
CMSC 420: Spring 2022

CMSC 420: Short Reference Guide

This document contains a short summary of information about algorithm analysis and data structures,
which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal “c and n0” definitions and an equivalent limit
definition for the standard asymptotic forms. Assume that f and g are nonnegative functions.

Asymptotic Form Relationship Limit Form Formal Definition

f(n) ∈ Θ(g(n)) f(n) ≡ g(n) 0 < lim
n→∞

f(n)

g(n)
< ∞ ∃c1, c2, n0, ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n).

f(n) ∈ O(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
< ∞ ∃c, n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ Ω(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
> 0 ∃c, n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

f(n) ∈ o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0 ∀c, ∃n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞ ∀c, ∃n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

loga n ≺ nb ≺ cn.

Common Summations: Let c be any constant, c 6= 1, and n ≥ 0.

Name of Series Formula Closed-Form Solution Asymptotic

Constant Series
∑

b

i=a
1 = max(b− a+ 1, 0) Θ(b− a)

Arithmetic Series
∑

n

i=0 i = 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
Θ(n2)

Geometric Series
∑

n

i=0 c
i = 1 + c+ c2 + · · ·+ cn =

cn+1
− 1

c− 1

{

Θ(cn) (c > 1)
Θ(1) (c < 1)

Quadratic Series
∑

n

i=0 i
2 = 12 + 22 + · · ·+ n2 =

2n3 + 3n2 + n

6
Θ(n3)

Linear-geom. Series
∑

n−1
i=0 ici = c+ 2c2 + 3c3 · · ·+ ncn =

(n− 1)c(n+1)
− ncn + c

(c− 1)2
Θ(ncn)

Harmonic Series

n
∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+

1

n
≈ lnn Θ(log n)

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be analyzed
using the so-called Master Theorem, which states that given constants a > 0, b > 1, and d ≥ 0, the
function T (n) = aT (n/b) +O(nd), has the following asymptotic form:

T (n) =







O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlog

b
a) if d < logb a.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote the
set {0, . . . ,m}, and let [m]k denote the set of ordered k-tuples, where each element is taken from [m].



A sorting algorithm is stable if it preserves the relative order of equal elements. A sorting algorithm is
in-place if it uses no additional array storage other than the input array (although O(log n) additional
space is allowed for the recursion stack). The comparison-based algorithms (Insertion-, Merge-, Heap-,
and QuickSort) operate under the general assumption that there is a comparator function f(x, y) that
takes two elements x and y and determines whether x < y, x = y, or x > y.

Algorithm Domain Time Space Stable In-place

CountingSort Integers [m] O(n+m) O(n+m) Yes No
RadixSort Integers [m]k

or [mk]
O(k(n+m)) O(kn+m) Yes No

InsertionSort Total order O(n2) O(n) Yes Yes
MergeSort

Total order O(n log n) O(n)
Yes No

HeapSort No Yes
QuickSort Yes/No∗ No/Yes

∗There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place
but not stable.

Order statistics: For any k, 1 ≤ k ≤ n, the kth smallest element of a set of size n (over a totally ordered
domain) can be computed in O(n) time.

Useful Data Structures: All the following data structures use O(n) space to store n objects:

Unordered Dictionary: (by hashing) Insert, delete, and find in O(1) expected time each. (Note
that you can find an element exactly, but you cannot quickly find its predecessor or successor.)

Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predecessor, succes-
sor, merge, split in O(log n) time each. (Merge means combining the contents of two dictionaries,
where the elements of one dictionary are all smaller than the elements of the other. Split means
splitting a dictionary into two about a given value x, where one dictionary contains all the items
less than or equal to x and the other contains the items greater than x.) Given the location of an
item x in the data structure, it is possible to locate a given element y in time O(log k), where k
is the number of elements between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease/increase-key inO(log n)
time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Supports insert, find-min, decrease-key all in O(1) amortized
time. (That is, a sequence of length m takes O(m) total time.) Extract-min and delete take
O(log n) worst-case time, where n is the number of items in the heap.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint sets and
find the set containing an element in O(log n) time each. A sequence of m operations can be done
in O(α(m,n)) amortized time. That is, the entire sequence can be done in O(m · α(m,n)) time.
(α is the extremely slow growing inverse-Ackerman function.)



CMSC 420: Spring 2022

Programming Assignment 0: Dual List

Handed out: Thu, Jan 27. Due: Tue, Feb 8 (11:59pm).

Overview: This is a start-up project designed to acquaint you with the programming/testing
environment and submission process we will be using this semester. This will involve only
a small bit of data structure design and implementation, and the focus will be on reviewing
Java programming and learning how to use our Gradescope testing environment.

