CMSC 330: Organization of Programming
Languages

Functional Programming with Lists

CMSC330 -Spring 2022

Lists in OCaml

 The basic data structure in OCaml

— Lists can be of arbitrary length
» Implemented as a linked data structure

— Lists must be homogeneous
 All elements have the same type

» Operations
— Construct lists
— Destruct them via pattern matching

CMCS330 Spring 2022

Constructing Lists: Syntax

Syntax Both cons and
e [1 isthe empty list (pronounced “nil”) nil are terms
o el::e2prepends element el to list e2 from LISP

— Qperator : : is pronounced "cons"
— elis the head, e2 is the tall

Beware:
[1,2,3] is not a list!
[1;2;3] is.

Using the former

e [el;e2;..;en] is syntactic sugarforel::e2::.::en::
Examples

3::[1] (* The list [3] *)

2::(3::11) (* The list [2; 3] *)

[1; 2, 3] (* The list 1::(2::(3::[]1)) *)

CMCS330 Spring 2022

may lead to
confusing error
messages.

Constructing Lists: Evaluation

Evaluation
e []isavalue
 To evaluate [el;..;en]

— evaluate en to a value vn, Remember: Evaluation
— order in OCaml is right to
— evaluate el to a value v1, left (not left to right);

— and return [v1;..; vn]

 Desugaring: evaluate el: :e2
— evaluate e2 to a (list) value v2,
— evaluate el to a value vi,
— andreturn vi: :v2

CMCS330 Spring 2022 4

Constructing Lists: Examples

let y = [1; 1+1; 1+1+1] ;;
val y : int list = [1; 2; 3]

let x = 4::y ;;
val x : int list = [4; 1; 2; 3]

let z = 5::y ;;
val z : int list = [5; 1; 2; 3]

let m = “hello”::”bob”::[1;;
val m : string list = [“hello”; “bob”]

CMCS330 Spring 2022

Constructing Lists: Typing

Polymorphic type:
like a generic type in Java

i.e., empty list has type t 1ist for any type t

cons:
If el: tand e2: tlistthenel::e2: tlist

With parens for clarity:
Ifel: tand e2:(t1list)then(el::e2):(tlist)

CMCS330 Spring 2022

Examples

let x [1;"woxrld"] ;;
This expression has type string but an expression was
expected of type int

let m = [[1];[2;3]]1;;
val m : int list list = [[1]; [2; 3]]

let y = 0::[1;2;3] ;;
val y : int list = [0; 1; 2; 3]

let w = [1;2]::y ;;
This expression has type int list but is here used with
type int list list
« The left argument of :: is an element, the right is a list
« Can you construct a list y such that [1;2]::y makes sense?

CMCS330 Spring 2022

Lists in Ocaml are Linked

* [1;2;3] is represented as shown above
— A nonempty list is a pair (element, rest of list)
— The element is the head of the list

— The pointer is the tail or rest of the list
« ...which is itself a list!

« Thus in math (i.e., inductively) a list is either
— The empty list []

— Or a pair consisting of an element and a list
« This recursive structure will come in handy shortly

CMCS330 Spring 2022

Lists of Lists

* Lists can be nested arbitrarily

— Example: [[9; 10; 111; [5; 4; 3; 2]]
« Type int list list, also written as (int list) list

T | []

CMCS330 Spring 2022

Lists are Immutable

* No way to mutate (change) an element of a list
* Instead, build up new lists out of old, e.g., using ::

let x = [1;2;3,;4]
let y 5::x
let z = 6::x

X

Y57
Z Te

CMCS330 Spring 2022

Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

array

list

float list
int list

OO wp

CMCS330 Spring 2022

11

Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

array

list

float list
int list

OO wp

CMCS330 Spring 2022

12

Quiz 2

What is the type of the following expression?

10::[20]
A. int
B. int list list
C. int list
D. error

CMCS330 Spring 2022

13

Quiz 2

What is the type of the following expression?

