
CMSC 330 Exam 2 Spring 2022

Q2. NFA and DFA

Q2.1. Consider the NFA given below. Is this NFA also a DFA?

Yes/No

Q2.2. Which strings will be accepted by the following NFA?

• aaabbb

• aa

• aaaaab

• bbbaaa

Q3. NFA to DFA

Consider the following NFA:

When converted to a DFA using the subset construction algorithm from Project 3, we get the following DFA:

Where X, Y and Z are states you'll have to fill in.

Q3.1. In this DFA, which states from the original NFA make up the state X? 0, 1, 2, 3

Q3.2. In this DFA, which states from the original NFA make up the state Y? 0, 1, 2, 3

Q3.3. In this DFA, which states from the original NFA make up the state Z? 0, 1, 2, 3

Q3.4. Which state(s) in the new DFA are final? X, Y, Z

Q3.5. Provide a regex for the NFA / DFA:

Q4. CFG

To represent ϵ in the CFG, you can either copy and paste the symbol ϵ, type the word epsilon or just type the

letter e.

Q4.1. Define a CFG that describes the language

Q4.2. Given the following ambiguous CFG, modify it so that it produces the same strings but is not ambiguous.

Q4.3. Is the below CFG right recursive?

Yes/No

Q5. Can it be parsed?

Indicate if each of the following grammars can be parsed by a recursive descent parser. If not, choose the

reason for why it cannot.

Q5.1. Can the below grammar be parsed by a recursive-descent parser?

• Yes

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation

• No, because the grammar is left recursive

• No, because the grammar is ambiguous and left recursive

Q5.2. Can the below grammar be parsed by a recursive-descent parser?

• Yes

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation

• No, because the grammar is left recursive

• No, because the grammar is ambiguous and left recursive

Q5.3. Can the below grammar be parsed by a recursive-descent parser?

• Yes

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation

• No, because the grammar is left recursive

• No, because the grammar is ambiguous and left recursive

Q6. Writing a Parser

Note: For your reference, we have included the non-imperative definitions for the helper functions you will need

to implement the parser.

let lookahead toks = match toks with

| [] -> failwith "no more tokens!"

| h::_ -> h

let match_token tok toks = match toks with

| h::t when h = tok -> t

| _ -> failwith "match error!"

Consider the following grammar.

We are assuming that a working lexer (or tokenizer) exists and can convert string input into a list of tokens

(similar to Project 4a). The goal is to implement a non-imperative recurive-descent parser to parse the

grammar described above. To do so, we will define our tokens and the corresponding AST as follows:

type token =

| Tok_ifzero

| Tok_then

| Tok_else

| Tok_0

| Tok_1

type expr =

| Num of int

| IfZero of expr * expr * expr

Examples:

"0" |> tokenizer |> parse_Exp

(* Num(0) *)

"ifzero 0 then 1 else 0" |> tokenizer |> parse_Exp

(* IfZero(Num(0), Num(1), Num(0)) *)

"ifzero 0 then ifzero 1 then 0 else 1 else 0" |> tokenizer |> parse_Exp

(* IfZero(Num(0), IfZero(Num(1), Num(0), Num(1)), Num(0)) *)

Notes:

• parse_Exp must return type token list * expr.

• You don't have to check if the list is empty at the end of parsing.

• You can use failwith to handle exceptions.

let rec parse_Exp toks =

and parse_IfZero toks =

and parse_N toks =

Q7. Operational Semantics

Q7.1. What is the difference between lexical/static and dynamic scoping in OpSem?

• Static scoping is for closures and dynamic scoping is for hypotheses.

• Static scoping evaluates a closure with respect to the existing environment, dynamic scoping evaluates a

closure on its own.

• Static scoping evaluates the environment from left to right, dynamic scoping evaluates the environment

from right to left.

Q7.2. Consider the following semantics that uses a mystery magic operator ?.

Describe what this magic operator does.

Hint: Recall closures from OCaml.

Q7.3. Using the given rules, fill in the blanks the complete the derivation below:

Notes:

• If (#5) is not visible, please scroll to the right to ensure the entire LaTeX is visible.

• The blanks refer to the part of derivation (judgement/hypothesis) that should exist in the position of the

blank.

Blank #1:

Blank #2:

Blank #3:

Blank #4:

Blank #5:

Blank #6:

Q8. Lambda Calculus

To represent λ, you may either copy and paste the symbol λ or just type the characters L or \ in your solutions.

Q8.1. Which of the following are free variables in the lambda calculus expression?

λa. b λy. y x λp. p y

• a

• b

• y

• x

• p

Q8.2. Consider the following lambda calculus expression,

(λx. y λy. x y λx. x y) (λz. z) (λz. w)

Make parentheses explicit in the above expression.

Give a valid α-conversion for the expression.

Q8.3. Reduce the following lambda calculus expression to the β-normal form using both CBN and CBV.

(λx. (λy. y a) x) ((λx. x) (λy. y b))

Show each step, including any β-reduction or α-conversion. If there is infinite recursion, write "Infinite

Recursion".

Call-by-name:

Call-by-value:

Q8.4. Consider the following encodings,

true = (λx. λy. x)

false = (λx. λy. y)

not = (λx. x false true)

or = (λx. λy. x true y)

Prove that not (or false true) = false

Hint: Replace the bindings for their lambda-calculus expressions and show that the left side reduces to false,

which is (λx. λy. y).

