
CMSC 330:  Organization of 
Programming Languages

Lambda Calculus
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100 years ago

• Albert Einstein proposed 
special theory of relativity in 
1905
∙ In the paper On the 

Electrodynamics of Moving 
Bodies
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Prioritätsstreit, “priority dispute”
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General Theory of Relativity

• Einstein's field equations 
presented in Berlin: Nov 25, 1915

• Published: Dec 2,1915

CMSC 330 Spring 2021



Prioritätsstreit, “priority dispute”

General Theory of Relativity

• Einstein's field equations 
presented in Berlin: Nov 25, 1915

• Published: Dec 2,1915
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• David Hilbert's equations 
presented in Gottingen:         
Nov 20, 1915

• Published: March 6, 1916
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Entscheidungsproblem “decision problem”
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Is there an algorithm to determine if a 
statement is true in all models of a theory?
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Entscheidungsproblem “decision problem“
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Turing Machine
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Turing Completeness

• Turing machines are the most powerful 
description of computation possible
∙ They define the Turing-computable functions

• A programming language is Turing complete if
∙ It can map every Turing machine to a program
∙ A program can be written to emulate a Turing machine
∙ It is a superset of a known Turing-complete language

• Most powerful programming language possible
∙ Since Turing machine is most powerful automaton
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Programming Language Expressiveness

• So what language features are needed to express 
all computable functions?
∙ What’s a minimal language that is Turing Complete?

• Observe: some features exist just for convenience
∙ Multi-argument functions foo ( a, b, c )

� Use currying or tuples

∙ Loops while (a < b) …
� Use recursion

∙ Side effects a := 1
� Use functional programming pass “heap” as an argument to 

each function, return it when with function’s result:
        effectful : ‘a → ‘s → (‘s * ‘a)
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Programming Language Expressiveness

• It is not difficult to achieve Turing Completeness
∙ Lots of things are ‘accidentally’ TC

• Some fun examples:
∙ x86_64 `mov` instruction
∙ Minecraft
∙ Magic: The Gathering
∙ Java Generics

• There’s a whole cottage industry of proving things 
to be TC

• But: What is a “core” language that is TC?
CMSC 330 Spring 2021
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Lambda Calculus (λ-calculus)

• Proposed in 1930s by
∙ Alonzo Church 
   (born in Washingon DC!)

• Formal system
∙ Designed to investigate functions & recursion
∙ For exploration of foundations of mathematics

• Now used as
∙ Tool for investigating computability
∙ Basis of functional programming languages

� Lisp, Scheme, ML, OCaml, Haskell…
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Why Study Lambda Calculus?
• It is a “core” language 
∙ Very small but still Turing complete

• But with it can explore general ideas
∙ Language features, semantics, proof systems, 

algorithms, …
• Plus, higher-order, anonymous functions (aka 

lambdas) are now very popular!
∙ C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi 

(since 2009), Objective C, Java 8, Swift, Python, 
Ruby (Procs), … (and functional languages like 
OCaml, Haskell, F#, …)
∙ Excel, as of 2021!
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Lambda Calculus Syntax

• A lambda calculus expression is defined as
e ::= x variable
     |  λx.e abstraction (fun def)
     |  e e application (fun call)

� This grammar describes ASTs; not for parsing - ambiguous!
� Lambda expressions also known as lambda terms

∙ λx.e is like (fun x -> e) in OCaml
That’s it!  Nothing but higher-order functions
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Lambda Calculus Syntax Ambiguity

• How is parsing ambiguous?
• Let’s try: λx.x x
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E → V | L | A
L → λV.E
A → E E
V → v | ε

L

λ A.