Dual List: You will provide a Java implementation of a very simple data structure we call a
DualList. This stores a multiset of entries (sometimes called a bag), each of which consists of
a pair of values, which we call keys (e.g., (age, weight), (month, year), (country, population)).
The data structure is generic, meaning that the types of the two keys are specified when the
structure is declared. Here is the declaration:

class DualList<Key1 extends Comparable<Key1>, Key2 extends Comparable<Key2>>

The key types implement the Java interface Comparable, meaning that you can compare
keys using compareTo. For example, to test x < y, you can do x.compareTo(y) < 0. This
includes common object types such as String, Integer, Float, Double, and Character.

For example, DualList<String, Integer> stores string-integer pairs like ("Hello", 25)

and DualList<Double, Character>() stores double-character pairs like (-23.57, ’X’). (In
the examples below, we will assume string-integer pairs.)

This not a map. (A map is a data structure storing key-value pairs, where each key is
associated with a unique value.) It is just a collection of pairs. Since it is a multiset, the
order of elements does not matter and duplicates are allowed. So the dual lists {(A, 5), (Z,

3), (A, 5)} and {(Z, 3), (A, 5), (A, 5)} are the same.

Efficiency is not important, and the list entries may be stored in any order you like. You may
use any classes/functions from the Java libraries you like (e.g., Java LinkedList, ArrayList,
Collections.sort).

Operations: Given the dual list DualList<Key1, Key2>, here are the operations that your pro-
gram must support.

DualList(): Constructor, which just creates an empty dual list.

void insert(Key1 x1, Key2 x2): Inserts the pair (x1, x2) into the dual list.

For example, given {(A, 5), (Z, 3)}, the operation insert(A, 3) would result in the
list {(A, 5), (Z, 3), (A, 3)}. (The order of entries does not matter.)

int size(): Returns the number of pairs in the dual list.

ArrayList<String> listByKey1(): This returns a Java ArrayList of strings. The list is to
be sorted in ascending order by the first key (with ties broken by the second key). Each
string has the format "(" + key1 + ", " + key2 + ")".
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For example, given {(A, 5), (Z, 3), (A, 3)}, this returns a 3-element ArrayList

containing three strings: "(A, 3)", "(A, 5)", and "(Z, 3)". If the dual list is empty,
the resulting ArrayList is also empty.

ArrayList<String> listByKey2(): This is identical to listByKey1() except that the order
is by the second key, with ties broken by the first key.

For example, in the above case, the result is: "(A, 3)", "(Z, 3)", and "(A, 5)".

Key2 extractMin1(): If the list is nonempty, this first finds the pair with the minimum
first-key value x1, it removes this pair from the list, and finally returns its associated
second-key value. As with listByKey1(), ties are broken by second key value. If the
list is empty, this throws an Exception with the error message "Attempt to extract

from an empty list".

For example, given the dual list {(A, 5), (Z, 3), (A, 3)}, both (A, 5) and (A, 3)

have the minimum first-key value of A, and so the tie is broken in favor of the latter
since 3 < 5. We then remove (A, 3) from the list, and return its second-key value of 3.
So, the list now contains {(A, 5), (Z, 3)}.

Key1 extractMin2(): This is identical to extractMin1 but with the roles of Key1 and Key2

reversed. It removes the pair with the minimum second-key value and returns the asso-
ciated first-key value. It throws the same exception if the list is empty.

For example, given the dual list {(A, 5), (Z, 3)}, (Z, 3) has the minimum second-
key value of 3, and so we then remove (Z, 3) from the list, and return its first-key value
of Z. So, the list now contains {(A, 5)}.

All you need to do is to implement the above functions. We will provide a program that
handles the input and output. An sample of input and output is shown below.

Input: Output:
insert:A:5 insert(A, 5): successful

insert:Z:3 insert(Z, 3): successful

insert:A:3 insert(A, 3): successful

size size: 3

list-by-key1 list-by-key1:

(A, 3)

(A, 5)

(Z, 3)

list-by-key2 list-by-key2:

(A, 3)

(Z, 3)

(A, 5)

extract-min-key1 extract-min-key1: 3

extract-min-key2 extract-min-key2: Z

list-by-key1 list-by-key1:

(A, 5)

What we give you: We will provide you with skeleton code to get you started on the class
Projects page (Part0-Skeleton.zip). This code will handle the input and output, and
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provide you with the template for DualList. All you need to do is fill in the contents of this
class. Note that directory structure has been set up carefully. You should not alter it unless
you know what you are doing.

Files: Our skeleton code provides the following files. They can be found in the directory “cmsc420 s22”,
and all must begin with the statement “package cmsc420 s22”.

Tester.java: This contains the main Java program. It reads input commands from a file
(by default tests/test01-input.txt) and it writes the output to a file (by default
tests/test01-output.txt).

⊲ You should not modify this except to change the input and/or output file names.

