPU 2

x = x+1;
a[i] = 42;
p.next = p.next.next;

x = x+1;
a[i] = 42;
p.next = p.next.next;

CMSC330 Spring 2022

Expressions specify what to compute
• Variables never change value

• Like mathematical variables
• Functions (almost) never have side effects

The reality of immutability:
• No need to think about state
• Can perform local reasoning, assume referential transparency

Easier to build correct programs

Functional programming

7

CMSC330 Spring 2022CMSC330 Spring 2022

ML-style (Functional) Languages
• ML (Meta Language)

– Univ. of Edinburgh, 1973
– Part of a theorem proving system LCF

• Standard ML
– Bell Labs and Princeton, 1990; Yale, AT&T, U. Chicago

• OCaml (Objective CAML)
– INRIA, 1996

• French Nat’l Institute for Research in Computer Science
– O is for “objective”, meaning objects (which we’ll ignore)

• Haskell (1998): lazy functional programming
• Scala (2004): functional and OO programming

8

CMSC330 Spring 2022CMSC330 Spring 2022

Key Features of ML
• First-class functions

– Functions can be parameters to other functions (“higher order”) and return
values, and stored as data

• Favor immutability (“assign once”)
• Data types and pattern matching

– Convenient for certain kinds of data structures
• Type inference

– No need to write types in the source language
• But the language is statically typed

– Supports parametric polymorphism
• Generics in Java, templates in C++

• Exceptions and garbage collection

9

CMSC330 Spring 2022

Why study functional programming?
Functional languages predict the future:

• Garbage collection
• LISP [1958], Java [1995], Python 2 [2000], Go [2007]

• Parametric polymorphism (generics)
• ML [1973], SML [1990], Java 5 [2004], Rust [2010]

• Higher-order functions
• LISP [1958], Haskell [1998], Python 2 [2000], Swift [2014]

• Type inference
• ML [1973], C++11 [2011], Java 7 [2011], Rust [2010]

• Pattern matching
• SML [1990], Scala [2002], Rust [2010], Java X [201?]

• http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html

10

CMSC330 Spring 2022

Why study functional programming?
Functional languages in the real world

11

This slide is old---now
there are even more!

CMSC330 Spring 2022CMSC330 Spring 2022

Useful Information on OCaml

• Translation available on the
class webpage
– Developing Applications with

Objective Caml
• Webpage also has link to

another book
– Introduction to the Objective Caml

Programming Language

12

CMSC330 Spring 2022CMSC330 Spring 2022

More Information on OCaml

• Book designed to introduce
and advance understanding of
OCaml
– Authors use OCaml in the real

world
– Introduces new libraries, tools

• Free HTML online
– realworldocaml.org

13

CMSC330 Spring 2022CMSC330 Spring 2022

OCaml Coding Guidelines

• We will not grade on style, but style is important
• Recommended coding guidelines:

• https://ocaml.org/learn/tutorials/guidelines.html

14

CMSC 330 Spring 2022

CMSC 330: Organization of Programming
Languages

Working with OCaml

15

CMSC330 Spring 2022

OCaml Compiler

∙ OCaml programs can be compiled using ocamlc
− Produces .cmo (“compiled object”) and .cmi (“compiled

interface”) files
∙ We’ll talk about interface files later

− By default, also links to produce executable a.out
∙ Use -o to set output file name
∙ Use -c to compile only to .cmo/.cmi and not to link

∙ Can also compile with ocamlopt
− Produces .cmx files, which contain native code
− Faster, but not platform-independent (or as easily debugged)

16

CMSC330 Spring 2022

OCaml Compiler

∙ Compiling and running the following small program:

% ocamlc hello.ml
% ./a.out
Hello world!
%

(* A small OCaml program *)
print_string "Hello world!\n";;

hello.ml:

17

CMSC330 Spring 2022

OCaml Compiler: Multiple Files

let main () =
 print_int (Util.add 10 20);
 print_string "\n"

let () = main ()

main.ml:
let add x y = x+y

util.ml:

