CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
The story so far, and what’s next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R’s language

- Approach to come: Convert R to a finite automaton FA and see whether s is accepted by FA
 - Details: Convert R to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA),
 - which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic Finite Automata (DFA)**
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - (Almost) all examples so far

- **Nondeterministic Finite Automata (NFA)**
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - A DFA is a specific kind of NFA
DFA for \((a|b)^*abb\)
NFA for (a|b)*abb

- **ba**
 - Has paths to either S_0 or S_1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S_3, so accepts string
NFA for \((ab|aba)^*\)

- aba
- ababa
 - Has paths to states S0, S1
 - Need to use \(\varepsilon\)-transition
NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which string is **NOT** accepted by this NFA?

A. \(ab\)
B. \(aba\)
C. \(abab\)
D. \(abaab\)
Quiz 1: Which string is NOT accepted by this NFA?

A. ab
B. abaa
C. abab
D. abaab
A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where:

- \(\Sigma\) is an alphabet
- \(Q\) is a nonempty set of states
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final states
- \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions

What's this definition saying that \(\delta\) is?

A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$
- $\delta =$

<table>
<thead>
<tr>
<th>input state</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

or as \{ (S0,0,S0), (S0,1,S1), (S1,0,S0), (S1,1,S1) \}
cur_state = 0;
while (1) {
 symbol = getchar();
 switch (cur_state) {
 case 0: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;
 }
 break;
 case 1: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;
 }
 break;
 default: printf("unknown state; I'm confused\n");
 break;
 }
}

It's easy to build a program which mimics a DFA.
Implementing DFAs (generic)

More generally, use generic table-driven DFA

```plaintext
given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:
let \(q = q_0\)
while (there exists another symbol \(\sigma\) of the input string)
    \(q := \delta(q, \sigma)\);
if \(q \in F\) then
    accept
else reject
```

- \(q\) is just an integer
- Represent \(\delta\) using arrays or hash tables
- Represent \(F\) as a set
An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
- \(\Sigma, Q, q_0, F\) as with DFAs
- \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S_1, S_2, S_3\}\)
- \(q_0 = S_1\)
- \(F = \{S_3\}\)
- \(\delta = \{(S_1,a,S_1), (S_1,a,S_2), (S_2,\varepsilon,S_3)\}\)

An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA’s start state to a final state
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing "a"
 - NFA may be in states
 S1
 S2
 S3
 - Since S3 is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

NB. Both *transform* and *reduce* are historical terms; they mean “convert”
Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall $F = \text{set of final states}$

- Will define $<A>$ for base cases: $\sigma, \varepsilon, \emptyset$
 - Where σ is a symbol in Σ
- And for inductive cases: $AB, A|B, A^*$
Base case: σ

$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where
- Σ is the alphabet
- Q is set of states
- q_0 is starting state
- F is set of final states
- δ is transition relation
Reduction

- Base case: ε

$$<\varepsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

- Base case: \emptyset

$$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where
- Σ is the alphabet
- Q is set of states
- q_0 is starting state
- F is set of final states
- δ is transition relation
Reduction: Concatenation

- Induction: AB

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\]
Reduction: Concatenation

Induction: \(AB \)

\[
\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)
\]

\[
\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)
\]

\[
\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})
\]
Reduction: Union

- **Induction:** $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

- **Induction:** \(A|B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
- \(<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\}) \)
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$
 $\delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\})$
Quiz 2: Which NFA matches a^* ?

A.

B.

C.

D.
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches $a|b^*$?

A.

B.

C.

D.
Quiz 3: Which NFA matches $a|b^*$?
Recap

- Finite automata
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- Reducing RE to NFA
 - Concatenation
 - Union
 - Closure
Reduction Complexity

Given a regular expression A of size n...

Size = # of symbols + # of operations

How many states does $<A>$ have?

