
CMSC 330: Organization of
Programming Languages

Lambda Calculus

1CMSC 330 Spring 2021

100 years ago

• Albert Einstein proposed
special theory of relativity in
1905
∙ In the paper On the

Electrodynamics of Moving
Bodies

2CMSC 330 Spring 2021

Prioritätsstreit, “priority dispute”

3

General Theory of Relativity

• Einstein's field equations
presented in Berlin: Nov 25, 1915

• Published: Dec 2,1915

CMSC 330 Spring 2021

Prioritätsstreit, “priority dispute”

General Theory of Relativity

• Einstein's field equations
presented in Berlin: Nov 25, 1915

• Published: Dec 2,1915

4

• David Hilbert's equations
presented in Gottingen:
Nov 20, 1915

• Published: March 6, 1916

CMSC 330 Spring 2021

Entscheidungsproblem “decision problem”

5

Is there an algorithm to determine if a
statement is true in all models of a theory?

CMSC 330 Spring 2021

Entscheidungsproblem “decision problem“

6CMSC 330 Spring 2021

Turing Machine

7CMSC 330 Spring 2021

8

Turing Completeness

• Turing machines are the most powerful
description of computation possible
∙ They define the Turing-computable functions

• A programming language is Turing complete if
∙ It can map every Turing machine to a program
∙ A program can be written to emulate a Turing machine
∙ It is a superset of a known Turing-complete language

• Most powerful programming language possible
∙ Since Turing machine is most powerful automaton

CMSC 330 Spring 2021

9

Programming Language Expressiveness

• So what language features are needed to express
all computable functions?
∙ What’s a minimal language that is Turing Complete?

• Observe: some features exist just for convenience
∙ Multi-argument functions foo (a, b, c)

� Use currying or tuples

∙ Loops while (a < b) …
� Use recursion

∙ Side effects a := 1
� Use functional programming pass “heap” as an argument to

each function, return it when with function’s result:
 effectful : ‘a → ‘s → (‘s * ‘a)

CMSC 330 Spring 2021

10

Programming Language Expressiveness

• It is not difficult to achieve Turing Completeness
∙ Lots of things are ‘accidentally’ TC

• Some fun examples:
∙ x86_64 `mov` instruction
∙ Minecraft
∙ Magic: The Gathering
∙ Java Generics

• There’s a whole cottage industry of proving things
to be TC

• But: What is a “core” language that is TC?
CMSC 330 Spring 2021

11

Lambda Calculus (λ-calculus)

• Proposed in 1930s by
∙ Alonzo Church
 (born in Washingon DC!)

• Formal system
∙ Designed to investigate functions & recursion
∙ For exploration of foundations of mathematics

• Now used as
∙ Tool for investigating computability
∙ Basis of functional programming languages

� Lisp, Scheme, ML, OCaml, Haskell…

CMSC 330 Spring 2021

12

Why Study Lambda Calculus?
• It is a “core” language
∙ Very small but still Turing complete

• But with it can explore general ideas
∙ Language features, semantics, proof systems,

algorithms, …
• Plus, higher-order, anonymous functions (aka

lambdas) are now very popular!
∙ C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, Python,
Ruby (Procs), … (and functional languages like
OCaml, Haskell, F#, …)
∙ Excel, as of 2021!

CMSC 330 Spring 2021

13

Lambda Calculus Syntax

• A lambda calculus expression is defined as
e ::= x variable
 | λx.e abstraction (fun def)
 | e e application (fun call)

� This grammar describes ASTs; not for parsing - ambiguous!
� Lambda expressions also known as lambda terms

∙ λx.e is like (fun x -> e) in OCaml
That’s it! Nothing but higher-order functions

CMSC 330 Spring 2021

14

Lambda Calculus Syntax Ambiguity

• How is parsing ambiguous?
• Let’s try: λx.x x

CMSC 330 Spring 2021

E → V | L | A
L → λV.E
A → E E
V → v | ε

L

λ A.