• Compile both together (produces a.out)
ocamlc util.ml main.ml

• Or compile separately
ocamlc –c util.ml
ocamlc util.cmo main.ml

• To execute
./a.out

18

CMSC330 Spring 2022

OCaml Top-level

∙ The top-level is a read-eval-print loop (REPL) for OCaml
− Like Ruby’s irb

∙ Start the top-level via the ocaml command
 ocaml
 OCaml version 4.07.0

print_string ”Hello world!\n";;
 Hello world!
 - : unit = ()

#
∙ To exit the top-level, type ^D (Control D) or call the exit 0

19

utop is an
alternative
top-level;
improves on
ocaml print_string ”Hello world!\n";;

Hello world!
- : unit = ()
exit 0;;

CMSC330 Spring 2022

Expressions can be typed and evaluated at the top-level
3 + 4;;
- : int = 7

let x = 37;;
val x : int = 37

x;;
- : int = 37

let y = 5;;
val y : int = 5

let z = 5 + x;;
val z : int = 42

print_int z;;
42- : unit = ()

print_string "Colorless green ideas sleep furiously";;
Colorless green ideas sleep furiously- : unit = ()

print_int "Colorless green ideas sleep furiously";;
This expression has type string but is here used with type int

gives type and value of each expr

unit = “no interesting value” (like void)

“-” = “the expression you just typed”

20

OCaml Top-level

CMSC330 Spring 2022

Loading Code Files into the Top-level

∙ Load a file into top-level
#use “filename.ml”

∙ Example:
#use "hello.ml";;
Hello world!
- : unit = ()
#

File hello.ml :
print_string "Hello world!\n";;

#use processes a file a line at a time

21

CMSC330 Spring 2022

OPAM: OCaml Package Manager

∙ opam is the package manager for OCaml
− Manages libraries and different compiler installations

∙ You should install the following packages with opam
− ounit, a testing framework similar to minitest
− utop, a top-level interface similar to irb
− dune, a build system for larger projects

22

CMSC330 Spring 2022

Project Builds with dune

● Use dune to compile projects---automatically finds
dependencies, invokes compiler and linker

● Define a dune file, similar to a Makefile:

% dune build main.exe
% _build/default/main.exe
30
%

(executable
 (name main))

dune: Indicates that an
executable (rather than a
library) is to be built

Name of main file
(entry point)

Check out
https://medium.com/@bobbypriambodo/starting-an-ocaml-app-projec
t-using-dune-d4f74e291de8

24

CMSC330 Spring 2022

Dune commands
∙ If defined, run a project’s test suite:

dune runtest

∙ Load the modules defined in src/ into the utop
top-level interface:
dune utop src

 - utop is a replacement for ocaml that includes dependent
files, so they don’t have be be #loaded

25

CMSC330 Spring 2022

A Note on ;;

∙ ;; ends an expression in the top-level of OCaml
− Use it to say: “Give me the value of this expression”
− Not used in the body of a function
− Not needed after each function definition

∙ Though for now it won’t hurt if used there

∙ There is also a single semi-colon ; in OCaml
− But we won’t need it for now
− It’s only useful when programming imperatively, i.e.,

with side effects
∙ Which we won’t do for a while

26

CMSC 330 Spring 2022

CMSC 330: Organization of Programming
Languages

OCaml Expressions, Functions

CMSC 330 - Spring 2021 27

CMSC330 Spring 2022CMSC330 Spring 2022

Lecture Presentation Style

• Our focus: semantics and idioms for OCaml
– Semantics is what the language does
– Idioms are ways to use the language well

• We will also cover some useful libraries

• Syntax is what you type, not what you mean
– In one lang: Different syntax for similar concepts
– Across langs: Same syntax for different concepts
– Syntax can be a source of fierce disagreement among language

designers!