- Two added for each $|$, two added for each *
- $O(n)$
- That’s pretty good!
Reducing NFA to DFA

DFA ← NFA

can reduce

RE

can reduce
Why NFA → DFA

- DFA is generally more efficient than NFA

Language: \((a|b)^*ab\)
Why NFA → DFA

- DFA has the same expressive power as NFAs.
 - Let language $L \subseteq \Sigma^*$, and suppose L is accepted by NFA $N = (\Sigma, Q, q_0, F, \delta)$. There exists a DFA $D = (\Sigma, Q', q'_0, F', \delta')$ that also accepts L. ($L(N) = L(D)$)

- NFAs are more flexible and easier to build. But DFAs have no less power than NFAs.

NFA ↔ DFA

CMSC 330 Fall 2021
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example

```
S1  a  S2  ε  S3
     |     |     |
     a    a    ε
```

NFA

```
S1  a  S1, S2, S3
     |     |
     a    a
```

DFA
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA ($\Sigma, Q, q_0, F_n, \delta$)
 - Output
 - DFA ($\Sigma, R, r_0, F_d, \delta$)
 - Using two subroutines
 - ϵ-closure(δ, p) (and ϵ-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions in \(\delta \)
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 - \(\{p, \varepsilon, p_1\} \in \delta, \{p_1, \varepsilon, p_2\} \in \delta, \ldots, \{p_n, \varepsilon, q\} \in \delta \)

- \(\varepsilon \)-closure(\(\delta \), \(p \))
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) = \{ \(q \mid p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - \(\varepsilon \)-closure(\(\delta \), \(Q \)) = \{ \(q \mid p \in Q, p \xrightarrow{\varepsilon} q \) in \(\delta \) \}

- Notes
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) always includes \(p \)
 - We write \(\varepsilon \)-closure(\(p \)) or \(\varepsilon \)-closure(\(Q \)) when \(\delta \) is clear from context
ε-closure: Example 1

- Following NFA contains:
 - p₁ $\xrightarrow{\epsilon}$ p₂
 - p₂ $\xrightarrow{\epsilon}$ p₃
 - p₁ $\xrightarrow{\epsilon}$ p₃
 - Since p₁ $\xrightarrow{\epsilon}$ p₂ and p₂ $\xrightarrow{\epsilon}$ p₃

- ε-closures:
 - ϵ-closure(p₁) = \{ p₁, p₂, p₃ \}
 - ϵ-closure(p₂) = \{ p₂, p₃ \}
 - ϵ-closure(p₃) = \{ p₃ \}
 - ϵ-closure(\{ p₁, p₂ \}) = \{ p₁, p₂, p₃ \} \cup \{ p₂, p₃ \}
\(\epsilon\)-closure: Example 2

- Following NFA contains:
 - \(p_1 \xrightarrow{\epsilon} p_3\)
 - \(p_3 \xrightarrow{\epsilon} p_2\)
 - \(p_1 \xrightarrow{\epsilon} p_2\)

 - Since \(p_1 \xrightarrow{\epsilon} p_3\) and \(p_3 \xrightarrow{\epsilon} p_2\)

- \(\epsilon\)-closures:
 - \(\epsilon\)-closure\((p_1) =\) \(\{ p_1, p_2, p_3 \}\)
 - \(\epsilon\)-closure\((p_2) =\) \(\{ p_2 \}\)
 - \(\epsilon\)-closure\((p_3) =\) \(\{ p_2, p_3 \}\)
 - \(\epsilon\)-closure\((\{ p_2, p_3 \}) =\) \(\{ p_2 \} \cup \{ p_2, p_3 \}\)
ε-closure Algorithm: Approach

- **Input:** NFA $(\Sigma, Q, q_0, F_n, \delta)$, State Set R
- **Output:** State Set R'

Algorithm

Let $R' = R$ // start states

Repeat

 Let $R = R'$ // continue from previous

 Let $R' = R \cup \{ q \mid p \in R, (p, \epsilon, q) \in \delta \}$ // new ϵ-reachable states

Until $R = R'$ // stop when no new states

This algorithm computes a **fixed point**
ε-closure Algorithm Example

Let \(R' = R \)