V

V

V V

x x x
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Lambda Calculus Syntax Ambiguity
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E → V | L | A
L → λV.E
A → E E
V → v | ε

A

V

x

L

λ V.V

x x

• How is parsing ambiguous?
• Let’s try: λx.x x
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Lambda Calculus Syntax

• While this means that our grammar is not so 
useful for parsing, it is still useful for write LC 
terms if we follow some conventions

• Almost all literature you will find uses two 
syntactic conventions

• We add a third convention that is very common 
‘syntactic sugar’ for ease of reading larger LC 
terms
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Disambiguating: Three Conventions

• Scope of λ extends as far right as possible
∙ Subject to scope delimited by parentheses
∙ λx. λy.x y is same as λx.(λy.(x y))

• Function application is left-associative
∙ x y z is (x y) z
∙ Same rule as OCaml

• As a convenience, we use the following “syntactic 
sugar” for local declarations
∙ let x = e1 in e2 is short for (λx.e2) e1
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Warmup Quiz

• Revisiting λx.x x considering our conventions
• Which parse tree is it?
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E → V | L | A
L → λV.E
A → E E
V → v | ε

L

λ A.

V

V

V V

x x x

A

V
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λ V.V

x x
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Warmup Quiz

• Revisiting λx.x x considering our conventions
• Which parse tree is it?
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E → V | L | A
L → λV.E
A → E E
V → v | ε

L

λ A.

V

V

V V

x x x

A

V

x

L

λ V.V
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Quiz #1
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A. True
B. False
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λx.(y z) and λx.y z are equivalent



Quiz #1

λx.(y z) and λx.y z are equivalent
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A. True
B. False
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Quiz #2

This term is equivalent to which of 
the following? 

λx.x a b
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A. (λx.x) (a b)
B. (((λx.x) a) b)
C.  λx.(x (a b))
D. (λx.((x a) b))
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Quiz #2

This term is equivalent to which of 
the following? 

λx.x a b
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A. (λx.x) (a b)
B. (((λx.x) a) b)
C.  λx.(x (a b))
D. (λx.((x a) b))
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But what does it mean?

• Many ways to define the semantics of LC
• We will look at two

− Operational Semantics
− Definitional Interpreter
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Lambda Calculus Semantics
• Evaluation: All that’s involved are function calls 

(λx.e1) e2
∙ Evaluate e1 with x replaced by e2

• This application is called beta-reduction
∙ (λx.e1) e2 → e1[x:=e2]

� e1[x:=e2] is e1 with occurrences of x replaced by e2
� This operation is called substitution

∙ Replace formals with actuals
∙ Instead of using environment to map formals to actuals

∙ We allow reductions to occur anywhere in a term
� Order reductions are applied does not affect final value!

• When a term cannot be reduced further it is in 
beta normal form
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Beta Reduction Example

• (λx.λz.x z) y 
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
// where e1 = λz.(x z), e2 = y

→ λz.(y z)  // final result

• Equivalent OCaml code
∙ (fun x -> (fun z -> (x z))) y   →   fun z -> (y z)

Parameters
∙ Formal
∙ Actual
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Big-Step Operational Semantics
• Beta reduction says how to evaluate a single call 

• It doesn’t say how to evaluate a term with many 
function calls in it

• We can use operational semantics to “fully 
evaluate” a term in one “big step”
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(λx.e1) ⇓ (λx.e1)

e1 ⇓ (λx.e3)       e2 ⇓ e4      e3[x:=e4] ⇓ e5
e1 e2 ⇓ e5

Beta reduction, here
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Two Varieties

• There are two common variants of big-step 
semantics

● Eager evaluation (aka strict, or call by value)
● Lazy evaluation (aka call by name)
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Eager

• Notice that we evaluated the argument e2 before 
performing the beta-reduction
• This is the first version we saw

• Hence, eager
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(λx.e1) ⇓ (λx.e1)

e1 ⇓ (λx.e3)       e2 ⇓ e4      e3[x:=e4] ⇓ e5
e1 e2 ⇓ e5
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Lazy

• Alternatively, we could have performed beta 
reduction without evaluating e2; use it as is

● Hence, lazy
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(λx.e1) ⇓ (λx.e1)

e1 ⇓ (λx.e3)       e3[x:=e2] ⇓ e4
e1 e2 ⇓ e4
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Small Step Semantics

• Operational semantics rules we have seen have 
always been ”big step”, i.e., complete evaluation
• e ⇓ e’ says that e will terminate as e’ 

• This is a little unsatisfying 
• It doesn’t account for nontermination
• It doesn’t identify where a program fails to progress

• Small-step semantics addresses these problems
• e → e’ in small-step says e takes one step to e’
• We say a term e1 can be beta-reduced to term e2 if e1 

steps to e2 after one or more steps
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Small-Step Rules of LC

