CMSC 330: Organization of Programming
Languages

Operational Semantics

CMSC330 Spring 2022

Formal Semantics of a Prog. Lang.

Mathematical description of the meaning of programs
written in that language

* What a program computes, and what it does

. Three main approaches to formal semantics

* Operational [this course

o Often on an abstract machine (mathematical model of computer)
o Analogous to interpretation

* Denotational
* Axiomatic

CMSC330 Spring 2022

Operational Semantics

. We will show how an operational semantics may be
defined for Micro-Ocaml

* And develop an interpreter for it, along the way

. Approach: use rules to define a judgment
e=>v

Says “e evaluates to v’

e. expression in Micro-OCami
v: value that results from evaluating e

CMSC330 Spring 2022

Definitional Interpreter

. Rules for judgment e = v can be easily turned into
idiomatic OCaml code for an interpreter

* The language’s expressions e and values v have corresponding
OCaml datatype representations exp and value

* The semantics is represented as a function

eval: exp -> value

. This way of presenting the semantics is referred to as a
definitional interpreter

* The interpreter defines the language’s meaning

CMSC330 Spring 2022

Abstract Syntax Tree spec. via “Grammar’

. We use a grammar for e to directly describe an
expression’s abstract syntax tree (AST), i.e., e's structure

e =x|n|le+e|let x = e in e
corresponds to (in definitional interpreter)

type id = string
type num = int

type exp =
| Ident of id (* x *)
Num of num (* n *)

I
| Plus of exp * exp (* ete *)
| Let of id * exp * exp

(* let x=e in e *)

We are not concerned
about the process of
parsing, i.e., from text
to an AST. We can thus
ignore issues of
ambiguity, etc. and
focus on the structure
of the AST given by the
grammar

CMSC330 Spring 2022

Micro-OCaml Expression Grammar

e;=x|n|le+e|let x = e in e

-e, x, n are meta-variables that stand for categories of syntax
(like non-terminals in a CFG)

e xis any identifier (like z, y, £00)

e nis any numeral (like 1, 0, 10, -25)

* eis any expression (here defined, recursively!)

.Concrete syntax of actual expressions in black
* Such as let, +, z, foo, in, ... (like terminals in a CFG)

*.:= and | are meta-syntax used to define the syntax of a language
(part of “Backus-Naur form,” or BNF)

CMSC330 Spring 2022

Micro-OCaml Expression Grammar

e;=x|n|le+e|let x = e in e

Examples
e 1 is a numeral n which is an expression e

e 1+z is an expression e because

o0 1is an expression e,
o z is an identifier x, which is an expression e, and
0 e+ eis an expression e

e letz=1 in 1l+z is an expression e because

o0 z is an identifier x,

o 1is an expression e,

o0 14z is an expression e, and

0 let x = e in eis an expression e

CMSC330 Spring 2022

Values

. Avalue vis an expression’s final result

v..—n

Just numerals for now

* In terms of an interpreter’s representation:
type value = int

* In a full language, values v will also include booleans (true,
false), strings, functions, ...

CMSC330 Spring 2022

Defining the Semantics

Use rules to define judgment e = v

. Judgments are just statements. We use rules to prove that
the statement is true.
e 143 =14
0 1+3 is an expression e, and 4 is a value v

o This judgment claims that 1+3 evaluates to 4
o We use rules to prove it to be true

e let foo=1+2 in foo+5 = 8
e let f=142 in let z=1 in f+z =14

CMSC330 Spring 2022 10

Rules as English Text

No rule when e is x

Suppose eis a numeral n
* Then e evaluates to itself, i.e., n= n

Suppose e is an addition expression el + e2
* If el evaluatesto ni,i.e., el = nli
* And if e2 evaluates to n2, i.e., e2 = n2
* Then e evaluates to n3, where n3 is the sum of n1 and n2
* le.,el+e2= n3

Suppose e is a let expression let x = el in e2

* |f el evaluatesto v1, i.e., el = vi1

* And if e2{v1/x} evaluatesto v2, i.e., e2{vl/x} = v2
0 Here, e2{v1/x} means “the expression after substituting occurrences of x in e2 with v1”

