Q2. NFA and DFA

Q2.1. Consider the NFA given below. Is this NFA also a DFA?

Yes/No

Q2.2. Which strings will be accepted by the following NFA?

- aaabbb
- aa
- aaaaab
- bbbaaa
Q3. NFA to DFA

Consider the following NFA:

When converted to a DFA using the subset construction algorithm from Project 3, we get the following DFA:

Where X, Y and Z are states you’ll have to fill in.

Q3.1. In this DFA, which states from the original NFA make up the state X? $0, 1, 2, 3$

Q3.2. In this DFA, which states from the original NFA make up the state Y? $0, 1, 2, 3$

Q3.3. In this DFA, which states from the original NFA make up the state Z? $0, 1, 2, 3$

Q3.4. Which state(s) in the new DFA are final? X, Y, Z

Q3.5. Provide a regex for the NFA / DFA:

$$ab(aab)^*$$
Q4. CFG

To represent ϵ in the CFG, you can either copy and paste the symbol ϵ, type the word `epsilon` or just type the letter e.

Q4.1. Define a CFG that describes the language

$$a^x b^y c^z \text{ where } z \leq x + 2y.$$

$$S \rightarrow aSU \mid T$$

$$T \rightarrow bTUU \mid \epsilon$$

$$U \rightarrow c \mid \epsilon$$

Q4.2. Given the following ambiguous CFG, modify it so that it produces the same strings but is not ambiguous.

$$S \rightarrow SaS \mid T$$

$$T \rightarrow bT \mid V$$

$$V \rightarrow c \mid \epsilon$$

Rewrite: $S \rightarrow TaS \mid T$

Q4.3. Is the below CFG right recursive?

$$S \rightarrow N + S \mid N \cdot S \mid N$$

$$N \rightarrow 1 \mid (S)$$

Yes/No

Q5. Can it be parsed?

Indicate if each of the following grammars can be parsed by a recursive descent parser. If not, choose the reason for why it cannot.

Q5.1. Can the below grammar be parsed by a recursive-descent parser?

$$S \rightarrow S \cdot S \mid T$$

$$T \rightarrow 1 \mid 2 \mid 3 \mid (S)$$

- Yes
- No, because the grammar is ambiguous i.e., it has more than one leftmost derivation
- No, because the grammar is left recursive
- No, because the grammar is ambiguous and left recursive

Partial credit for options 2 and 3.

Q5.2. Can the below grammar be parsed by a recursive-descent parser?

$$S \rightarrow cS \mid A$$

$$A \rightarrow aA \mid \epsilon$$

- Yes
- No, because the grammar is ambiguous i.e., it has more than one leftmost derivation
- No, because the grammar is left recursive
- No, because the grammar is ambiguous and left recursive
Q5.3. Can the below grammar be parsed by a recursive-descent parser?

\[
S \rightarrow S a \mid U \\
U \rightarrow U u \mid \epsilon
\]

- Yes
- No, because the grammar is ambiguous i.e., it has more than one leftmost derivation
- No, because the grammar is left recursive
- No, because the grammar is ambiguous and left recursive

Q6. Writing a Parser

Note: For your reference, we have included the non-imperative definitions for the helper functions you will need to implement the parser.

```ml
let lookahead toks = match toks with
| [] -> failwith "no more tokens!"
| h::_ -> h

let match_token tok toks = match toks with
| h::t when h = tok -> t
| _ -> failwith "match error!"
```

Consider the following grammar.

\[
\text{Exp} \rightarrow \text{IfZero} \mid \text{N}
\]

\[
\text{IfZero} \rightarrow \text{ifzero } N \text{ then } \text{Exp} \text{ else } \text{Exp}
\]

\[
N \rightarrow 0 \mid 1
\]

We are assuming that a working lexer (or tokenizer) exists and can convert string input into a list of tokens (similar to Project 4a). The goal is to implement a **non-imperative recursive-descent parser** to parse the grammar described above. To do so, we will define our tokens and the corresponding AST as follows:

```ml
type token =
| Tok_ifzero
| Tok_then
| Tok_else
| Tok_0
| Tok_1

type expr =
| Num of int
| IfZero of expr * expr * expr

Examples:

"0" |> tokenizer |> parse_Exp
(* Num(0) *)

"ifzero 0 then 1 else 0" |> tokenizer |> parse_Exp
(* IfZero(Num(0), Num(1), Num(0)) *)
```
"ifzero 0 then ifzero 1 then 0 else 1 else 0" |> tokenizer |> parse_Exp
(* IfZero(Num(0), IfZero(Num(1), Num(0), Num(1)), Num(0)) *)

Notes:

- parse_Exp must return type token list * expr.
- You don't have to check if the list is empty at the end of parsing.
- You can use failwith to handle exceptions.

```ocaml
let rec parse_Exp toks = 
  match lookahead toks with 
  | Tok_ifzero -> parse_IfZero toks 
  | Tok_0 | Tok_1 -> parse_N

and parse_IfZero toks = 
  match lookahead toks with 
  | Tok_ifzero -> let toks = match_token Tok_ifzero toks in 
    let e, toks = parse_N toks in 
    let toks = match_token Tok_then toks in 
    let e', toks = parse_Exp toks in 
    let toks = match_token Tok_else toks in 
    let e'', toks = parse_Exp toks in 
    (toks, IfZero(e, e', e'')) 
  | _ -> failwith "error"

and parse_N toks = 
  match lookahead toks with 
  | Tok_0 -> let toks = match_token Tok_0 toks in (toks, Num(0)) 
  | Tok_1 -> let toks = match_token Tok_1 toks in (toks, Num(1)) 
  | _ -> failwith "error"
```

Q7. Operational Semantics

Q7.1. What is the difference between lexical/static and dynamic scoping in OpSem?