We will provide you with a few sample test input files along with the “expected” output
results (e.g., tests/test01-expected.txt). Of course, you should do your own testing.
To check your results, use a difference-checking program like “diff”.

Note that the tester program does not generate output to the console (unless there are
errors). The output is stored in the output file in the tests directory.

CommandHandler.java: This program provides the interface between Tester.java and our
DualList.java. It invokes the functions in your DualList class and outputs the results.
It also catches and processes any exceptions.

⊲ You should not modify this file.

DualList.java: You provide the contents of this file. We will give you a template of its
structure, and you fill in the details.

package cmsc420_s22; // Be sure to use this package!

import java.util.ArrayList;

public class DualList<Key1 extends Comparable<Key1>,

Key2 extends Comparable<Key2>> {

public DualList() { ... } // constructor

public void insert(Key1 x1, Key2 x2) { ... } // insert new pair

public int size() { ... } // number of pairs

public Key2 extractMinKey1() throws Exception { ... } // remove Key1 min

public Key1 extractMinKey2() throws Exception { ... } // remove Key2 min

public ArrayList<String> listByKey1() { ... } // Key1-sorted list

public ArrayList<String> listByKey2() { ... } // Key2-sorted list

}

⊲ Submit this file to the autograder.

What you give us: All that you need to do is to fill in the implementation of the methods for the
DualList class. Other than DualList.java and changing the file names in Tester.java,
you should avoid modifying any of the directory structure or the files in the skeleton code.

Submission Instructions: Submissions will be made through Gradescope. There is no limit to
the number of submissions you can make. The last submission will be graded. Here is what
to do:
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❼ Log into the CMSC420 page on Gradescope, select this assignment, and select “Submit”.
A window will pop up (see Fig. 1). Drag your file DualList.java into the window. If
you generated other files, zip them up and submit them all. Select “Upload”.

Figure 1: Gradescope submission. Drag your file DualList.java into the box.

After a few minutes, Gradescope will display the results (see Fig. 2). Normally, a portion
of your grade will depend on good style and efficiency, but for this initial program, only
the autograder score will be used.

Summary of scores

Test 01 Results

Your output Our output

Figure 2: Gradescope autograder results (correct).

On the top-right of the page, it shows a summary of the scores of the individual tests
as generated by the autograder. (If there are compilation errors, these will be displayed
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on this page.) The center of the window shows a line-by-line summary, with the output
generated by your program on the left and the expected output on the right. If there
are mismatches, these will be highlighted (see Fig. 3).

Summary of scores

Test 01 Results

Your output Our output

Difference detected

Figure 3: Gradescope autograder results (incorrect).

The final score is based on the number of commands for which your program’s output
differs from ours. Note that the comparison program is very primitive. It compares line
by line (without considering the possibility of inserted or deleted lines) and is sensitive
to changes in case and the addition of white-space.
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CMSC 420: Spring 2022

Programming Assignment 1A: Quake Heaps (Insertion and Merging)

Handed out: Thu, Feb 10. Due: Thu, Feb 24, 11:59pm.

Overview: This is the first in a two-part assignment to implement an interesting data structure
called a Quake Heap. As with standard heaps, this data structure implements a priority

queue. Such a data structure stores key-value pairs, where keys are from a totally ordered
domain (such as integers, floats, or strings). At a minimum, a priority queue supports the
operations of insert (add a new key-value pair) and extract-min (remove the entry with the
smallest key, and return its associated value).

The most famous example of a heap is the binary heap, which is the data structure used
by HeapSort. There are numerous variants, which provide improved performance for various
operations, notably that of decreasing a key. The quake heap is such a variant. It was
developed by Timothy Chan (described in this paper) as a simpler alternative to the Fibonacci
Heap. It supports insertion and decreasing keys in O(1) time, and it supports extract-min in
O(log n) amortized time. (More details can be found on the CMSC420 Projects page.)

In Part-A of the assignment, we will implement only a portion of the quake heap functionality.
We will discuss the quake heap in a future lecture, but this part of the assignment is completely

self-contained. In Part-B, we will implement all the functionality.

Quake Heap: The Java class is called QuakeHeap. It is generic, templated by two types Key

and Value. The Key type implements the Java Comparable interface, meaning that it must
provide a function compareTo() for comparing keys. We also assume that both types support
a (stable) toString() method.

The quake heap is represented as a collection of binary trees, where each node stores a key-
value pair. The nodes of these trees are organized into levels. All the leaves reside on level 0,
and each key in the heap is stored in exactly one leaf of some tree. (For example, in Fig. 1,
the keys consist of the 13 keys in the blue leaf nodes.)

1632041

1 4 3

1 3

1

5 10

3

2

4

1

0

nodeCt

1 6 4 9 20 3 14 1610 115 821

roots

10

2

4

1

7

13

Figure 1: A quake heap storing 13 keys {21, 5, 8, 10, . . . , 16} (values are not shown).