Repeat

Let \(R = R' \)

Let \(R' = R \cup \{ q \mid p \in R, (p, \epsilon, q) \in \delta \} \)

Until \(R = R' \)
Calculating $\text{move}(p, \sigma)$

- $\text{move}(\delta, p, \sigma)$
 - Set of states reachable from p using exactly one transition on symbol σ
 - Set of states q such that $\{p, \sigma, q\} \in \delta$
 - $\text{move}(\delta, p, \sigma) = \{ q \mid \{p, \sigma, q\} \in \delta \}$
 - $\text{move}(\delta, Q, \sigma) = \{ q \mid p \in Q, \{p, \sigma, q\} \in \delta \}$
 - i.e., can “lift” $\text{move}()$ to a set of states Q
 - Notes:
 - $\text{move}(\delta, p, \sigma)$ is \emptyset if no transition $(p, \sigma, q) \in \delta$, for any q
 - We write $\text{move}(p, \sigma)$ or $\text{move}(R, \sigma)$ when δ clear from context
move(p, σ) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - move(p1, a) = \{ p2, p3 \}
 - move(p1, b) = \emptyset
 - move(p2, a) = \emptyset
 - move(p2, b) = \{ p3 \}
 - move(p3, a) = \emptyset
 - move(p3, b) = \emptyset

move([p1,p2],b) = \{ p3 \}
move(p, σ) : Example 2

- Following NFA
 - Σ = { a, b }

- Move
 - move(p1, a) = { p2 }
 - move(p1, b) = { p3 }
 - move(p2, a) = { p3 }
 - move(p2, b) = Ø
 - move(p3, a) = Ø
 - move(p3, b) = Ø

move({p1,p2}, a) = {p2,p3}
NFA → DFA Reduction Algorithm ("subset")

- **Input** NFA \((\Sigma, Q, q_0, F_n, \delta)\), **Output** DFA \((\Sigma, R, r_0, F_d, \delta')\)

- **Algorithm**

 Let \(r_0 = \varepsilon\)-closure\((\delta, q_0)\), add it to \(R\)
 \(\quad\) // DFA start state

 While \(\exists\) an unmarked state \(r \in R\)
 \(\quad\) // process DFA state \(r\)

 Mark \(r\)
 \(\quad\) // each state visited once

 For each \(\sigma \in \Sigma\)
 \(\quad\) // for each symbol \(\sigma\)

 Let \(E = \text{move}(\delta, r, \sigma)\)
 \(\quad\) // states reached via \(\sigma\)

 Let \(e = \varepsilon\)-closure\((\delta, E)\)
 \(\quad\) // states reached via \(\varepsilon\)

 If \(e \notin R\)
 \(\quad\) // if state \(e\) is new

 Let \(R = R \cup \{e\}\)
 \(\quad\) // add \(e\) to \(R\) (unmarked)

 Let \(\delta' = \delta' \cup \{r, \sigma, e\}\)
 \(\quad\) // add transition \(r \rightarrow e\) on \(\sigma\)

 Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}\)
 \(\quad\) // final if include state in \(F_n\)
NFA → DFA Example

- Start = ε-closure(δ, p_1) = { {p1,p3} }
- R = { {p1,p3} }
- $r \in R = \{p1,p3\}$
- move(δ, {p1,p3}, a) = {p2}
 - $e = \varepsilon$-closure(δ, {p2}) = {p2}
 - $R = R \cup \{\{p2\}\} = \{\{p1,p3\}, \{p2\}\}$
 - $\delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}$
- move(δ, {p1,p3}, b) = \emptyset
NFA → DFA Example (cont.)

