CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

• What we’ve learned
 • What regular expressions are
 • What they can express, and cannot
 • Programming with them

• What’s next: how they work
 • A great computer science result
Languages and Machines
A Few Questions About REs

• How are REs implemented?
 • Given an arbitrary RE and a string, how to decide whether the RE matches the string?

• What are the basic components of REs?
 • Can implement some features in terms of others
 □ E.g., e+ is the same as ee*

• What does a regular expression represent?
 • Just a set of strings
 □ This observation provides insight on how we go about our implementation

• … next comes the math!
Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0,1\}$
 - Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \}$ (and $\emptyset \neq \varepsilon$)
- Example strings over alphabet $\Sigma = \{0,1\}$ (binary):
 - 0101
 - 0101110
 - ε
Definition: String concatenation

- String **concatenation** is indicated by juxtaposition

 $s_1 = \text{super}$

 $s_2 = \text{hero}$

 $s_1 s_2 = \text{superhero}$

 - Sometimes also written $s_1 \cdot s_2$

- For any string s, we have $s\varepsilon = s = \varepsilon s$

 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:

 - If $s_1 = \text{super}$ from $\Sigma_1 = \{s, u, p, e, r\}$ and $s_2 = \text{hero}$ from $\Sigma_2 = \{h, e, r, o\}$, then $s_1 s_2 = \text{superhero}$ from $\Sigma_3 = \{e, h, o, p, r, s, u\}$
Definition: Language

- A language L is a set of strings over an alphabet

- Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
 - $L = \{ a, aa, ab, ac \}$

- Example: All strings over $\Sigma = \{a, b\}$
 - $L = \{ \epsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots \}$
 - Language of all strings written Σ^*

- Example: All strings of length 0 over alphabet Σ
 - $L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \}$
 - “the set of strings s such that s is from Σ^* and has length 0”
 - $= \{ \epsilon \} \neq \emptyset$
Definition: Language (cont.)

- Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 - Give an example element of this language
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language?
 - `/\(\d{3}\)\d{3}-\d{4}/`

- Example: The set of all valid (runnable) Ruby programs
 - Later we’ll see how we can specify this language
 - (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** $L_1 L_2$ creates a language defined as
 - $L_1 L_2 = \{ xy | x \in L_1 \text{ and } y \in L_2 \}$

- **Union** creates a language defined as
 - $L_1 \cup L_2 = \{ x | x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** creates a language defined as
 - $L^* = \{ x | x = \epsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Operations Examples

Let \(L_1 = \{ a, b \} \), \(L_2 = \{ 1, 2, 3 \} \) (and \(\Sigma = \{a,b,1,2,3\} \))

- What is \(L_1 L_2 \)?
 - \(\{ a1, a2, a3, b1, b2, b3 \} \)

- What is \(L_1 \cup L_2 \)?
 - \(\{ a, b, 1, 2, 3 \} \)

- What is \(L_1^* \)?
 - \(\{ \varepsilon, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, ... \} \)
Quiz 1: Which string is **not** in L_3

$L_1 = \{a, \text{ab}, c, d, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. ad
C. ε
D. d
Quiz 1: Which string is **not** in L_3?

$L_1 = \{a, ab, c, d, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. ad
C. ε
D. d
Quiz 2: Which string is **not** in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$

where $\Sigma = \{a,b,c,d\}$

$L_2 = \{d\}$

$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Quiz 2: Which string is not in L_3?

$L_1 = \{a, ab, c, d, \varepsilon\}$

$L_2 = \{d\}$

$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Regular Expressions: Grammar

- We can define a grammar for regular expressions R

\[
R ::= \emptyset \quad \text{The empty language} \\
| \epsilon \quad \text{The empty string} \\
| \sigma \quad \text{A symbol from alphabet } \Sigma \\
| R_1 R_2 \quad \text{The concatenation of two regexps} \\
| R_1 | R_2 \quad \text{The union of two regexps} \\
| R^* \quad \text{The Kleene closure of a regexp}
\]
Regular Languages

- Regular expressions denote languages. These are the **regular languages**
 - *aka* regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0 \}$ ($a^n = \text{sequence of } n \text{ a's}$)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools

CMSC 330 Spring 2021
Semantics: Regular Expressions (1)

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows.

