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Lists in OCaml

 The basic data structure in OCaml

— Lists can be of arbitrary length
» Implemented as a linked data structure

— Lists must be homogeneous
 All elements have the same type

» Operations
— Construct lists
— Destruct them via pattern matching
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Constructing Lists: Syntax

Syntax Both cons and
e [1 isthe empty list (pronounced “nil”) nil are terms
o el::e2prepends element el to list e2 from LISP

— Qperator : : is pronounced "cons"
— elis the head, e2 is the tall

Beware:
[1,2,3] is not a list!
[1;2;3] is.

Using the former

e [el;e2;..;en] is syntactic sugarforel::e2::.::en::
Examples

3::[1] (* The list [3] *)

2::(3::11) (* The list [2; 3] *)

[1; 2, 3] (* The list 1::(2::(3::[]1)) *)
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Constructing Lists: Evaluation

Evaluation
e []isavalue
 To evaluate [el;..;en]

— evaluate en to a value vn, Remember: Evaluation
— order in OCaml is right to
— evaluate el to a value v1, left (not left to right);

— and return [v1;..; vn]

 Desugaring: evaluate el: :e2
— evaluate e2 to a (list) value v2,
— evaluate el to a value vi,
— andreturn vi: :v2
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Constructing Lists: Examples

# let y = [1; 1+1; 1+1+1] ;;
val y : int list = [1; 2; 3]

# let x = 4::y ;;
val x : int list = [4; 1; 2; 3]

# let z = 5::y ;;
val z : int list = [5; 1; 2; 3]

# let m = “hello”::”bob”::[1;;
val m : string list = [“hello”; “bob”]
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Constructing Lists: Typing

Polymorphic type:
like a generic type in Java

i.e., empty list has type t 1ist for any type t

cons:
If el: tand e2: tlistthenel::e2: tlist

With parens for clarity:
Ifel: tand e2:(t1list)then(el::e2):(tlist)

CMCS330 Spring 2022



Examples

# let x [1;"woxrld"] ;;
This expression has type string but an expression was
expected of type int

# let m = [[1];[2;3]]1;;
val m : int list list = [[1]; [2; 3]]

# let y = 0::[1;2;3] ;;
val y : int list = [0; 1; 2; 3]

# let w = [1;2]::y ;;
This expression has type int list but is here used with
type int list list
« The left argument of :: is an element, the right is a list
« Can you construct a list y such that [1;2]::y makes sense?
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Lists in Ocaml are Linked

* [1;2;3] is represented as shown above
— A nonempty list is a pair (element, rest of list)
— The element is the head of the list

— The pointer is the tail or rest of the list
« ...which is itself a list!

« Thus in math (i.e., inductively) a list is either
— The empty list [ ]

— Or a pair consisting of an element and a list
« This recursive structure will come in handy shortly
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Lists of Lists

* Lists can be nested arbitrarily

— Example: [ [9; 10; 111; [5; 4; 3; 2] ]
« Type int list list, also written as (int list) list

T | []
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Lists are Immutable

* No way to mutate (change) an element of a list
* Instead, build up new lists out of old, e.g., using ::

let x = [1;2;3,;4]
let y 5::x
let z = 6::x

X

Y57
Z Te
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Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

array

list

float list
int list

OO wp
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Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

array

list

float list
int list

OO wp
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Quiz 2

What is the type of the following expression?

10::[20]
A. int
B. int list list
C. int list
D. error
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Quiz 2

What is the type of the following expression?