V

V

V V

x x x

15

Lambda Calculus Syntax Ambiguity

CMSC 330 Spring 2021

E → V | L | A
L → λV.E
A → E E
V → v | ε

A

V

x

L

λ V.V

x x

• How is parsing ambiguous?
• Let’s try: λx.x x

16

Lambda Calculus Syntax

• While this means that our grammar is not so
useful for parsing, it is still useful for write LC
terms if we follow some conventions

• Almost all literature you will find uses two
syntactic conventions

• We add a third convention that is very common
‘syntactic sugar’ for ease of reading larger LC
terms

CMSC 330 Spring 2021

17

Disambiguating: Three Conventions

• Scope of λ extends as far right as possible
∙ Subject to scope delimited by parentheses
∙ λx. λy.x y is same as λx.(λy.(x y))

• Function application is left-associative
∙ x y z is (x y) z
∙ Same rule as OCaml

• As a convenience, we use the following “syntactic
sugar” for local declarations
∙ let x = e1 in e2 is short for (λx.e2) e1

CMSC 330 Spring 2021

18

Warmup Quiz

• Revisiting λx.x x considering our conventions
• Which parse tree is it?

CMSC 330 Spring 2021

E → V | L | A
L → λV.E
A → E E
V → v | ε

L

λ A.

V

V

V V

x x x

A

V

x

L

λ V.V

x x

19

Warmup Quiz

• Revisiting λx.x x considering our conventions
• Which parse tree is it?

CMSC 330 Spring 2021

E → V | L | A
L → λV.E
A → E E
V → v | ε

L

λ A.

V

V

V V

x x x

A

V

x

L

λ V.V

x x

Quiz #1

20

A. True
B. False

CMSC 330 Spring 2021

λx.(y z) and λx.y z are equivalent

Quiz #1

λx.(y z) and λx.y z are equivalent

21

A. True
B. False

CMSC 330 Spring 2021

Quiz #2

This term is equivalent to which of
the following?

λx.x a b

22

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

CMSC 330 Spring 2021

Quiz #2

This term is equivalent to which of
the following?

λx.x a b

23

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

CMSC 330 Spring 2021

24

But what does it mean?

• Many ways to define the semantics of LC
• We will look at two

− Operational Semantics
− Definitional Interpreter

CMSC 330 Spring 2021

25

Lambda Calculus Semantics
• Evaluation: All that’s involved are function calls

(λx.e1) e2
∙ Evaluate e1 with x replaced by e2

• This application is called beta-reduction
∙ (λx.e1) e2 → e1[x:=e2]

� e1[x:=e2] is e1 with occurrences of x replaced by e2
� This operation is called substitution

∙ Replace formals with actuals
∙ Instead of using environment to map formals to actuals

∙ We allow reductions to occur anywhere in a term
� Order reductions are applied does not affect final value!

• When a term cannot be reduced further it is in
beta normal form

CMSC 330 Spring 2021

26

Beta Reduction Example

• (λx.λz.x z) y
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
// where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

• Equivalent OCaml code
∙ (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters
∙ Formal
∙ Actual

CMSC 330 Spring 2021

27

Big-Step Operational Semantics
• Beta reduction says how to evaluate a single call

• It doesn’t say how to evaluate a term with many
function calls in it

• We can use operational semantics to “fully
evaluate” a term in one “big step”

CMSC 330 Spring 2021

(λx.e1) ⇓ (λx.e1)

e1 ⇓ (λx.e3) e2 ⇓ e4 e3[x:=e4] ⇓ e5
e1 e2 ⇓ e5

Beta reduction, here

28

Two Varieties

• There are two common variants of big-step
semantics

● Eager evaluation (aka strict, or call by value)
● Lazy evaluation (aka call by name)

CMSC 330 Spring 2021

29

Eager

• Notice that we evaluated the argument e2 before
performing the beta-reduction
• This is the first version we saw

• Hence, eager

CMSC 330 Spring 2021

(λx.e1) ⇓ (λx.e1)

e1 ⇓ (λx.e3) e2 ⇓ e4 e3[x:=e4] ⇓ e5
e1 e2 ⇓ e5

30

Lazy

• Alternatively, we could have performed beta
reduction without evaluating e2; use it as is

● Hence, lazy

CMSC 330 Spring 2021

(λx.e1) ⇓ (λx.e1)

e1 ⇓ (λx.e3) e3[x:=e2] ⇓ e4
e1 e2 ⇓ e4

31

Small Step Semantics

• Operational semantics rules we have seen have
always been ”big step”, i.e., complete evaluation
• e ⇓ e’ says that e will terminate as e’