- \(R = \{ \{p_1, p_3\}, \{p_2\} \} \)
- \(r \in R = \{p_2\} \)
- \(\text{move}(\delta, \{p_2\}, a) = \emptyset \)
- \(\text{move}(\delta, \{p_2\}, b) = \{p_3\} \)
 - \(e = \varepsilon\)-closure\((\delta, \{p_3\}) = \{p_3\} \)
 - \(R = R \cup \{\{p_3\}\} = \{ \{p_1, p_3\}, \{p_2\}, \{p_3\} \} \)
 - \(\delta' = \delta' \cup \{\{p_2\}, b, \{p_3\}\} \)

\[\begin{align*}
\text{NFA} & \quad \text{DFA} \\
p_1 & \quad \{1, 3\} \\
p_2 & \quad \{2\} \\
p_3 & \quad \{3\}
\end{align*} \]
NFA → DFA Example (cont.)

• \(R = \{ \{p1,p3\}, \{p2\}, \{p3\} \} \)
• \(r \in R = \{p3\} \)
• \(\text{Move}\{\{p3\}, a\} = \emptyset \)
• \(\text{Move}\{\{p3\}, b\} = \emptyset \)
• \(\text{Mark} \{p3\}, \text{exit loop} \)
• \(F_d = \{\{p1,p3\}, \{p3\}\} \)
 ➢ Since \(p3 \in F_n \)
• Done!
NFA → DFA Example 2

NFA

DFA

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equivalent to this NFA?

- A.
- B.
- C.
- D. None of the above
Actual Answer

NFA:

- Start state: p0
- Transitions:
 - a from p0 to p1
 - b from p1 to p2
 - ε from p1 to p0
- Final states: p2, p0
NFA → DFA Example 3

NFA

- States: A, B, C, D, E
- Transitions:
 - A: $a \rightarrow B$, $b \rightarrow C$, $\epsilon \rightarrow A$
 - B: $a \rightarrow D$, $\epsilon \rightarrow B$
 - C: $b \rightarrow A$, $\epsilon \rightarrow C$
 - D: $a \rightarrow D$, $\epsilon \rightarrow D$
 - E: $a \rightarrow A$

DFA

- States: $\{A, E\}, \{B, D, E\}, \{C, D\}, \{E\}$
- Transitions:
 - $\{A, E\}$: $a \rightarrow \{A, E\}$, $b \rightarrow \{C, D\}$
 - $\{B, D, E\}$: $a \rightarrow \{B, D, E\}$, $b \rightarrow \{C, D\}$
 - $\{C, D\}$: $b \rightarrow \{C, D\}$
 - $\{E\}$: $a \rightarrow \{E\}$

Transition Relational Set

$$R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}$$
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \).

While \(\exists \) an unmarked state \(r \in R \):

1. Mark \(r \).
2. For each \(\sigma \in \Sigma \):
 - Let \(E = \text{move}(\delta, r, \sigma) \).
 - Let \(e = \varepsilon\text{-closure}(\delta, E) \).
 - If \(e \notin R \):
 - Let \(R = R \cup \{e\} \).
 - Let \(\delta' = \delta' \cup \{r, \sigma, e\} \).

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \).
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

 Mark r

 For each $\sigma \in \Sigma$

 Let $E = \text{move}(\delta, r, \sigma)$

 Let $e = \varepsilon$-closure(δ, E)

 If $e \notin R$

 Let $R = R \cup \{e\}$

 Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A, B, C}$</td>
<td>${B, C}$</td>
<td>${B, C}$</td>
</tr>
</tbody>
</table>
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)
Let \(r_0 = \epsilon\text{-closure}(\delta,q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

//1

Let \(E = \text{move}(\delta,r,\sigma) \)

Let \(e = \epsilon\text{-closure}(\delta,E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td></td>
</tr>
<tr>
<td>{B,C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let $r_0 = \varepsilon\text{-closure}(\delta, q_0)$, add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon\text{-closure}(\delta, E)$

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let $r_0 = \varepsilon$-closure(δ,q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta,r,\sigma)$

Let $e = \varepsilon$-closure(δ,E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

}{A,B,C} {B,C} {A,B,C}

{B,C}
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \) //0

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \not\in R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r | \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td></td>
</tr>
<tr>
<td>{C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon\text{-closure}(\delta, q_0)$, add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

\quad //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon\text{-closure}(\delta, E)$