* Then e evaluatesto v2,i.e., let x = el in e2 = v2

CMSC330 Spring 2022 11

Rules are Lego Blocks

2XP—-=0.2mm
= 15.8 mm

D)

CMSC330 Spring 2022

12

Rules of Inference

. We can use a more compact notation for the rules we just
presented: rules of inference

* Has the following format H

4 e n

C

* Says: if the conditions H, ... H_("hypotheses”) are true, then
the condition C (“conclusion”) is true

* [f n=0 (no hypotheses) then the conclusion automatically holds;
this is called an axiom

. We are using inference rules where C is our judgment
about evaluation, i.e., that e = v

CMSC330 Spring 2022 13

Rules of Inference: Num and Sum

Suppose eis a numeral n
* Then e evaluates to itself, i.e., n = n n=n

Suppose e is an addition expression el + e2
* |f el evaluatesto ni, i.e., el = nl
* |f e2 evaluatesto n2, i.e., e2 = n2

* Then e evaluates to n3, where n3 is the sum of
nland n2,i.e., el + e2 = n3

el = nl e2=>n2 n3isSnl+n2
el +e2= n3

CMSC330 Spring 2022 14

Rules of Inference: Let

Suppose e is a let expression let x = el in e2
 |f el evaluatesto v, i.e., el = vi1
 Ife2{vl/x} evaluatesto v2, i.e., e2{vl/x} = v2
e Then e evaluatesto v2,i.e., let x = el in e2 = v2

el = vl e2{vl/x} = v2
let x el in e2 = v2

CMSC330 Spring 2022

15

Derivations

. When we apply rules to an expression in succession, we
produce a derivation

* |[t's a kind of tree, rooted at the conclusion

Produce a derivation by goal-directed search
* Pick a rule that could prove the goal
* Then repeatedly apply rules on the corresponding hypotheses

0 Goal: Show that 1let x 4 in x+3 = 7

CMSC330 Spring 2022 16

Derivations

el = nl e2=>n2 n3isnl+n2

n=n el +e2>= n3
el=>vl e2{vl/x}=>v2 Goal: show that
let x = el in e2 = v2 let x = 4 in x+3 = 7

CMSC330 Spring 2022

4 =>4 3=3 7Tis4+3

4 =4 443 =7

let x = 4 in x+3 =7

17

Quiz 1

What is derivation of the following judgment?
2 + (3 + 8) =13

2 + (3 +8) = 13

(b)

2 + (3

8 =28
3=3
11 is 3+8

+ 8) = 13

2 + (3 +8) = 13

CMSC330 Spring 2022

18

Quiz 1

What is derivation of the following judgment?
2 + (3 + 8) =13

2 + (3 +8) = 13

(b)

2 + (3

8 =28
3=3
11 is 3+8

+ 8) = 13

2 + (3 +8) = 13

CMSC330 Spring 2022

19

Definitional Interpreter

The style of rules lends itself directly to the implementation of

an interpreter as a recursive function

let rec eval (e:exp) :value
match e with
Ident x -> (* no rule *)
failwith “no value”
| Num n -> n

| Plus (el,e2) ->

let nl = eval el in
let n2 = eval e2 in
let n3 = nl+n2 in
n3
| Let (x,el,e2) ->
let vl = eval el in
let e2’ = subst vl x e2 in
let v2 = eval e2’ in v2

1O oA

CI

VSC330-Spring 2022

n=n
el = nl e2=>n2 n3isnl+n2
el +e2= n3
el = vl e2{vl/x} = v2
let x = el in e2 = v2

20

Derivations = Interpreter Call Trees

4 =>4 3=3 7is4+3

4 =4 443 =77
let x = 4 in x+3 =7

Has the same shape as the recursive call tree of the interpreter:

eval Num 4 ¥4 eval Num 3 =3 7is 443

eval (subst 4 “x”
eval Num 4 = 4 Plus (Ident (“x”) ,Num 3)) = 7

eval Let(“x”,Num 4,Plus(Ident(“x”) ,Num 3)) =7

CMSC330 Spring 2022

21

Semantics Defines Program Meaning

e = v holds if and only if a proof can be built

* Proofs are derivations: axioms at the top, then rules whose
hypotheses have been proved to the bottom