• Here are the “small-step” (→) rules:
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e2 → e3
e1 e2 → e1 e3

(λx.e1) e2 → e1[x:=e2]

e1 → e3
e1 e2 → e3 e2

e1 → e2
(λx.e1) → (λx.e2)
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Evaluation Strategies

• These rules are highly flexible
• It might be that for a given program, there are several 

possible rules that could apply
• Typically, a programming language will choose an  

evaluation strategy which is described by using 
only a subset of these rules. Examples:
• Call by Value
• Call by Need
• Partial Evaluation
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Call by Value

• Before doing a beta reduction, we make sure the 
argument cannot, itself, be further evaluated

• This is known as call-by-value (CBV)
• This is the Eager big step approach
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e2 → e3
e1 e2 →  e1 e3

e = (λx.e2) or e = y
(λx.e1) e → e1[x:=e]

e1 → e3
e1 e2 → e3 e2
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Beta Reductions (CBV)

• (λx.x) z →

• (λx.y) z →

• (λx.x y) z →
∙ A function that applies its argument to y

z

y

z y

CMSC 330 Spring 2021
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Beta Reductions (CBV)

• (λx.x y) (λz.z) →

• (λx.λy.x y) z →
∙ A curried function of two arguments 
∙ Applies its first argument to its second

• (λx.λy.x y) (λz.zz) x →

 (λz.z) y → y

λy.z y

 (λy.(λz.zz)y)x → (λz.zz)x →x x

CMSC 330 Spring 2021



Quiz #3

(λx.y) z can be beta-reduced to  

37

A. y
B. y z
C.z
D. cannot be reduced
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Quiz #3

(λx.y) z can be beta-reduced to  

38

A. y
B. y z
C.z
D. cannot be reduced
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Quiz #4

Which of the following reduces to λz. z?

a)    (λy. λz. x) z
b)    (λz. λx. z) y    
c)    (λy. y) (λx. λz. z) w
d)    (λy. λx. z) z (λz. z)
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Quiz #4

Which of the following reduces to λz. z?

a)    (λy. λz. x) z
b)    (λz. λx. z) y    
c)    (λy. y) (λx. λz. z) w
d)    (λy. λx. z) z (λz. z)
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Evaluation Order

• The CBV rules we saw permit small-stepping 
either the function part or the argument part
• If both are possible, the rules allow either one

• Here’s how we would require left-to-right order

• The second rule prohibits evaluating e2 except when 
e1 cannot be evaluated further

CMSC 330 Spring 2021

e2 → e3
e1 e2 →  e1 e3

e1 → e3
e1 e2 → e3 e2

e1 = y   or   e1 = λx.e 
e2 → e3

e1 e2 →  e1 e3

e1 → e3
e1 e2 → e3 e2
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Call by Name

• Instead of the CBV strategy, we can specifically 
choose to perform beta-reduction before we 
evaluate the argument

• This is known as call-by-name (CBN)
• This is the Lazy small-step approach
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e1 → e3
e1 e2 → e3 e2

(λx.e1) e2 → e1[x:=e2]



CBN Reduction

• CBV
∙ (λz.z) ((λy.y) x) → (λz.z) x → x

• CBN
∙ (λz.z) ((λy.y) x) → (λy.y) x → x
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Beta Reductions (CBN)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) → 
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Beta Reductions (CBN)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)
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Why Does This Matter?

• The rules we just showed are very common for 
programming languages based on LC
• CBV is the most common (e.g. OCaml, Java)
• CBN does come up (Haskell uses a variant known as 

“call-by-need”) but is much less common
• Interestingly: more programs terminated under 

call-by-name. Can you think of why?
● Consider: (λx.e2) e1,
● What if e1 would never terminate, but e2 would?