10::[20]
A. int
B. int list list
C. int list
D. error

CMCS330 Spring 2022

14

Quiz 3

What is the type of the following definition?

let £ x = “alien”:: [x]

string -> string
string list
string list -> string list

OO wp

string -> string list

CMCS330 Spring 2022

15

Quiz 3

What is the type of the following definition?

let £ x = “alien”:: [x]

string -> string
string list
string list -> string list

OCoOowp>

string -> string list

CMCS330 Spring 2022

16

Pattern Matching

 To pull lists apart, use the match construct
¢ Syntax

match e with
| pl -> el

I
| pn -> en

 pl...pn are patterns made up of [], : :, constants, and pattern
variables (which are normal OCaml variables)

 el...en are branch expressions in which pattern variables in the
corresponding pattern are bound

CMCS330 Spring 2022

17

Pattern Matching: Evaluation

 To pull lists apart, use the match construct

¢ Syntax

match e with Evaluate e to a value v
| pl -> el * If p1 matches v, eval el to v1 and return it

I
| pn -> en « Else if pn matches v, evaluate en to vn
and return it
* Else, no patterns match: raise
Match failure exception

When evaluating branch expression ei, any pattern variables in
pi are bound in ei, i.e., they are in scope

CMCS330 Spring 2022 18

Pattern Matching Example

let is empty 1 =
match 1 with
| [] -> true
| (h::t) -> false

Example runs
* is empty [] (* evaluates to true ¥*)
* is empty [1] (* evaluates to false ¥*)

e is empty [1l;2] (* evaluates to false ¥*)

CMCS330 Spring 2022 19

Pattern Matching Example (cont.)

let hd 1 =
match 1 with
| (h::t) -> h

« Example runs

- hd
- hd
- hd
- hd

[1;2;3] (*

[2;3]
[3]
[]

CMCS330 Spring 2022

(*
(*
(*

evaluates
evaluates
evaluates

Exception:

to 1 *)
to 2 *)
to 3 *)
Match failure *)

20

Quiz 4

To what does the following expression evaluate?

match [1;2;3] with

| [1 -> [0]
| h::t -> t
A. []
B. [0]
C.[1]
D. [2;3]

CMCS330 Spring 2022

Quiz 4

To what does the following expression evaluate?

match [1;2;3] with

| [1 -> [0]
| h::t -> t
A. []
B. [0]
C.[1]
D. [2;3]

CMCS330 Spring 2022

"Deep" pattern matching

* You can nest patterns for more precise matches

— a: :b matches lists with at least one element
« Matches [1;2;3], bindingatolandbto [2;3]
— a: : [] matches lists with exactly one element
- Matches [1], bindingato1l
» Could also write patterna: : [] as [a]
— a: :b::[] matches lists with exactly two elements
« Matches [1;2], bindingato1landbto 2
« Could also write pattern a: :b::[] as [a;b]
- a: :b::c::d matches lists with at least three elements

« Matches [1;2;3], bindingatol,bto2,cto3,anddto []
« Cannot write pattern as [a;b;c] : :d (why?)

CMCS330 Spring 2022 23

Pattern Matching — Wildcards

« An underscore _is a wildcard pattern
— Matches anything
— But doesn'’t add any bindings

— Useful to hold a place but discard the value
* i.e., when the variable does not appear in the branch expression

* |n previous examples
— Many values of nh or t ignored
— Can replace with wildcard

CMCS330 Spring 2022

24

Pattern Matching — Wildcards (cont.)

« Code using _
— let is empty 1 = match 1 with
| [] -> true | (::) -> false
— let hd 1 = match 1 with (h::) -> h
—let t1 1 = match 1 with (::t) -> t
* Outputs
— is empty[l] (* evaluates to false ¥*)
— is empty[] (* evaluates to true ¥*)
- hd [1;2;3] (* evaluates to 1 *)
- hd [1] (* evaluates to 1 *)
- tl [1;2;3] (* evaluates to [2;3] ¥*)
- tl [1] (* evaluates to [] *)

CMCS330 Spring 2022

Quiz 5

To what does the following expression evaluate?

match [1;2;3] with

1::[] -> [0]
. . -> [1]
1:: ::[]1 -> T[]

A.]

B. [0]

C.[1]

D. [2;3]

CMCS330 Spring 2022

26

Quiz 5

To what does the following expression evaluate?

match [1;2;3] with

1::[] -> [0]
. . -> [1]
1:: ::[]1 -> T[]

A.]