Constants

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each symbol $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

*Ex: with $\Sigma = \{a, b\}$, regex a denotes language $\{a\}$
regex b denotes language $\{b\}$*
Semantics: Regular Expressions (2)

- Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

 \begin{center}
 \begin{tabular}{|c|c|}
 \hline
 regular expression & denotes language \\
 \hline
 AB & $L_A L_B$ \\
 \hline
 $A|B$ & $L_A \cup L_B$ \\
 \hline
 A^* & L_A^* \\
 \hline
 \end{tabular}
 \end{center}

- There are no other regular expressions over Σ
Terminology etc.

• Regexps apply operations to symbols
 • Generates a set of strings (i.e., a language)
 □ (Formal definition shortly)
 • Examples
 □ a generates language \{a\}
 □ a|b generates language \{a\} \cup \{b\} = \{a, b\}
 □ a* generates language \{\epsilon\} \cup \{a\} \cup \{aa\} \cup \ldots = \{\epsilon, a, aa, \ldots\}

• If \(s \in\) language L generated by a RE \(r\), we say that \(r\) accepts, describes, or recognizes string \(s\)
Precedence

• Order in which operators are applied is:
 • Kleene closure $\ast >$ concatenation $>$ union $|$
 • $ab|c = (a b) | c \rightarrow \{ab, c\}$
 • $ab^* = a (b^*) \rightarrow \{a, ab, abb \ldots\}$
 • $a|b^* = a | (b^*) \rightarrow \{a, \varepsilon, b, bb, bbb \ldots\}$

• We use parentheses () to clarify
 • E.g., $a(b|c)$, $(ab)^*$, $(a|b)^*$
 • Using escaped \(if parens are in the alphabet
Ruby Regular Expressions

- Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition
 - `/Ruby/` – concatenation of single-symbol REs
 - `/(*Ruby|Regular)/` – union
 - `/(*Ruby)/` – Kleene closure
 - `/(Ruby)+/` – same as `(Ruby)(Ruby)*`
 - `/(Ruby)?/` – same as `(ε|(Ruby))`
 - `/[a-z]/` – same as `(a|b|c|...|z)`
 - `/[^0-9]/` – same as `(a|b|c|...)` for a,b,c,... ∈ Σ - {0..9}
 - `^`, `$` – correspond to extra symbols in alphabet
 - Think of every string containing a distinct, hidden symbol at its start and at its end – these are written ^ and $
Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A “machine” for recognizing a regular language
Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton

• Machine starts in start or initial state
• Repeat until the end of the string \(s \) is reached
 • Scan the next symbol \(\sigma \in \Sigma \) of the string \(s \)
 • Take transition edge labeled with \(\sigma \)
• String \(s \) is accepted if automaton is in final state when end of string \(s \) is reached

Elements
• States \(S \) (start, final)
• Alphabet \(\Sigma \)
• Transition edges \(\delta \)
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

Accepted?
Yes

0 0 1 0 1 1
Finite Automaton: Example 2

Accepted? No

0 0 1 0 1 0
Quiz 3: What Language is This?

A. All strings over $\{0, 1\}$
B. All strings over $\{1\}$
C. All strings over $\{0, 1\}$ of length 1
D. All strings over $\{0, 1\}$ that end in 1
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

| string | state at end | accepts |?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>S0</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acba</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a, b, c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acba</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Quiz 4: Which string is **not** accepted?

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is **not** accepted?

(A,b,c notation shorthand for three self loops)

A. bcca
B. abbbbc
C. ccc
D. ε
Finite Automaton: Example 3

What language does this FA accept?

\[a^*b^*c^* \]

S3 is a dead state – a nonfinal state with no transition to another state - aka a trap state
Language?

\[a^*b^*c^* \] again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?

- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 5

- Description for each state
 - S0 = “Haven't seen anything yet” OR “Last symbol seen was a b”
 - S1 = “Last symbol seen was an a”
 - S2 = “Last two symbols seen were ab”
 - S3 = “Last three symbols seen were abb”
Finite Automaton: Example 5

- **Language as a regular expression?**
 - \((a\|b)^*abb\)
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. One or more b’s, followed by zero or more a’s.
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. One or more b’s, followed by zero or more a’s.
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{a,b\}$

- That accepts strings containing an even number of a’s and any number of b’s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s very immediately (right after, no other things in between) followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings \textbf{end with} two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an **odd** number of 0s and **odd** number of 1s

4 states:

<table>
<thead>
<tr>
<th>0s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that **DO NOT** contain an odd number of 0s and an odd number of 1s