CMSC 330 Spring 2021



47

Evaluating Within a Function

• Our original rules had evaluation under the lambda
• Where does this help us?
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e2 → e3
e1 e2 → e1 e3

(λx.e1) e2 → e1[x:=e2]

e1 → e3
e1 e2 → e3 e2

e1 → e2
(λx.e1) → (λx.e2)



Partial Evaluation

• That rule is useful when you have a 
beta-reduction under a lambda:
∙ (λy.(λz.z) y x)

• Called partial evaluation
∙ Can combine with CBN or CBV (just add in the rule)
∙ In practical languages, this evaluation strategy is 

employed in a limited way, as compiler optimization

48

→ (λy.y x)

int foo(int x) {
  return 0+x;
}

int foo(int x) {
  return x;
}

→

CMSC 330 Spring 2021
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Static Scoping & Alpha Conversion

• Lambda calculus uses static scoping

• Consider the following
∙ (λx.x (λx.x)) z → ?

� The rightmost “x” refers to the second binding

∙ This is a function that 
� Takes its argument and applies it to the identity function

• This function is “the same” as (λx.x (λy.y))
∙ Renaming bound variables consistently preserves meaning

� This is called alpha-renaming or alpha conversion

∙ Ex. λx.x = λy.y = λz.z     λy.λx.y = λz.λx.z
CMSC 330 Spring 2021



Quiz #5
Which of the following expressions is alpha 
equivalent to (alpha-converts from) 

(λx. λy. x y) y

a) λy. y y    
b) λz. y z    
c) (λx. λz. x z) y   
d) (λx. λy. x y) z
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Quiz #5
Which of the following expressions is alpha 
equivalent to (alpha-converts from) 

(λx. λy. x y) y

a) λy. y y    
b) λz. y z    
c) (λx. λz. x z) y   
d) (λx. λy. x y) z
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Getting Serious about Substitution

• We have been thinking informally about 
substitution, but the details matter

• So, let’s carefully formalize it, to help us see 
where it can get tricky!
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Defining Substitution
• Use recursion on structure of terms
∙ x[x:=e] = e // Replace x by e
∙ y[x:=e] = y // y is different than x, so no effect
∙ (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])

// Substitute both parts of application
∙ (λx.e’)[x:=e] = λx.e’

� In λx.e’, the x is a parameter, and thus a local variable that is 
different from other x’s. Implements static scoping.

� So the substitution has no effect in this case, since the x being 
substituted for is different from the parameter x that is in e’

∙ (λy.e’)[x:=e] = ?
� The parameter y does not share the same name as x, the 

variable being substituted for
� Is λy.(e’[x:=e]) correct? No…
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Variable Capture
• How about the following?
∙ (λx.λy.x y) y → ?
∙ When we replace y inside, we don’t want it to be 

captured by the inner binding of y, as this violates 
static scoping
∙ I.e., (λx.λy.x y) y ≠ λy.y y

• Solution
∙ (λx.λy.x y) is “the same” as (λx.λz.x z) 

� Due to alpha conversion
∙ So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first

� Now (λx.λz.x z) y → λz.y z
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Completing the Definition of Substitution

• Recall:  we need to define (λy.e’)[x:=e]
∙ We want to avoid capturing (free) occurrences of y in e
∙ Solution:  alpha-conversion!

� Change y to a variable w that does not appear in e’ or e 
(Such a w is called fresh)

� Replace all occurrences of y in e’ by w.
� Then replace all occurrences of x in e’ by e!

• Formally:
(λy.e’)[x:=e] = λw.((e’ [y:=w]) [x:=e]) (w is fresh)
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Beta-Reduction, Again

• Whenever we do a step of beta reduction
∙ (λx.e1) e2 → e1[x:=e2]
∙ We must alpha-convert variables as necessary
∙ Sometimes performed implicitly (w/o showing 

conversion)

• Examples
∙ (λx.λy.x y) y = (λx.λz.x z) y → λz.y z // y → z
∙ (λx.x (λx.x)) z = (λy.y (λx.x)) z → z (λx.x) // x → y
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Quiz #6

Beta-reducing the following term produces what 
result?

 (λx.x λy.y x) y

57

A.   y (λz.z y) 
B.   z (λy.y z) 
C.   y (λy.y y) 
D.   y y
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Quiz #6

Beta-reducing the following term produces what 
result?

 (λx.x λy.y x) y

58

A.   y (λz.z y) 
B.   z (λy.y z) 
C.   y (λy.y y) 
D.   y y
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Quiz #7
Beta reducing the following term produces what 
result?