* No proof means there exists no v for which e = v

. Proofs can be constructed bottom-up

* In a goal-directed fashion
. Thus, functioneval e ={v| e = v}

e Determinism of semantics implies at most one element for any e
. So0: Expression e means v

CMSC330 Spring 2022 22

Environment-style Semantics

. So far, semantics used substitution to handle variables

* As we evaluate, we replace all occurrences of a variable x with
values it is bound to

. An alternative semantics, closer to a real implementation,
IS to use an environment

* As we evaluate, we maintain an explicit map from variables to
values, and look up variables as we see them

CMSC330 Spring 2022 23

Environments

Mathematically, an environment is a partial function from

identifiers to values

* If Ais an environment, and x is an identifier, then A(x) can either be

0 a value v (intuition: the value of the variable stored on the stack)
0 undefined (intuition: the variable has not been declared)

An environment can visualized as a table

e IfAls
Id

Val

X

y

0
2

* then A(x) is 0, A(y) is 2, and A(z) is undefined

CMSC330 Spring 2022

24

Notation, Operations on Environments

.+ Is the empty environment

. A,x:vis the environment that extends A with a mapping
from xto v
* We write x:v instead of *,x:v for brevity
* NB. if Amaps xto some v, then that mapping is shadowed by in
A xv
. Lookup A(x) is defined as follows
°(x) = undefined
v | fx=y
(A, y:v)(x) =1 A(x) if x <>y and A(x) defined

unddfined otherwise
CMSC330 Spring 2022 B 25

Definitional Interpreter: Environments

CMSC330 Spring 2022

type env = (id * value) list
let extend env x v = (x,Vv) ::env

let rec lookup env x =
match env with
| [] -> failwith “undefined”
| (y,v)::env’ ->
if x = y then v
else lookup env’ x

An environment is just a list of mappings,
which are just pairs of variable to value
- called an association list

26

Semantics with Environments

The environment semantics changes the judgment
e=>v
to be
Ale=v
where A is an environment

* |dea: Ais used to give values to the identifiers in e
* A can be thought of as containing declarations made up to e

Previous rules can be modified by

* Inserting A everywhere in the judgments
* Adding a rule to look up variables xin A
* Modifying the rule for 1et to add xto A

CMSC330 Spring 2022

27

Environment-style Rules

'/\ Look up

Ax)=v variable x in

environment A
Al x=> v A:n=n

'/—\ Extend
. . _ environment A
Aiel=vl Ax:vl, e2=> with mapping

v2 from x to v1
A let x = el in e2 = v2

Aiel=>nl A e2=>n2 n3isnl+n2
A el+e2= n3

CMSC330 Spring 2022

Definitional Interpreter: Evaluation

CMSC330 Spring 2022

let rec eval env e =
match e with
| Ident x -> lookup env x
| Num n -> n
| Plus (el,e2) ->

let nl = eval env el in
let n2 = eval env e2 in
let n3 = nl+n2 in

n3

| Let (x,el,e2) ->
let vl = eval env el in
let env/ = extend env x vl in
let v2 = eval env’ e2 in v2

29

Quiz 2

What

IS a derivation of the following judgment?
e; let %x=3 in x+2 = 5

x=3 2=>2 5is 3+2)
:2; x=23 x:2;2=2 5is 3+2

o; let

x=3 in x+2 = 5

CMSC330 Spring 2022

30

Quiz 2

What

IS a derivation of the following judgment?
e; let %x=3 in x+2 = 5

x=3 2=>2 5is 3+2)
:2; x=23 x:2;2=2 5is 3+2

(b)

o let

x=3 in x+2 = 5

CMSC330 Spring 2022

31

Adding Conditionals to Micro-OCaml

e.=x|v|e + e|let x = e in e
|leg0 e | if e then eelse e

v.=n| true | false

In terms of interpreter definitions:

type exp = type value =
| Val of wvalue | Int of int
| .. (* as before *) | Bool of bool
| Eq0 of exp

| If of exp * exp * exp

CMSC330 Spring 2022 32

Rules for EqO and Booleans

A:le=0

A: true = true A, eq0 e = true

Ale=v v#0

A; false = false A, eq0 e = false

Booleans evaluate to themselves
* A; false = false

eqO tests for 0
°*° A; eq0 0 = true

* A; eq0 3+4 = false
CMSC330 Spring 2022

33

Rules for Conditionals

A el = true A, e2=>v
A;if el then eZ2elsee3 = v

A: el = false A e3=>v
A;if el then eZ2elsee3 = v

Notice that only one branch is evaluated
*A;if eq0 0 then 3 else 4 =3
*A;if eq0 1 then 3 else 4 =4

CMSC330 Spring 2022 34

Quiz 3

What is the derivation of the following judgment?
*;, 1if eq0 3-2 then 5 else 10=10

e; 33 e; 22 3-2is1 e; 33
________________________ ;i 22
; eq0 3-2 = false e; 10=10 3-2is1

; if eq0 3-2 then 5 else 10 = 10 *; 3-2 = 1 1 #0

(b) *; eq0 3-2 = false e; 10 = 10
3»3 22 (|
3-2is1 *; if eq0 3-2 then 5 else 10 = 10
eq0 3-2 = false 10=10
if eq0 3-2 then 5 else 10=10

CMSC330 Spring 2022

35

Quiz 3

What is the derivation of the following judgment?
*;, 1if eq0 3-2 then 5 else 10=10

(a) (c)

e; 33 e; 2=>2 3-2is1 e; 33
———————————————————————— °o: 232
*; eq0 3-2 = false *; 10=10 || 3-2is1

; if eq0 3-2 then 5 else 10 = 10 o: 3-2 = 1 1 #0

(b) *; eq0 3-2 = false *; 10 =10
33 22 l-————_—
3-2is1 *; if eq0 3-2 then 5 else 10 = 10
eq0 3-2 = false 10=10
if eq0 3-2 then 5 else 10=10

CMSC330 Spring 2022

36

Updating the Interpreter

CMSC330 Spring 2022

let rec eval env e
match e with
Ident x -> loo
| Val v -> v
| Plus (el,e2) -
let Int nl =
let Int n2 =

kup env x

>
eval env el in
eval env e2 in

let n3 = nl+n2 in

Int n3
| Let (x,el,e2)
let vl = eval

->
env el in

let env’ = extend env x vl in

let v2 = eval
| EqO0 el ->
let Int n = e

if n=0 then Bool true else Bool false

| If (el,e2,e3)
let Bool b =
if b then eva

env’ e2 in v2
val env el in
->

eval env el in
1l env e2

else eval env e3

Pattern match will fail
if el or e2 is not an
Int; this is dynamic
type checking! (But
Match failure not
the best way to signal
an error)

Basically both rules for
eqO in this one
snippet

Both if rules here

| 37

Adding Closures to Micro-OCaml

e.=x|v|e + e|let x = e in e
|leg0 e | if e then eelse e

|ee| fun x -> e .
Environment

v.=n | true | false | (A,Ax. e) Code

: ey (id and exp)
In terms of interpreter definitions: v

type exp = type value =
| Val of wvalue Int of int
| If of exp * exp * exp | Bool of bool
(* as before *) | Closure of env * id * exp

| Call of exp * exp

| Fun of id * exp
CMSC330 Spring 2022 38

Rule for Closures: Lexical/Static Scoping

A, funx->e = (AAx.e)

A el = (A,Ax.e) Ace2=>vl Ax:vl e =
v

Aiel e2 = v

Notice
* Creating a closure captures the current environment A

* A call to a function

o evaluates the body of the closure’s code e with function closure’s
environment A’ extended with parameter x bound to argument v1