10::[20]
A. int
B. int list list
C. int list
D. error
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Quiz 3

What is the type of the following definition?

let £ x = “alien”:: [x]

string -> string
string list
string list -> string list

OO wp

string -> string list
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Quiz 3

What is the type of the following definition?

let £ x = “alien”:: [x]

string -> string
string list
string list -> string list

OCoOowp>

string -> string list
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Pattern Matching

 To pull lists apart, use the match construct
¢ Syntax

match e with
| pl -> el

I
| pn -> en

 pl...pn are patterns made up of [], : :, constants, and pattern
variables (which are normal OCaml variables)

 el...en are branch expressions in which pattern variables in the
corresponding pattern are bound
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Pattern Matching: Evaluation

 To pull lists apart, use the match construct

¢ Syntax

match e with Evaluate e to a value v
| pl -> el * If p1 matches v, eval el to v1 and return it

I
| pn -> en « Else if pn matches v, evaluate en to vn
and return it
* Else, no patterns match: raise
Match failure exception

When evaluating branch expression ei, any pattern variables in
pi are bound in ei, i.e., they are in scope
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Pattern Matching Example

let is empty 1 =
match 1 with
| [] -> true
| (h::t) -> false

Example runs
* is empty [] (* evaluates to true ¥*)
* is empty [1] (* evaluates to false ¥*)

e is empty [1l;2] (* evaluates to false ¥*)
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Pattern Matching Example (cont.)

let hd 1 =
match 1 with
| (h::t) -> h

« Example runs

- hd
- hd
- hd
- hd

[1;2;3] (*

[2;3]
[3]
[]
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(*
(*
(*

evaluates
evaluates
evaluates

Exception:

to 1 *)
to 2 *)
to 3 *)
Match failure *)
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Quiz 4

To what does the following expression evaluate?

match [1;2;3] with

| [1 -> [0]
| h::t -> t
A. []
B. [0]
C.[1]
D. [2;3]
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Quiz 4

To what does the following expression evaluate?

match [1;2;3] with

| [1 -> [0]
| h::t -> t
A. []
B. [0]
C.[1]
D. [2;3]
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"Deep" pattern matching

* You can nest patterns for more precise matches

— a: :b matches lists with at least one element
« Matches [1;2;3], bindingatolandbto [2;3]
— a: : [] matches lists with exactly one element
- Matches [1], bindingato1l
» Could also write patterna: : [] as [a]
— a: :b::[] matches lists with exactly two elements
« Matches [1;2], bindingato1landbto 2
« Could also write pattern a: :b::[] as [a;b]
- a: :b::c::d matches lists with at least three elements

« Matches [1;2;3], bindingatol,bto2,cto3,anddto []
« Cannot write pattern as [a;b;c] : :d (why?)
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Pattern Matching — Wildcards

« An underscore _is a wildcard pattern
— Matches anything
— But doesn'’t add any bindings

— Useful to hold a place but discard the value
* i.e., when the variable does not appear in the branch expression

* |n previous examples
— Many values of nh or t ignored
— Can replace with wildcard

CMCS330 Spring 2022

24



Pattern Matching — Wildcards (cont.)

« Code using _
— let is empty 1 = match 1 with
| [] -> true | ( :: ) -> false
— let hd 1 = match 1 with (h:: ) -> h
—let t1 1 = match 1 with ( ::t) -> t
* Outputs
— is empty[l] (* evaluates to false ¥*)
— is empty[ ] (* evaluates to true ¥*)
- hd [1;2;3] (* evaluates to 1 *)
- hd [1] (* evaluates to 1 *)
- tl [1;2;3] (* evaluates to [2;3] ¥*)
- tl [1] (* evaluates to [ ] *)
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Quiz 5

To what does the following expression evaluate?

match [1;2;3] with

1::[] -> [0]
_. ._ -> [1]
1:: ::[]1 -> T[]

A. ]

B. [0]

C.[1]

D. [2;3]
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Quiz 5

To what does the following expression evaluate?

match [1;2;3] with

1::[] -> [0]
_. ._ -> [1]
1:: ::[]1 -> T[]

A. ]

B. [0]

C.[1]

D. [2;3]
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Pattern Matching — An Abbreviation

e let £ p = e, Where pis a pattern
— is shorthand for let £ x = match x with p -> e

« Examples
— let hd (h:: ) =
- let t1 (_::t) =
- let £ (x::y:: )
- let g [x; V]
« Useful if there’s only one acceptable input