λx.(λy. y y) w z

a) λx. w w z    
b) λx. w z    
c) w z       
d) Does not reduce
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Quiz #7
Beta reducing the following term produces what 
result?

λx.(λy. y y) w z

a) λx. w w z    
b) λx. w z    
c) w z    
d) Does not reduce
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Lambda Calc, Impl in OCaml

• e ::= x
     |  λx.e
     |  e e

y
λx.x
λx.λy.x y
(λx.λy.x y) λx.x x

    type id = string
    type exp = Var of id
    | Lam of id * exp
    | App of exp * exp

Var “y”

Lam (“x”, Var “x”)

Lam (“x”,(Lam(“y”,App (Var “x”, Var “y”))))
      App 
        (Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))), 
         Lam (“x”, App (Var “x”, Var “x”)))
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Quiz #8

What is this term’s AST? 

λx.x x

62

A.   App (Lam (“x”, Var “x”), Var “x”)
B.   Lam (Var “x”, Var “x”, Var “x”)
C.   Lam (“x”, App (Var “x”,Var “x”))
D.   App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 
      Var of id
    | Lam of id * exp
    | App of exp * exp
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Quiz #8

What is this term’s AST? 

λx.x x

63

A.   App (Lam (“x”, Var “x”), Var “x”)
B.   Lam (Var “x”, Var “x”, Var “x”)
C.   Lam (“x”, App (Var “x”,Var “x”))
D.   App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 
      Var of id
    | Lam of id * exp
    | App of exp * exp
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OCaml Implementation: Substitution
(* substitute e for y in m--             *)
let rec subst m y e =
  match m with
    | Var x -> 
        if y = x then e (* substitute *)

        else m          (* don’t subst *)
    | App (e1,e2) ->
        App (subst e1 y e, subst e2 y e)
    | Lam (x,e0) -> …

64

m[y:=e]
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OCaml Impl: Substitution (cont’d)
(* substitute e for y in m--             *)
let rec subst m y e = match m with …
    | Lam (x,e0) ->
      if y = x then m
      else if not (List.mem x (fvs e)) then
        Lam (x, subst e0 y e)
      else

        let z = newvar() in (* fresh *)
        let e0' = subst e0 x (Var z) in
        Lam (z,subst e0' y e)

65

Shadowing blocks
substitution

Safe: no capture possible
Might capture; need to α-convert
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m[y:=e]



CBV, L-to-R Reduction with Partial Eval
let rec reduce e =
  match e with
    | App (Lam (x,e), e2) -> subst e x e2
    | App (e1,e2) -> 
      let e1' = reduce e1 in
      if e1' != e1 then App(e1',e2)
      else App (e1,reduce e2)
    | Lam (x,e) -> Lam (x, reduce e)
    | _ -> e

66

Straight β rule

Reduce lhs of app

Reduce rhs of app

nothing to do

Reduce function body
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Another Way to Avoid Capture
• Another way to avoid accidental variable 

capture is to use the “Barendregt Convention”: 
gives everything ‘fresh’ names.

● If every name is unique, no chance of variable 
capture

● Simple, but not great for performance as you 
have to do it after every beta-reduction!
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Quick Recap on LC

• Despite its simplicity (3 AST nodes and a handful of 
small-step rules), LC is Turing Complete

• Any function that can be evaluated on a Turing 
machine can be encoded into LC (and vice-versa)
− But we’ll have to come up with the encodings!

• To prove that it is Turing Complete we have to map 
every possible Turing Machine to LC
− We won’t be doing that
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The Power of Lambdas

• To give a sense of how one can encode various 
constructs into LC we’ll be looking at some 
concrete examples:
∙ Let bindings
∙ Booleans
∙ Pairs
∙ Natural numbers & arithmetic
∙ Looping
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Let bindings

• Local variable declarations are like defining a 
function and applying it immediately (once):
∙ let x = e1 in e2 = (λx.e2) e1

• Example
∙ let x = (λy.y) in x x = (λx.x x) (λy.y) 

where 
(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y) 
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Booleans

• Church’s encoding of mathematical logic
∙ true = λx.λy.x
∙ false = λx.λy.y
∙ if a then b else c

� Defined to be the expression: a b c

• Examples
∙ if true then b else c = (λx.λy.x) b c → (λy.b) c → b
∙ if false then b else c = (λx.λy.y) b c → (λy.y) c → c
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Booleans (cont.)

