
CMSC 330: Organization of Programming
Languages

Box Smart Pointer, Trait Objects

Copyright © 2018-2021 Michael Hicks, the University of
Maryland. Some material based on
https://doc.rust-lang.org/book/second-edition/index.html

CMSC 330 - Spring 2021

Box<T> Smart Pointers

• Box<T> values point to heap-allocated data
– The Box<T> value (the pointer) is on the stack, while its

pointed-to T value is allocated on the heap
– Has Deref trait – can be treated like a reference

• More later
– Has Drop trait – will drop its data when it dies

• Uses?
– Reduce copying (via an ownership move)
– Create dynamically sized objects

• Particularly useful for recursive types

CMSC 330 - Spring 2021

• Naïve attempt doesn’t work
– Compiler complains that it

can’t know the size of List
– The Cons case is “inlined”

into the enum

Example: Linked List

enum List {
 Nil,
 Cons(i32,List)
}

• Since a List is recursive, it could be basically any size

• Use a Box to add an indirection
– Now the size is fixed

• i32 + size of pointer
– Nil tag smaller

enum List {
 Nil,
 Cons(i32,Box<List>)
}

CMSC 330 - Spring 2021

Creating a LinkedList
enum List {
 Nil,
 Cons(i32,Box<List>)
}

use List::{Cons, Nil};

fn main() {
 let list = Cons(1,
 Box::new(Cons(2,
 Box::new(Nil))));
 … // data dropped at end of scope
}

CMSC 330 - Spring 2021

Deref Trait

• If x is an int then &x is a &{int}
– Can use * operator to dereference it, extracting the underlying

value
• *(&x) == x

• Can use * on Box<T> types
– Deref trait requires deref(&self) -> &T method
– So that *x translates to *(x.deref())

• deref returns type &T and not T so as not to relinquish
ownership from inside the Box type

CMSC 330 - Spring 2021

Deref Coercion

• The Rust compiler automatically inserts one or more calls
to x.deref() to get the right type
– When &T required but value x : U provided, where U implements
Deref trait

– In particular, at function and method calls

• Also a DerefMut trait, for when object is mutable
– Deref coercion works with this too (see Rust book)

CMSC 330 - Spring 2021

Example

– &m should have type &str to pass it to hello
– So, compiler calls m.deref() to get &String, and then
deref() again to get &str

fn hello(x:&str) {
 println!("hello {}",x);
}
fn main() {
 let m = Box::new(String::from("Rust"));
 hello(&m); //same as hello(&(*m)[..]);
}

CMSC 330 - Spring 2021

Drop Trait

• Provides the method fn drop(&mut self)
– Called when the value implementing the trait goes out of scope
– Should be used to free the underlying resources, e.g., heap

memory

• May not call drop method manually
– Would lead to a double free when Rust calls the method again at

the end of a scope
– Can call std::mem::drop function in some circumstances

CMSC 330 - Spring 2021

Another Place Where Size Matters

9

pub trait Summarizable {
 fn summary(&self) -> String {
 String::from(“none”)
 }
}

impl Summarizable for i32 {…}

• Recall Summarizable

• Let’s make a general summary-printing function
• First attempt: fn print_summary(s: Summarizable) {…}

– This means the caller moves (or copies, if s is Copy) the argument to the
function when calling it (s is not a reference)

– This means the data in the argument needs to be moved/copied
– How many bytes long is the data? Don’t know; won’t work

CMSC 330 - Spring 2021

Still Not Right

10

pub trait Summarizable {
 fn summary(&self) -> String {
 String::from(“none”)
 }
}

impl Summarizable for i32 {…}

• Recall Summarizable

• Second attempt, also wrong:
fn print_summary(s: &Summarizable) {
 print!(”{}”, s.summary());
}

– There are lots of implementations of summary
– Which one should be invoked?

CMSC 330 - Spring 2021

What’s Missing: Receiver Type

• This code was OK; why?
let x:i32 = 42;
x.summarize();

• The compiler knows which summarize to call, since it
knows x:i32

11CMSC 330 - Spring 2021

Dynamic Dispatch
fn print_summary(s: &Summarizable) {
 print!(”{}”, s.summary());
}

• Object oriented languages, like Java, accept code like the
above because they have dynamic dispatch
– The correct method is determined at run time

• To implement dispatch in Rust, we use trait objects
• A trait object pairs data with runtime type information

– Think: (42, “I am an i32!”)

12CMSC 330 - Spring 2021

Trait Objects

• Use type dyn Summarizable, wrapped in a Box

• Callers simply use Box to put the data on the heap

13

fn print_summarizable(s: Box<dyn Summarizable>) {
 println!("{}", s.summary());
}

pub fn main() {
 let b = Box::new(42);
 print_summarizable(b);
}

CMSC 330 - Spring 2021

Why the Box?
• Could we do this instead?

fn print_s(s: dyn Summarizable) {
 println!("{}", s.summary());
}

• Error!

Lesson: dyn Summarizable has different sizes; Box<T> has one

14

17 | fn print_s(s: dyn Summarizable) {
 | ^ doesn't have a size known at compile-time
 |
 = help: the trait `Sized` is not implemented for `(dyn
Summarizable + 'static)`
help: function arguments must have a statically known size,
borrowed types always have a known size

CMSC 330 - Spring 2021

Box and Size

• Box<i32> is a pointer to a heap-allocated i32
• Box<dyn Summarizable> is a fat pointer to a

heap-allocated Summarizable
– That is: (type information, pointer to data on the heap)

 struct Enormous { // 512 bytes (4 * 128)
 a: [i32; 128],
 }

 impl Summarizable for Enormous {…}

15

512
8
Error

println!("{}", std::mem::size_of::<Enormous>());
println!("{}", std::mem::size_of::<Box<Enormous>>());
println!("{}", std::mem::size_of::<Box<Summarizable>>());
println!("{}", std::mem::size_of::<Box<dyn Summarizable>>()); 16

CMSC 330 - Spring 2021

Example

Box: a Kind of Smart Pointer

• A smart pointer is a reference plus metadata, to provide
additional capabilities
– Originated in C++
– Examples seen so far: String, Vec<T>, Box<T>

• Usually implemented as structs
– Which must implement the Deref and Drop traits

• New ones we will see: Cell<T>, Rc<T>, Ref<T>, …
• Check out The Rustonomicon for how to implement your

own smart pointers!
– https://doc.rust-lang.org/stable/nomicon/

CMSC 330 - Spring 2021

https://doc.rust-lang.org/stable/nomicon/

Summary

• Use Box<T> to heap-allocate data, and reduce copying
(via an ownership move)
– Useful for non cyclic, immutable data structures

• Use trait objects, of type Box<dyn Trait>, to implement
dynamic dispatch
– For any trait type Trait
– Box lets you use fat pointers for dyn trait objects, to provide

runtime type information to enable dynamic dispatch
– If you try to pass traits without Box, you may get errors about
Sized because the compiler doesn’t know how big things are

17CMSC 330 - Spring 2021