• This is a little unsatisfying
• It doesn’t account for nontermination
• It doesn’t identify where a program fails to progress

• Small-step semantics addresses these problems
• e → e’ in small-step says e takes one step to e’
• We say a term e1 can be beta-reduced to term e2 if e1

steps to e2 after one or more steps

CMSC 330 Spring 2021

32

Small-Step Rules of LC

• Here are the “small-step” (→) rules:

CMSC 330 Spring 2021

e2 → e3
e1 e2 → e1 e3

(λx.e1) e2 → e1[x:=e2]

e1 → e3
e1 e2 → e3 e2

e1 → e2
(λx.e1) → (λx.e2)

33

Evaluation Strategies

• These rules are highly flexible
• It might be that for a given program, there are several

possible rules that could apply
• Typically, a programming language will choose an

evaluation strategy which is described by using
only a subset of these rules. Examples:
• Call by Value
• Call by Need
• Partial Evaluation

CMSC 330 Spring 2021

34

Call by Value

• Before doing a beta reduction, we make sure the
argument cannot, itself, be further evaluated

• This is known as call-by-value (CBV)
• This is the Eager big step approach

CMSC 330 Spring 2021

e2 → e3
e1 e2 → e1 e3

e = (λx.e2) or e = y
(λx.e1) e → e1[x:=e]

e1 → e3
e1 e2 → e3 e2

35

Beta Reductions (CBV)

• (λx.x) z →

• (λx.y) z →

• (λx.x y) z →
∙ A function that applies its argument to y

z

y

z y

CMSC 330 Spring 2021

36

Beta Reductions (CBV)

• (λx.x y) (λz.z) →

• (λx.λy.x y) z →
∙ A curried function of two arguments
∙ Applies its first argument to its second

• (λx.λy.x y) (λz.zz) x →

 (λz.z) y → y

λy.z y

 (λy.(λz.zz)y)x → (λz.zz)x →x x

CMSC 330 Spring 2021

Quiz #3

(λx.y) z can be beta-reduced to

37

A. y
B. y z
C.z
D. cannot be reduced

CMSC 330 Spring 2021

Quiz #3

(λx.y) z can be beta-reduced to

38

A. y
B. y z
C.z
D. cannot be reduced

CMSC 330 Spring 2021

Quiz #4

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

39CMSC 330 Spring 2021

Quiz #4

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

40CMSC 330 Spring 2021

41

Evaluation Order

• The CBV rules we saw permit small-stepping
either the function part or the argument part
• If both are possible, the rules allow either one

• Here’s how we would require left-to-right order

• The second rule prohibits evaluating e2 except when
e1 cannot be evaluated further

CMSC 330 Spring 2021

e2 → e3
e1 e2 → e1 e3

e1 → e3
e1 e2 → e3 e2

e1 = y or e1 = λx.e
e2 → e3

e1 e2 → e1 e3

e1 → e3
e1 e2 → e3 e2

42

Call by Name

• Instead of the CBV strategy, we can specifically
choose to perform beta-reduction before we
evaluate the argument

• This is known as call-by-name (CBN)
• This is the Lazy small-step approach

CMSC 330 Spring 2021

e1 → e3
e1 e2 → e3 e2

(λx.e1) e2 → e1[x:=e2]

CBN Reduction

• CBV
∙ (λz.z) ((λy.y) x) → (λz.z) x → x

• CBN
∙ (λz.z) ((λy.y) x) → (λy.y) x → x

43CMSC 330 Spring 2021

Beta Reductions (CBN)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) →

44CMSC 330 Spring 2021

Beta Reductions (CBN)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)

45CMSC 330 Spring 2021

46

Why Does This Matter?

• The rules we just showed are very common for
programming languages based on LC
• CBV is the most common (e.g. OCaml, Java)
• CBN does come up (Haskell uses a variant known as

“call-by-need”) but is much less common
• Interestingly: more programs terminated under

call-by-name. Can you think of why?
● Consider: (λx.e2) e1,
● What if e1 would never terminate, but e2 would?

CMSC 330 Spring 2021

47

Evaluating Within a Function

• Our original rules had evaluation under the lambda
• Where does this help us?