• Other Boolean operations
∙ not = λx.x false true

� not x = x false true = if x then false else true
� not true → (λx.x false true) true → (true false true) → false

∙ and = λx.λy.x y false
� and x y = if x then y else false

∙ or = λx.λy.x true y
� or x y = if x then true else y

• Given these operations
∙ Can build up a logical inference system
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Quiz #9

What is the lambda calculus encoding of xor x y?
• xor true true = xor false false = false
• xor true false = xor false true = true

• x x y
• x (y true false) y
• x (y false true) y
• y x y

73

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true
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Quiz #9

What is the lambda calculus encoding of xor x y?
• xor true true = xor false false = false
• xor true false = xor false true = true

• x x y
• x (y true false) y
• x (y false true) y
• y x y

74

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true
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Pairs
• Encoding of a pair a, b
∙ (a,b) = λx.if x then a else b
∙ fst = λf.f true
∙ snd = λf.f false

• Examples
∙ fst (a,b) = (λf.f true) (λx.if x then a else b) →
     (λx.if x then a else b) true →
     if true then a else b → a
∙ snd (a,b) = (λf.f false) (λx.if x then a else b) →
     (λx.if x then a else b) false →
     if false then a else b → b
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Natural Numbers (Church* Numerals) 

• Encoding of non-negative integers
∙ 0 = λf.λy.y
∙ 1 = λf.λy.f y
∙ 2 = λf.λy.f (f y)
∙ 3 = λf.λy.f (f (f y))

i.e., n = λf.λy.<apply f n times to y>
∙ Formally:  n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)
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Quiz #10

What OCaml type could you give to a 
Church-encoded numeral?

• (’a -> ‘b) -> ‘a -> ‘b
• (‘a -> ‘a) -> ‘a -> ‘a
• (‘a -> ‘a) -> ‘b -> int
• (int -> int) -> int -> int
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n = λf.λy.<apply f n times to y>
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Quiz #10

What OCaml type could you give to a 
Church-encoded numeral?

• (’a -> ‘b) -> ‘a -> ‘b
• (‘a -> ‘a) -> ‘a -> ‘a
• (‘a -> ‘a) -> ‘b -> int
• (int -> int) -> int -> int
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n = λf.λy.<apply f n times to y>
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Operations On Church Numerals 

• Successor
∙ succ = λz.λf.λy.f (z f y)

• Example
∙ succ 0 =

(λz.λf.λy.f (z f y)) (λf.λy.y) →
λf.λy.f ((λf.λy.y) f y) →
λf.λy.f ((λy.y) y) →
λf.λy.f y

   = 1

Since (λx.y) z → y 

∙ 0 = λf.λy.y
∙ 1 = λf.λy.f y
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Operations On Church Numerals (cont.)

• IsZero?
∙ iszero = λz.z (λy.false) true

This is equivalent to λz.((z (λy.false)) true)

• Example
∙ iszero 0 =

(λz.z (λy.false) true) (λf.λy.y) →
(λf.λy.y) (λy.false) true →
(λy.y) true →
true

∙ 0 = λf.λy.y

Since (λx.y) z → y 
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Arithmetic Using Church Numerals

• If M and N are numbers (as λ expressions)
∙ Can also encode various arithmetic operations

• Addition
∙ M + N = λf.λy.M f (N f y)

Equivalently: + = λM.λN.λf.λy.M f (N f y)
� In prefix notation (+ M N)

• Multiplication
∙ M * N = λf.M (N f)

Equivalently: * = λM.λN.λf.λy.M (N f) y
� In prefix notation (* M N)
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Arithmetic (cont.)

• Prove 1+1 = 2
∙ 1+1 = λx.λy.(1 x) (1 x y) = 
∙ λx.λy.((λf.λy.f y) x) (1 x y) → 
∙ λx.λy.(λy.x y) (1 x y) →
∙ λx.λy.x (1 x y) →
∙ λx.λy.x ((λf.λy.f y) x y) →
∙ λx.λy.x ((λy.x y) y) →
∙ λx.λy.x (x y) = 2

• With these definitions
∙ Can build a theory of arithmetic

∙ 1 = λf.λy.f y
∙ 2 = λf.λy.f (f y)
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Arithmetic Using Church Numerals

• What about subtraction?
∙ Easy once you have ‘predecessor’, but...
∙ Predecessor is very difficult!