28

CMSC330 Spring 2022CMSC330 Spring 2022

Expressions

• Expressions are our primary building block
– Akin to statements in imperative languages

• Every kind of expression has
– Syntax

• We use metavariable e to designate an arbitrary expression
– Semantics

• Type checking rules (static semantics): produce a type or fail with an error
message

• Evaluation rules (dynamic semantics): produce a value
– (or an exception or infinite loop)
– Used only on expressions that type-check

29

CMSC330 Spring 2022CMSC330 Spring 2022

Values

• A value is an expression that is final
– 34 is a value, true is a value
– 34+17 is an expression, but not a value

• Evaluating an expression means running it until it’s a value
– 34+17 evaluates to 51

• We use metavariable v to designate an arbitrary value

expressions values

30

CMSC330 Spring 2022CMSC330 Spring 2022

Types
• Types classify expressions

– The set of values an expression could evaluate to
– We use metavariable t to designate an arbitrary type

• Examples include int, bool, string, and more.

• Expression e has type t if e will (always) evaluate to a value
of type t
– 0, 1, and -1 are values of type int while true has type bool
– 34+17 is an expression of type int, since it evaluates to 51, which

has type int
• Write e : t to say e has type t

– Determining that e has type t is called type checking
• or simply, typing

31

CMSC330 Spring 2022CMSC330 Spring 2022

If Expressions

if e1 then e2 else e3

: bool :t
(each has the same type t)

32

• Syntax

• Type checking
– Conclude if e1 then e2 else e3 has type t if

• e1 has type bool
• Both e2 and e3 have type t (for some t)

() : t

CMSC330 Spring 2022CMSC330 Spring 2022

If Expressions: Type Checking and Evaluation
if 7 > 42 then "hello" else “goodbye";;
- : string = "goodbye”

if true then 3 else 4;;
- : int = 3

if false then 3 else 3.0;;
Error: This expression has type float but an expression was
expected of type int

33

• Evaluation (happens if type checking succeeds)
– If e1 evaluates to true, and if e2 evaluates to v,

then if e1 then e2 else e3 evaluates to v
– If e1 evaluates to false, and if e3 evaluates to v,

then if e1 then e2 else e3 evaluates to v

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 1

To what value does this expression evaluate?

if 10 < 0 then 2 else 1

A. 2
B. 1
C. 0
D. none of the above

34

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 1

To what value does this expression evaluate?

if 10 < 0 then 2 else 1

A. 2
B. 1
C. 0
D. none of the above

35

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 2

To what value does this expression evaluate?

if 22 < 0 then 2021 else “home”

A. 2
B. 1
C. 0
D. none of the above

36

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 2

To what value does this expression evaluate?

if 22 < 0 then 2021 else “home”

A. 2
B. 1
C. 0
D. none of the above: doesn’t type check so never gets a
chance to be evaluated

37

CMSC330 Spring 2022CMSC330 Spring 2022

Function Definitions
• OCaml functions are like mathematical functions

– Compute a result from provided arguments

(* requires n>=0 *)
(* returns: n! *)
let rec fact n =
 if n = 0 then
 1
 else
 n * fact (n-1)

Use (* *) for comments
 (may nest)

Parameter
(type inferred)

Line breaks, spacing ignored
(like C, C++, Java, not like Ruby)

Structural equality

rec needed for recursion
 (else fact not in scope)

function body

38

CMSC330 Spring 2022CMSC330 Spring 2022

Type Inference
• As we just saw, a declared variable need not be

annotated with its type
– The type can be inferred

– Type inference happens as a part of type checking
• Determines a type that satisfies code’s constraints

(* requires n>=0 *)
(* returns: n! *)
let rec fact n =
 if n = 0 then
 1
 else
 n * fact (n-1)

n’s type is int. Why?