CMSC 330 Spring 2021

e2 → e3
e1 e2 → e1 e3

(λx.e1) e2 → e1[x:=e2]

e1 → e3
e1 e2 → e3 e2

e1 → e2
(λx.e1) → (λx.e2)

Partial Evaluation

• That rule is useful when you have a
beta-reduction under a lambda:
∙ (λy.(λz.z) y x)

• Called partial evaluation
∙ Can combine with CBN or CBV (just add in the rule)
∙ In practical languages, this evaluation strategy is

employed in a limited way, as compiler optimization

48

→ (λy.y x)

int foo(int x) {
 return 0+x;
}

int foo(int x) {
 return x;
}

→

CMSC 330 Spring 2021

49

Static Scoping & Alpha Conversion

• Lambda calculus uses static scoping

• Consider the following
∙ (λx.x (λx.x)) z → ?

� The rightmost “x” refers to the second binding

∙ This is a function that
� Takes its argument and applies it to the identity function

• This function is “the same” as (λx.x (λy.y))
∙ Renaming bound variables consistently preserves meaning

� This is called alpha-renaming or alpha conversion

∙ Ex. λx.x = λy.y = λz.z λy.λx.y = λz.λx.z
CMSC 330 Spring 2021

Quiz #5
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

50CMSC 330 Spring 2021

Quiz #5
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

51CMSC 330 Spring 2021

52

Getting Serious about Substitution

• We have been thinking informally about
substitution, but the details matter

• So, let’s carefully formalize it, to help us see
where it can get tricky!

CMSC 330 Spring 2021

Defining Substitution
• Use recursion on structure of terms
∙ x[x:=e] = e // Replace x by e
∙ y[x:=e] = y // y is different than x, so no effect
∙ (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])

// Substitute both parts of application
∙ (λx.e’)[x:=e] = λx.e’

� In λx.e’, the x is a parameter, and thus a local variable that is
different from other x’s. Implements static scoping.

� So the substitution has no effect in this case, since the x being
substituted for is different from the parameter x that is in e’

∙ (λy.e’)[x:=e] = ?
� The parameter y does not share the same name as x, the

variable being substituted for
� Is λy.(e’[x:=e]) correct? No…

53CMSC 330 Spring 2021

54

Variable Capture
• How about the following?
∙ (λx.λy.x y) y → ?
∙ When we replace y inside, we don’t want it to be

captured by the inner binding of y, as this violates
static scoping
∙ I.e., (λx.λy.x y) y ≠ λy.y y

• Solution
∙ (λx.λy.x y) is “the same” as (λx.λz.x z)

� Due to alpha conversion
∙ So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first

� Now (λx.λz.x z) y → λz.y z

CMSC 330 Spring 2021

Completing the Definition of Substitution

• Recall: we need to define (λy.e’)[x:=e]
∙ We want to avoid capturing (free) occurrences of y in e
∙ Solution: alpha-conversion!

� Change y to a variable w that does not appear in e’ or e
(Such a w is called fresh)

� Replace all occurrences of y in e’ by w.
� Then replace all occurrences of x in e’ by e!

• Formally:
(λy.e’)[x:=e] = λw.((e’ [y:=w]) [x:=e]) (w is fresh)

55CMSC 330 Spring 2021

56

Beta-Reduction, Again

• Whenever we do a step of beta reduction
∙ (λx.e1) e2 → e1[x:=e2]
∙ We must alpha-convert variables as necessary
∙ Sometimes performed implicitly (w/o showing

conversion)

• Examples
∙ (λx.λy.x y) y = (λx.λz.x z) y → λz.y z // y → z
∙ (λx.x (λx.x)) z = (λy.y (λx.x)) z → z (λx.x) // x → y

CMSC 330 Spring 2021

Quiz #6

Beta-reducing the following term produces what
result?

 (λx.x λy.y x) y

57

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

CMSC 330 Spring 2021

Quiz #6

Beta-reducing the following term produces what
result?