• Story time:
∙ One of Church’s students, Kleene (of Kleene-star 

fame) was struggling to think of how to encode 
‘predecessor’, until it came to him during a trip to the 
dentists office.
∙ Take from this what you will

• Wikipedia has a great derivation of 
‘predecessor’, not enough time today.
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Looping+Recursion

• So far we have avoided self-reference, so how 
does recursion work?

• We can construct a lambda term that ‘replicates’ 
itself:

∙ Define D = λx.x x, then
● D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D

∙ D D is an infinite loop
• We want to generalize this, so that we can make 

use of looping
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The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))
• Then

Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)

• Y F is a fixed point (aka fixpoint) of F
• Thus Y F = F (Y F) = F (F (Y F)) = ...
∙ We can use Y to achieve recursion for F
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Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))
∙ The second argument to fact is the integer
∙ The first argument is the function to call in the body

� We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
   → if 1 = 0 then 1 else 1 * ((Y fact) 0)
   → 1 * ((Y fact) 0)
     = 1 * (fact (Y fact) 0)
   → 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))
   → 1 * 1 → 1
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Factorial 4=?
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(Y G) 4 
 G (Y G) 4 
(λr.λn.(if n = 0 then 1  else n × (r (n−1)))) (Y G) 4
(λn.(if n = 0 then 1 else n × ((Y G) (n−1)))) 4
if 4 = 0 then 1 else 4 × ((Y G) (4−1))
4 × (G (Y G) (4−1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))
4 × (3 × (G (Y G) (3−1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))
4 × (3 × (2 × (G (Y G) (2−1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))
4 × (3 × (2 × (1 × (G (Y G) (1−1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))
4 × (3 × (2 × (1 × (1))))
24
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Discussion
• Lambda calculus is Turing-complete 
∙ Most powerful language possible
∙ Can represent pretty much anything in “real” language

� Using clever encodings

• But programs would be 
∙ Pretty slow (10000 + 1 → thousands of function calls)
∙ Pretty large (10000 + 1 → hundreds of lines of code)
∙ Pretty hard to understand (recognize 10000 vs. 9999)

• In practice
∙ We use richer, more expressive languages
∙ That include built-in primitives
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The Need For Types
• Consider the untyped lambda calculus
∙ false = λx.λy.y
∙ 0 = λx.λy.y

• Since everything is encoded as a function...
∙ We can easily misuse terms…

� false 0 → λy.y
� if 0 then ...

…because everything evaluates to some function
• The same thing happens in assembly language
∙ Everything is a machine word (a bunch of bits)
∙ All operations take machine words to machine words
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Simply-Typed Lambda Calculus (STLC)

• e ::= n | x | λx:t.e | e e
∙ Added integers n as primitives

� Need at least two distinct types (integer & function)… 
� …to have type errors

∙ Functions now include the type t of their argument

• t ::= int | t → t
∙ int is the type of integers
∙ t1 → t2 is the type of a function 

� That takes arguments of type t1 and returns result of type t2
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Types are limiting

• STLC will reject some terms as ill-typed, even if 
they will not produce a run-time error
∙ Cannot type check Y in STLC

� Or in OCaml, for that matter, at least not as written earlier.

• Surprising theorem: All (well typed) simply-typed 
lambda calculus terms are strongly normalizing
∙ A normal form is one that cannot be reduced further

� A value is a kind of normal form

∙ Strong normalization means STLC terms always 
terminate 
� Proof is not by straightforward induction: Applications 

“increase” term size
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Summary

• Lambda calculus is a core model of computation
∙ We can encode familiar language constructs using 

only functions
� These encodings are enlightening – make you a better 

(functional) programmer

• Useful for understanding how languages work
∙ Ideas of types, evaluation order, termination, proof 

systems, etc. can be developed in lambda calculus,
� then scaled to full languages
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