Left to you: How will the definitional interpreter change?
CMSC330 Spring 2022

Rule for Closures: Dynamic Scoping

A, fun x->e = (*,Ax.e)

A; el = (*,Ax.¢e) A;e2=>vl Ax:vl e =
v

Aiel e2 = v

Notice
* Creating a closure ignores the current environment A

* A call to a function

0 evaluates the body of the closure’s code e with the current environment A
extended with parameter x bound to argument v1

Easy to see dynamic scoping was an implementation error!
CMSC330 Spring 2022 40

Quick Look: Type Checking

Inference rules can also be used to specify a program’s
static semantics
* |.e., the rules for type checking
. We won't cover this in depth in this course, but here is a
flavor.

. Types t ::=bool | int
. Judgment - e: t says e has type t

* We define inference rules for this judgment, just as with the
operational semantics

CMSC330 Spring 2022

41

Some Type Checking Rules

. Boolean constants have type bool

- true ! bool - false ! bool
Equality checking has type bool too
* Assuming its target expression has type int

Fe:int

- ~eqg0 e : bool
. Conditionals

Fel:bool Fe2:t Fe3: t

~if el thenelelsee3 : t
CMSC330 Spring 2022

42

Handling Binding

. What about the types of variables?

* Taking inspiration from the environment-style operational
semantics, what could you do?

. Change judgment to be G + e : £ which says e has type t
under type environment G

* G is a map from variables x to types t
o Analogous to map A, but maps vars to types, not values

. What would be the rules for 1et, and variables?

CMSC330 Spring 2022 43

Type Checking with Binding

. Variable lookup analogous to
G(x)=t A(x)=v
GHx:t A:lx=>v
. Let binding

Grel: tl Gx:tlre2: t2
GFlet x = el in e2: t2
analogous to

A el=>vl Ax:vl, e2= v2

A let x = el in e2 = v2
CMSC330 Spring 2022

44

Scaling up

. Operational semantics (and similarly styled typing rules)
can handle full languages

* With records, recursive variant types, objects, first-class
functions, and more

Provides a concise notation for explaining what a
language does. Clearly shows:

* Evaluation order

* Call-by-value vs. call-by-name
 Static scoping vs. dynamic scoping

* ... We may look at more of these later

CMSC330 Spring 2022

45

Scaling up: Lego City

CMSC330 Spring 2022

46

Scaling up: Web Assembly

& webassembly.github.io

Introduction

Structure
Validation
Execution
Binary Format
Text Format
Appendix

Index of Types
Index of Instructions
Index of Semantic Rules

CMSC330 Spring 2022

WebAssembly Specification

Release 1.1 (Draft, Mar 12, 2021)
Editor: Andreas Rossberg

Latest Draft: https://webassembly.github.io/spec/core/
Issue Tracker: https://github.com/webassembly/spec/issues/

¢ Introduction

o Introduction
o QOverview

e Structure

Conventions
Values
Types
Instructions
Modules

© 0 0 o

o]

e Validation

a (OCnnuantinne

47

Scaling up: Web Assembly

& webassembly.github.io

Introduction

Structure
Validation
Execution

= Conventions

= Runtime Structure
= Numerics

= Instructions

= Modules

Binary Format

Tavt Farmat

CMSC330 Spring 2022

Formal Notation

Note:

This section gives a brief explanation of the notation for specifying execution formally. For the interested reader, a more

The formal execution rules use a standard approach for specifying operational semantics, rendering them into
reduction rules. Every rule has the following general form:

configuration < configuration

A configuration is a syntactic description of a program state. Each rule specifies one step of execution. As long as
there is at most one reduction rule applicable to a given configuration, reduction — and thereby execution — is
deterministic. WebAssembly has only very few exceptions to this, which are noted explicitly in this specification.

For WebAssembly, a configuration typically is a tuple (.S; F; instr*) consisting of the current store S, the call frame F
of the current function, and the sequence of instructions that is to be executed. (A more precise definition is given
later.)

To avoid unnecessary clutter, the store .S and the frame F are omitted from reduction rules that do not touch them.

48