= is an infix function that
takes two ints and returns
a bool; so n must be an
int for n = 0 to type
check

39

CMSC330 Spring 2022CMSC330 Spring 2022

Calling Functions, aka Function Application

• Syntax f e1 … en
– Parentheses not required around argument(s)
– No commas; use spaces instead

• Evaluation
– Find the definition of f

• i.e., let rec f x1 … xn = e
– Evaluate arguments e1 … en to values v1 … vn
– Substitute arguments v1, … vn for params x1, ... xn in body e

• Call the resulting expression e’
– Evaluate e’ to value v, which is the final result

40

CMSC330 Spring 2022CMSC330 Spring 2022

Calling Functions: Evaluation

• fact 2
� if 2=0 then 1 else 2*fact(2-1)
� 2 * fact 1
� 2 * (if 1=0 then 1 else 1*fact(1-1))
� 2 * 1 * fact 0
� 2 * 1 * (if 0=0 then 1 else 0*fact(0-1))
� 2 * 1 * 1
� 2

let rec fact n =
 if n = 0 then
 1
 else
 n * fact (n-1)

Example evaluation

41

Fun fact: Evaluation
order for function call
arguments in OCaml
is right to left
(not left to right)

CMSC330 Spring 2022CMSC330 Spring 2022

Function Types

• In OCaml, -> is the function type constructor
– Type t1 -> t is a function with argument or domain type t1

and return or range type t
– Type t1 -> t2 -> t is a function that takes two inputs, of

types t1 and t2, and returns a value of type t. Etc.
• Examples

– not

– int_of_float

– +

(* type bool -> bool *)

(* type float -> int *)

42

(* type int -> int -> int *)

CMSC330 Spring 2022CMSC330 Spring 2022

Type Checking: Calling Functions

• Syntax f e1 … en
• Type checking

– If f : t1 -> … -> tn -> u
– and e1 : t1,
– …, en : tn
– then f e1 … en : u

• Example:
– not true : bool
– since not : bool -> bool
– and true : bool

43

CMSC330 Spring 2022CMSC330 Spring 2022

Type Checking: Defining Functions

• Syntax let rec f x1 … xn = e
• Type checking

– Conclude that f : t1 -> … -> tn -> u if e : u under the
following assumptions:
• x1 : t1, …, xn : tn (arguments with their types)
• f : t1 -> … -> tn -> u (for recursion)

let rec fact n =
 if n = 0 then
 1
 else
 n * fact(n-1)

44

:bool assuming n:int

()

()

:int since
fact(n-1):int
and (n-1):int
assuming
fact:int->int

CMSC330 Spring 2022CMSC330 Spring 2022

Function Type Checking: More Examples
– let next x = x + 1

– let fn x = (int_of_float x) * 3

– fact

– let sum x y = x + y

(* type int -> int *)

(* type float -> int *)

(* type int -> int *)

45

(* type int -> int -> int *)

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 3: What is the type of foo 3 1.5

a) Type Error
b) int
c) float
d) int -> int -> int

46

let rec foo n m =
 if n >= 9 || n > 0 then
 m
 else
 m +. 10.3

: float -> float -> float

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 3: What is the type of foo 3 1.5

a) Type Error
b) int
c) float
d) int -> int -> int

let rec foo n m =
 if n >= 9 || n > 0 then
 m
 else
 m +. 10.3

47

: float -> float -> float

CMSC330 Spring 2022CMSC330 Spring 2022

Type Annotations

• The syntax (e : t) asserts that “e has type t”
– This can be added (almost) anywhere you like

let (x : int) = 3

 let z = (x : int) + 5

• Define functions’ parameter and return types
 let fn (x:int):float =
 (float_of_int x) *. 3.14

• Checked by compiler: Very useful for debugging
48

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 4: What is the value of bar 4

a) Syntax Error
b) 4
c) 5
d) 8

let rec bar(n:int):int =
 if n = 0 || n = 1 then 1
 else
 bar (n-1) + bar (n-2)

49

CMSC330 Spring 2022CMSC330 Spring 2022

Quiz 4: What is the value of bar 4

a) Syntax Error
b) 4
c) 5
d) 8

let rec bar(n:int):int =
 if n = 0 || n = 1 then 1
 else
 bar (n-1) + bar (n-2)

50