 (λx.x λy.y x) y

58

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

CMSC 330 Spring 2021

Quiz #7
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

59CMSC 330 Spring 2021

Quiz #7
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

60CMSC 330 Spring 2021

61

Lambda Calc, Impl in OCaml

• e ::= x
 | λx.e
 | e e

y
λx.x
λx.λy.x y
(λx.λy.x y) λx.x x

 type id = string
 type exp = Var of id
 | Lam of id * exp
 | App of exp * exp

Var “y”

Lam (“x”, Var “x”)

Lam (“x”,(Lam(“y”,App (Var “x”, Var “y”))))
 App
 (Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))),
 Lam (“x”, App (Var “x”, Var “x”)))

CMSC 330 Spring 2021

Quiz #8

What is this term’s AST?

λx.x x

62

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =
 Var of id
 | Lam of id * exp
 | App of exp * exp

CMSC 330 Spring 2021

Quiz #8

What is this term’s AST?

λx.x x

63

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =
 Var of id
 | Lam of id * exp
 | App of exp * exp

CMSC 330 Spring 2021

OCaml Implementation: Substitution
(* substitute e for y in m-- *)
let rec subst m y e =
 match m with
 | Var x ->
 if y = x then e (* substitute *)

 else m (* don’t subst *)
 | App (e1,e2) ->
 App (subst e1 y e, subst e2 y e)
 | Lam (x,e0) -> …

64

m[y:=e]

CMSC 330 Spring 2021

OCaml Impl: Substitution (cont’d)
(* substitute e for y in m-- *)
let rec subst m y e = match m with …
 | Lam (x,e0) ->
 if y = x then m
 else if not (List.mem x (fvs e)) then
 Lam (x, subst e0 y e)
 else

 let z = newvar() in (* fresh *)
 let e0' = subst e0 x (Var z) in
 Lam (z,subst e0' y e)

65

Shadowing blocks
substitution

Safe: no capture possible
Might capture; need to α-convert

CMSC 330 Spring 2021

m[y:=e]

CBV, L-to-R Reduction with Partial Eval
let rec reduce e =
 match e with
 | App (Lam (x,e), e2) -> subst e x e2
 | App (e1,e2) ->
 let e1' = reduce e1 in
 if e1' != e1 then App(e1',e2)
 else App (e1,reduce e2)
 | Lam (x,e) -> Lam (x, reduce e)
 | _ -> e

66

Straight β rule

Reduce lhs of app

Reduce rhs of app

nothing to do

Reduce function body

CMSC 330 Spring 2021

67

Another Way to Avoid Capture
• Another way to avoid accidental variable

capture is to use the “Barendregt Convention”:
gives everything ‘fresh’ names.

● If every name is unique, no chance of variable
capture

● Simple, but not great for performance as you
have to do it after every beta-reduction!

CMSC 330 Spring 2021

Quick Recap on LC

• Despite its simplicity (3 AST nodes and a handful of
small-step rules), LC is Turing Complete

• Any function that can be evaluated on a Turing
machine can be encoded into LC (and vice-versa)
− But we’ll have to come up with the encodings!

• To prove that it is Turing Complete we have to map
every possible Turing Machine to LC
− We won’t be doing that

68CMSC 330 Spring 2021

69

The Power of Lambdas

• To give a sense of how one can encode various
constructs into LC we’ll be looking at some
concrete examples:
∙ Let bindings
∙ Booleans
∙ Pairs
∙ Natural numbers & arithmetic
∙ Looping

CMSC 330 Spring 2021

Let bindings

• Local variable declarations are like defining a
function and applying it immediately (once):
∙ let x = e1 in e2 = (λx.e2) e1

• Example
∙ let x = (λy.y) in x x = (λx.x x) (λy.y)

where
(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y)

70CMSC 330 Spring 2021

71

Booleans

• Church’s encoding of mathematical logic
∙ true = λx.λy.x
∙ false = λx.λy.y
∙ if a then b else c

� Defined to be the expression: a b c

• Examples
∙ if true then b else c = (λx.λy.x) b c → (λy.b) c → b
∙ if false then b else c = (λx.λy.y) b c → (λy.y) c → c

CMSC 330 Spring 2021

72

Booleans (cont.)