- Static scoping is for closures and dynamic scoping is for hypotheses.
- Static scoping evaluates a closure with respect to the existing environment, dynamic scoping evaluates a closure on its own.
- Static scoping evaluates the environment from left to right, dynamic scoping evaluates the environment from right to left.

Q7.2. Consider the following semantics that uses a mystery magic operator ?.

\[
\begin{align*}
A; e_1 \Rightarrow v_1 & \quad \frac{A; e_2 \Rightarrow (A', \lambda x. e)}{A', x : v_1; e \Rightarrow v_2} \\
A; e_1 ? e_2 \Rightarrow v_2 &
\end{align*}
\]

Describe what this magic operator does.

Hint: Recall closures from OCaml.

? applies the value of e1 to the function e2 OR ? is the pipeline operator | > from OCaml.
Q7.3. Using the given rules, fill in the blanks the complete the derivation below:

\[A; n \Rightarrow n \quad A; x \Rightarrow v \]

\[A; e_1 \Rightarrow v_1 \quad v_2 \text{ is true if } v_1 \text{ is } 0, \text{ otherwise } v_2 \text{ is false} \]

\[A; \text{equals} 0 \ e_1 \Rightarrow v_2 \]

\[A; e_1 \Rightarrow \text{true} \quad A; e_2 \Rightarrow v_1 \quad A; e_1 \Rightarrow \text{false} \quad A; e_3 \Rightarrow v_1 \]

\[A; \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \Rightarrow v_1 \]

\[A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 \text{ is } v_1 + v_2 \]

\[A; e_1 + e_2 \Rightarrow v_3 \]

\[A, (#3); x \Rightarrow 5 \quad \text{true if } 5 \text{ is } 0, \text{ otherwise false} \]

\[A, (#1); \text{equals} 0 \ x \Rightarrow (#2) \]

\[A, (#1); x \Rightarrow 5 \]

\[A, (#1); 5 \Rightarrow 5 \]

\[A, (#1); \text{if equals} 0 \ x \text{ then } 21 \text{ else } x + 5 \Rightarrow (#6) \]

Notes:

- If (#5) is not visible, please scroll to the right to ensure the entire LaTeX is visible.
- The blanks refer to the part of derivation (judgement/hypothesis) that **should** exist in the position of the blank.

Blank #1: \(x:5 \)
Blank #2: \(\text{false} \)
Blank #3: \(A, x:5(x) = 5 \)
Blank #4: \(x + 5 \)
Blank #5: \(10 \text{ is } 5 + 5 \)
Blank #6: \(10 \)

Q8. Lambda Calculus

To represent \(\lambda \), you may either copy and paste the symbol \(\lambda \) or just type the characters \(\text{L} \) or \(\text{\textbackslash} \) in your solutions.

Q8.1. Which of the following are free variables in the lambda calculus expression?

\[\lambda a. b \lambda y. y \ x \ \lambda p. \ p \ y \]

\[\text{• } a \]
\[\text{• } b \]
\[\text{• } y \]
\[\text{• } x \]
\[\text{• } p \]
Q8.2. Consider the following lambda calculus expression,

\((λx. \ y \ λy. \ x \ y \ λx. \ x \ y) \ (λz. \ z) \ (λz. \ w)\)

Make parentheses explicit in the above expression.

\(((λx. \ (y \ (λy. \ ((x \ y) \ (λx. \ (x \ y)))))) \ (λz. \ z)) \ (λz. \ w)\)

Give a valid \(\alpha\)-conversion for the expression.

\((λx. \ y λm. \ x \ m \ λn. \ n \ m) \ (λz. \ z) \ (λz. \ w)\)

Q8.3. Reduce the following lambda calculus expression to the \(β\)-normal form using both CBN and CBV.

\((λx. \ (λy. \ a) \ x) \ ((λx. \ x) \ (λy. \ b))\)

Show each step, including any \(β\)-reduction or \(α\)-conversion. If there is infinite recursion, write "Infinite Recursion".

Call-by-name:

\[
(λx. \ (λy. \ a) \ x) \ ((λx. \ x) \ (λy. \ b))
= (λy. \ a) \ ((λx. \ x) \ (λy. \ b))
= ((λx. \ x) \ (λy. \ b)) \ a
= (λy. \ b) \ a
= a \ b
\]

Call-by-value:

\[
(λx. \ (λy. \ a) \ x) \ ((λx. \ x) \ (λy. \ b))
= (λx. \ (λy. \ a) \ x) \ (λy. \ b)
= (λy. \ a) \ (λy. \ b)
= (λy. \ b) \ a
= a \ b
\]

Q8.4. Consider the following encodings,

\[true = (λx. \ λy. \ x)\]
\[false = (λx. \ λy. \ y)\]
\[not = (λx. \ x \ false \ true)\]
\[or = (λx. \ λy. \ x \ true \ y)\]

Prove that \(not \ (or \ false \ true) = false\)

Hint: Replace the bindings for their lambda-calculus expressions and show that the left side reduces to \(false\), which is \((λx. \ λy. \ y)\).

\[
not \ (or \ false \ true)
= not \ ((λx. \ λy. \ x \ true \ y) \ false \ true)
= not \ (false \ true \ true)
= not \ ((λx. \ λy. \ y) \ true \ true)
= not \ ((λy. \ y) \ true)
= not \ (true)
= (λx. \ x \ false \ true) \ true
= true \ false \ true
= (λx. \ λy. \ x) \ false \ true
= (λy. \ false) \ true
= false
\]