B. [0]

C.[1]

D. [2;3]

CMCS330 Spring 2022

27

Pattern Matching — An Abbreviation

e let £ p = e, Where pis a pattern
— is shorthand for let £ x = match x with p -> e

« Examples
— let hd (h::) =
- let t1 (_::t) =
- let £ (x::y::)
- let g [x; V]
« Useful if there’s only one acceptable input

N 5

X +y

X +y

CMCS330 Spring 2022

28

match e with

Pattern Matching Typing | p1 -> el

| ..
* If eand p1, ..., pn each have type ta [! p? ~> en

 and el1, ..., en each have type tb
* Then entire match expression has type tb

« Examples
type: ‘a list -> ‘a ta = ‘ list

let hd 1 = let rec sum 1
Dl TEL

ta = int list tb = int

type: int list -> int

CMCS330 Spring 2022

Polymorphic Types

* The sum function works only for int lists

 But the hd function works for any type of list
- hd [1; 2; 3] (* returns 1 *)
-— hd [Ha" ; "b" ’. HCH] (* returns Ha" *)

« OCaml gives such functions polymorphic types
— hd : 'a list -> 'a
— this says the function takes a list of any element type 'a, and
returns something of that same type

* These are basically generic types in Java
— 'a list islike List<T>

CMCS330 Spring 2022

30

Examples Of Polymorphic Types

e let tl (_::t) =t
t1 [1; 2; 3]1;;
- : int list = [2; 3]
t1 [1.0; 2.0];;
- : float 1list = [2.0]
(* t1 : 'a list -> 'a list ¥*)

e let fst xy = x
£st 1 “hello”;;
- : int =1
£st [1; 2] 1;;
- : int list = [1; 2]
(* £fst : 'a -> 'b -> 'a ¥*)

CMCS330 Spring 2022

Examples Of Polymorphic Types

e letegxy=x=y (* let eg x y =
#eql 2;;
- : bool = false
eq “hello” “there”;;
- : bool = false
eq “hello” 1 --typeerror
(* eq : 'a -> "a -> bool *)

CMCS330 Spring 2022

(x =y) *)

32

Quiz 6

What is the type of the following function?

let £ x y =
if x = y then 1 else 0

‘a -> ‘b -> int
‘a -> ‘a -> bool
‘a -> ‘a -> int

int

o Qwp

CMCS330 Spring 2022

33

Quiz 6

What is the type of the following function?

let £ x y =
if x = y then 1 else 0

‘a -> ‘b -> int
‘a -> ‘a -> bool
‘a -> ‘a -> int

int

O w »

CMCS330 Spring 2022

34

Missing Cases

« Exceptions for inputs that don’'t match any pattern
— OCaml will warn you about non-exhaustive matches

« Example:
let hd 1 = match 1 with (h::) -> h;;

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

[]

hd [1;;
Exception: Match failure ("", 1, 11).

CMCS330 Spring 2022

35

Pattern matching is AWESOME

1. You can’t forget a case

— Compiler issues inexhaustive pattern-match warning
2. You can’t duplicate a case

— Compiler issues unused match case warning
3. You can’t get an exception

— Can'’t do something like List.hd []

4. Pattern matching leads to elegant, concise,
beautiful code

CMCS330 Spring 2022

36

Lists and Recursion

e Lists have a recursive structure
— And so most functions over lists will be recursive

let rec length 1 = match 1 with
| [T ->0
| (_::t) -> 1 + (length t)

— This is just like an inductive definition

« The length of the empty list is zero

» The length of a nonempty list is 1 plus the length of the tail
— Type of length?

e ‘a list -> int

CMCS330 Spring 2022

39

More Examples

J sum 1 (* sum of elts in 1 *)
let rec sum 1 = match 1 with
| [1 -> 0
| (x::xs) -> x + (sum xs)

. negate 1 (* negate elements in list ¥*)
let rec negate 1 = match 1 with

| [1 -> [1

| (x::xs) -> (-x) :: (negate xs)

J last 1 (* last element of 1 *)
let rec last 1 = match 1 with
| [x] -> x
| (x::xs) -> last xs

CMCS330 Spring 2022

40

More Examples (cont.)

(* return a list containing all the elements in the list 1

followed by all the elements in list m *)
e append 1 m
let rec append 1 m = match 1 with
| [1 ->m
| (x::xs) -> x:: (append xs m)

e rev 1l (* reverse list; hint: use append *)
let rec rev 1 = match 1 with

| [1 -> T[]

| (x::xs) -> append (rev xs) (x::[])

e rev takes O(n?)time. Can you do better?

CMCS330 Spring 2022

41