• Other Boolean operations
∙ not = λx.x false true

� not x = x false true = if x then false else true
� not true → (λx.x false true) true → (true false true) → false

∙ and = λx.λy.x y false
� and x y = if x then y else false

∙ or = λx.λy.x true y
� or x y = if x then true else y

• Given these operations
∙ Can build up a logical inference system

CMSC 330 Spring 2021

Quiz #9

What is the lambda calculus encoding of xor x y?
• xor true true = xor false false = false
• xor true false = xor false true = true

• x x y
• x (y true false) y
• x (y false true) y
• y x y

73

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true

CMSC 330 Spring 2021

Quiz #9

What is the lambda calculus encoding of xor x y?
• xor true true = xor false false = false
• xor true false = xor false true = true

• x x y
• x (y true false) y
• x (y false true) y
• y x y

74

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true

CMSC 330 Spring 2021

75

Pairs
• Encoding of a pair a, b
∙ (a,b) = λx.if x then a else b
∙ fst = λf.f true
∙ snd = λf.f false

• Examples
∙ fst (a,b) = (λf.f true) (λx.if x then a else b) →
 (λx.if x then a else b) true →
 if true then a else b → a
∙ snd (a,b) = (λf.f false) (λx.if x then a else b) →
 (λx.if x then a else b) false →
 if false then a else b → b

CMSC 330 Spring 2021

76

Natural Numbers (Church* Numerals)

• Encoding of non-negative integers
∙ 0 = λf.λy.y
∙ 1 = λf.λy.f y
∙ 2 = λf.λy.f (f y)
∙ 3 = λf.λy.f (f (f y))

i.e., n = λf.λy.<apply f n times to y>
∙ Formally: n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)

CMSC 330 Spring 2021

Quiz #10

What OCaml type could you give to a
Church-encoded numeral?

• (’a -> ‘b) -> ‘a -> ‘b
• (‘a -> ‘a) -> ‘a -> ‘a
• (‘a -> ‘a) -> ‘b -> int
• (int -> int) -> int -> int

77

n = λf.λy.<apply f n times to y>

CMSC 330 Spring 2021

Quiz #10

What OCaml type could you give to a
Church-encoded numeral?

• (’a -> ‘b) -> ‘a -> ‘b
• (‘a -> ‘a) -> ‘a -> ‘a
• (‘a -> ‘a) -> ‘b -> int
• (int -> int) -> int -> int

78

n = λf.λy.<apply f n times to y>

CMSC 330 Spring 2021

79

Operations On Church Numerals

• Successor
∙ succ = λz.λf.λy.f (z f y)

• Example
∙ succ 0 =

(λz.λf.λy.f (z f y)) (λf.λy.y) →
λf.λy.f ((λf.λy.y) f y) →
λf.λy.f ((λy.y) y) →
λf.λy.f y

 = 1

Since (λx.y) z → y

∙ 0 = λf.λy.y
∙ 1 = λf.λy.f y

CMSC 330 Spring 2021

80

Operations On Church Numerals (cont.)

• IsZero?
∙ iszero = λz.z (λy.false) true

This is equivalent to λz.((z (λy.false)) true)

• Example
∙ iszero 0 =

(λz.z (λy.false) true) (λf.λy.y) →
(λf.λy.y) (λy.false) true →
(λy.y) true →
true

∙ 0 = λf.λy.y

Since (λx.y) z → y

CMSC 330 Spring 2021

81

Arithmetic Using Church Numerals

• If M and N are numbers (as λ expressions)
∙ Can also encode various arithmetic operations

• Addition
∙ M + N = λf.λy.M f (N f y)

Equivalently: + = λM.λN.λf.λy.M f (N f y)
� In prefix notation (+ M N)

• Multiplication
∙ M * N = λf.M (N f)

Equivalently: * = λM.λN.λf.λy.M (N f) y
� In prefix notation (* M N)

CMSC 330 Spring 2021

82

Arithmetic (cont.)

• Prove 1+1 = 2
∙ 1+1 = λx.λy.(1 x) (1 x y) =
∙ λx.λy.((λf.λy.f y) x) (1 x y) →
∙ λx.λy.(λy.x y) (1 x y) →
∙ λx.λy.x (1 x y) →
∙ λx.λy.x ((λf.λy.f y) x y) →
∙ λx.λy.x ((λy.x y) y) →
∙ λx.λy.x (x y) = 2

• With these definitions
∙ Can build a theory of arithmetic

∙ 1 = λf.λy.f y
∙ 2 = λf.λy.f (f y)

CMSC 330 Spring 2021

83

Arithmetic Using Church Numerals

• What about subtraction?
∙ Easy once you have ‘predecessor’, but...
∙ Predecessor is very difficult!