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A, B, C}$</td>
<td>${B, C}$</td>
<td>${A, B, C}$</td>
</tr>
<tr>
<td>${B, C}$</td>
<td>${C}$</td>
<td>?</td>
</tr>
<tr>
<td>${C}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon\text{-closure} (\delta, q_0)$, add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move} (\delta, r, \sigma)$

Let $e = \varepsilon\text{-closure} (\delta, E)$

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let \(r_0 = \varepsilon\text{-closure}(\delta,q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)
- Mark \(r \)
- For each \(\sigma \in \Sigma \)
 - Let \(E = \text{move}(\delta,r,\sigma) \)
 - Let \(e = \varepsilon\text{-closure}(\delta,E) \)
 - If \(e \notin R \)
 - Let \(R = R \cup \{e\} \)
 - Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)
- Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists \ s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th>({A, B, C})</th>
<th>({B, C})</th>
<th>({A, B, C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C}</td>
<td>{C}</td>
<td>{B, C}</td>
</tr>
<tr>
<td>{C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \not\in R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r | \exists s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B, C}</td>
<td>{B, C}</td>
<td>{A, B, C}</td>
</tr>
<tr>
<td>{B, C}</td>
<td>{C}</td>
<td>{B, C}</td>
</tr>
<tr>
<td>{C}</td>
<td>{C}</td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ,q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //0

Let $E = \text{move}(\delta,r,\sigma)$

Let $e = \varepsilon$-closure(δ,E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

//1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in R \text{ with } s \in F_n\}$
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \not\in R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)

Detailed NFA → DFA Example

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td>{C}</td>
<td>{C}</td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R.

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Detailed NFA → DFA Example: Completed

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td>{C}</td>
<td>{C}</td>
</tr>
</tbody>
</table>
NFA → DFA Example
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$
Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast
Closing the Loop: Reducing DFA to RE

DFA \rightarrow \text{can reduce} \rightarrow \text{NFA} \rightarrow \text{can transform} \rightarrow \text{RE} \rightarrow \text{can transform} \rightarrow \text{DFA}

CMSC 330 Fall 2021
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

$$(0 + 1(0\ 1\ ^*\ 0)1)^*$$
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - **Construct initial partition**
 - Accepting & non-accepting states
 - **Iteratively split partitions** (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - **Update transitions & remove dead states**
Splitting Partitions

- No need to split partition \{S, T, U, V\}
 - All transitions on \(a\) lead to identical partition \(P_2\)
 - Even though transitions on \(a\) lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)
Resplitting Partitions

Need to reexamine partitions after splits

- Initially no need to split partition {S,T,U}
- After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept: \(\{ \text{R} \} = P_1 \)
 - Reject: \(\{ \text{S, T} \} = P_2 \)

- **Split partition?** → Not required, minimization done
 - \(\text{move}(S,a) = T \in P_2 \) - \(\text{move}(S,b) = R \in P_1 \)
 - \(\text{move}(T,a) = T \in P_2 \) - \(\text{move}(T,b) = R \in P_1 \)
Minimizing DFA: Example 2
Minimizing DFA: Example 2

DFA

- Initial partitions
 - Accept: \(\{ \text{R} \} = P_1 \)
 - Reject: \(\{ \text{S, T} \} = P_2 \)

- Split partition?
 - Yes, different partitions for B
 - move(S,a) = T \in P_2
 - move(S,b) = T \in P_2
 - move(T,a) = T \in P_2
 - move(T,b) = R \in P_1

DFA already minimal
Brzozowski’s Algorithm: DFA Minimization

1. Given a DFA, reverse all the edges, make the initial state an accept state, and the accept states initial, to get an NFA

2. NFA-> DFA

3. For the new DFA, reverse the edges (and initial-accept swap) get an NFA

4. NFA -> DFA
Brzozowski's algorithm

DFA

NFA

Minimum DFA

CMSC 330 Fall 2021
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$
Complement of DFA

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- **Note this only works with DFAs**
 - Why not with NFAs?
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complementation