N 5

X +y

X +y
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match e with

Pattern Matching Typing | p1 -> el

| ..
* If eand p1, ..., pn each have type ta [! p? ~> en

 and el1, ..., en each have type tb
* Then entire match expression has type tb

« Examples
type: ‘a list -> ‘a ta = ‘ list

let hd 1 = let rec sum 1
Dl TEL

ta = int list tb = int

type: int list -> int
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Polymorphic Types

* The sum function works only for int lists

 But the hd function works for any type of list
- hd [1; 2; 3] (* returns 1 *)
-— hd [Ha" ; "b" ’. HCH] (* returns Ha" *)

« OCaml gives such functions polymorphic types
— hd : 'a list -> 'a
— this says the function takes a list of any element type 'a, and
returns something of that same type

* These are basically generic types in Java
— 'a list islike List<T>
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Examples Of Polymorphic Types

e let tl (_::t) =t
# t1 [1; 2; 3]1;;
- : int list = [2; 3]
# t1 [1.0; 2.0];;
- : float 1list = [2.0]
(* t1 : 'a list -> 'a list ¥*)

e let fst xy = x
# £st 1 “hello”;;
- : int =1
# £st [1; 2] 1;;
- : int list = [1; 2]
(* £fst : 'a -> 'b -> 'a ¥*)
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Examples Of Polymorphic Types

e letegxy=x=y (* let eg x y =
#eql 2;;
- : bool = false
# eq “hello” “there”;;
- : bool = false
# eq “hello” 1 --typeerror
(* eq : 'a -> "a -> bool *)
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(x =y) *)
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Quiz 6

What is the type of the following function?

let £ x y =
if x = y then 1 else 0

‘a -> ‘b -> int
‘a -> ‘a -> bool
‘a -> ‘a -> int

int

o Qwp
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Quiz 6

What is the type of the following function?

let £ x y =
if x = y then 1 else 0

‘a -> ‘b -> int
‘a -> ‘a -> bool
‘a -> ‘a -> int

int

O w »
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Missing Cases

« Exceptions for inputs that don’'t match any pattern
— OCaml will warn you about non-exhaustive matches

« Example:
# let hd 1 = match 1 with (h:: ) -> h;;

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

[]

# hd [1;;
Exception: Match failure ("", 1, 11).
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Pattern matching is AWESOME

1. You can’t forget a case

— Compiler issues inexhaustive pattern-match warning
2. You can’t duplicate a case

— Compiler issues unused match case warning
3. You can’t get an exception

— Can'’t do something like List.hd []

4. Pattern matching leads to elegant, concise,
beautiful code
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Lists and Recursion

e Lists have a recursive structure
— And so most functions over lists will be recursive

let rec length 1 = match 1 with
| [T ->0
| (_::t) -> 1 + (length t)

— This is just like an inductive definition

« The length of the empty list is zero

» The length of a nonempty list is 1 plus the length of the tail
— Type of length?

e ‘a list -> int
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More Examples

J sum 1 (* sum of elts in 1 *)
let rec sum 1 = match 1 with
| [1 -> 0
| (x::xs) -> x + (sum xs)

. negate 1 (* negate elements in list ¥*)
let rec negate 1 = match 1 with

| [1 -> [1

| (x::xs) -> (-x) :: (negate xs)

J last 1 (* last element of 1 *)
let rec last 1 = match 1 with
| [x] -> x
| (x::xs) -> last xs
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More Examples (cont.)

(* return a list containing all the elements in the list 1

followed by all the elements in list m *)
e append 1 m
let rec append 1 m = match 1 with
| [1 ->m
| (x::xs) -> x:: (append xs m)

e rev 1l (* reverse list; hint: use append *)
let rec rev 1 = match 1 with

| [1 -> T[]

| (x::xs) -> append (rev xs) (x::[])

e rev takes O(n?)time. Can you do better?
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