• Story time:
∙ One of Church’s students, Kleene (of Kleene-star

fame) was struggling to think of how to encode
‘predecessor’, until it came to him during a trip to the
dentists office.
∙ Take from this what you will

• Wikipedia has a great derivation of
‘predecessor’, not enough time today.

CMSC 330 Spring 2021

84

Looping+Recursion

• So far we have avoided self-reference, so how
does recursion work?

• We can construct a lambda term that ‘replicates’
itself:

∙ Define D = λx.x x, then
● D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D

∙ D D is an infinite loop
• We want to generalize this, so that we can make

use of looping

CMSC 330 Spring 2021

85

The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))
• Then

Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)

• Y F is a fixed point (aka fixpoint) of F
• Thus Y F = F (Y F) = F (F (Y F)) = ...
∙ We can use Y to achieve recursion for F

CMSC 330 Spring 2021

86

Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))
∙ The second argument to fact is the integer
∙ The first argument is the function to call in the body

� We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
 → if 1 = 0 then 1 else 1 * ((Y fact) 0)
 → 1 * ((Y fact) 0)
 = 1 * (fact (Y fact) 0)
 → 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))
 → 1 * 1 → 1
CMSC 330 Spring 2021

Factorial 4=?

CMSC 330 Spring 2021 87

(Y G) 4
 G (Y G) 4
(λr.λn.(if n = 0 then 1 else n × (r (n−1)))) (Y G) 4
(λn.(if n = 0 then 1 else n × ((Y G) (n−1)))) 4
if 4 = 0 then 1 else 4 × ((Y G) (4−1))
4 × (G (Y G) (4−1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))
4 × (3 × (G (Y G) (3−1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))
4 × (3 × (2 × (G (Y G) (2−1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))
4 × (3 × (2 × (1 × (G (Y G) (1−1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))
4 × (3 × (2 × (1 × (1))))
24

88

Discussion
• Lambda calculus is Turing-complete
∙ Most powerful language possible
∙ Can represent pretty much anything in “real” language

� Using clever encodings

• But programs would be
∙ Pretty slow (10000 + 1 → thousands of function calls)
∙ Pretty large (10000 + 1 → hundreds of lines of code)
∙ Pretty hard to understand (recognize 10000 vs. 9999)

• In practice
∙ We use richer, more expressive languages
∙ That include built-in primitives

CMSC 330 Spring 2021

89

The Need For Types
• Consider the untyped lambda calculus
∙ false = λx.λy.y
∙ 0 = λx.λy.y

• Since everything is encoded as a function...
∙ We can easily misuse terms…

� false 0 → λy.y
� if 0 then ...

…because everything evaluates to some function
• The same thing happens in assembly language
∙ Everything is a machine word (a bunch of bits)
∙ All operations take machine words to machine words

CMSC 330 Spring 2021

90

Simply-Typed Lambda Calculus (STLC)

• e ::= n | x | λx:t.e | e e
∙ Added integers n as primitives

� Need at least two distinct types (integer & function)…
� …to have type errors

∙ Functions now include the type t of their argument

• t ::= int | t → t
∙ int is the type of integers
∙ t1 → t2 is the type of a function

� That takes arguments of type t1 and returns result of type t2

CMSC 330 Spring 2021

Types are limiting

• STLC will reject some terms as ill-typed, even if
they will not produce a run-time error
∙ Cannot type check Y in STLC

� Or in OCaml, for that matter, at least not as written earlier.

• Surprising theorem: All (well typed) simply-typed
lambda calculus terms are strongly normalizing
∙ A normal form is one that cannot be reduced further

� A value is a kind of normal form

∙ Strong normalization means STLC terms always
terminate
� Proof is not by straightforward induction: Applications

“increase” term size
91CMSC 330 Spring 2021

92

Summary

• Lambda calculus is a core model of computation
∙ We can encode familiar language constructs using

only functions
� These encodings are enlightening – make you a better

(functional) programmer

• Useful for understanding how languages work
∙ Ideas of types, evaluation order, termination, proof

systems, etc. can be developed in lambda calculus,
� then scaled to full languages

CMSC 330 Spring 2021