Each internal node has a left child and an optional right child. Its key value is that of its left
child. If the right child exists, its key value is greater than or equal to the left child. The
root holds the smallest key value over all the leaves, which (by our rule that the left key is
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smaller) is that of the leftmost leaf. It follows that the smallest key in the heap will be stored

in one of the roots (but we don’t generally know which).

Each node stores a key-value pair, left and right child pointers, parent pointer, and its level.
We maintain two additional arrays organized by level:

❼ roots[lev]: A linked list containing references to the tree roots of level lev. (We
recommend implementing this as a Java LinkedList of nodes).

❼ nodeCt[lev]: Stores the total number of nodes at level lev.

Nodes and Locators: The principal objects being manipulated are the nodes in the quake heap.
As mentioned above, each node stores a key-value pair, left and right child links, parent link,
and its level in the tree. Nodes at level 0 are leaves, so both child links are null. A root
node (at any level) has a parent link of null. Java provides an elegant way to define nodes
by simply nesting a class, say Node, inside your QuakeHeap class (see the code block below).

One tricky element in any heap structure that supports decrease-key is that we need a mech-
anism for identifying the entry whose key we wish to decrease. When we insert a key-value
pair, we create a new leaf node. Since Node is a protected object within QuakeHeap, we cannot
return a pointer directly to it. Instead, we create a special public object, called a Locator,
to enclose a reference to this newly inserted leaf node. The insert function returns a locator
referencing the newly created node. A skeletal example is provided below.

package cmsc420_s22;

public class QuakeHeap<Key extends Comparable<Key>, Value> {

class Node { // a node in the heap

Key key;

Value value;

// ... whatever else you need in your node

}

public class Locator { // locates a node

private Node u; // the node

private Locator(Node u) { this.u = u; } // constructor

private Node get() { return u; } // getter

}

public Locator insert(Key x, Value v) { // insert (x,v)

// ... your code to create a new leaf node u

return new Locator(u);

}

// ... other QuakeHeap members

}

Operations: For this part of the project, we will begin by implementing the basic functions needed
to insert keys and to build subtrees. Here is a list of the operations you are to implement.
(Further details available on the CMSC420 Projects page.)
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QuakeHeap(int nLevels): This constructs an empty quake heap. The parameter nLevels indi-
cates the number of levels to allocate in your arrays roots and nodeCt.1 This allocates and
initializes the roots and nodeCt arrays and any other private data that your class uses.

void clear(): This resets the structure to its initial state. In particular, it resets all the node
counts to zero and clears all the roots lists.2

Locator insert(Key x, Value v): This inserts the key-value pair (x, v) in the heap. This cre-
ates a “trivial” tree consisting of a single root node at level 0, that stores this key-value pair.
It inserts this node into the list roots[0]. It returns a Locator (see above) referencing the
newly created leaf node.

int getMaxLevel(Locator r): Given a locator r, this determines the maximum height of an
ancestor reachable by following the reversal of left-child links up the tree. (If the keys are
unique, this is the highest node in the tree that has the same key as r). For example, for the
heap in Fig. 1, the max-level of leaf labeled 21 is 0, the max-level of 4 is 2, the max-level of
1 is 4, and the max-level of 16 is 1.

Key getMinKey(): This returns the smallest key in the heap and also reorganizes the heap, merging
many small trees into one large tree.

❼ If the heap is empty, throw an Exception with the message "Empty heap".

❼ Otherwise, find the minimum key in the heap by enumerating all the nodes in all the
roots lists, we find the one with the smallest key. (Ties may be broken arbitrarily.)

❼ Next, consolidate trees by the following process, called merge-trees. Enumerate the
levels bottom-up, from zero up to the second highest level (that is, nLevels-2). At each
level k:

– Sort the nodes of roots[k] in increasing order by their keys.3 Ties may be broken
arbitrarily.

– Next, merge trees in pairs as follows. While roots[k] has at least two roots:

✯ Extract the first two root nodes from the sorted list. Call them u and v. Since
the list is sorted, we know that u.key ≤ v.key.

✯ Create a new root node w, with u as its left child and v as its right child. (Don’t
forget to set u and v’s parent links to point to w.) By our convention, w’s key is
set to u.key. (We don’t care about w’s value field. You can just set it to null.)

✯ Add w to roots[k+1].

Observe that when the merge-tree process is finished, every level, except possibly the top one,
has at most one root. This is illustrated in Fig. 2.

1From a software design perspective, it would be better if the constructor did not have this parameter, and the

array just grows dynamically as needed. Limiting the array size will be useful for testing purposes.
2You might realize that there is a potential memory leak here since locators may have been generated that refer

to entries that have been removed. Fixing this is not trivial, but we won’t worry about it.
3If you store your roots[k] as a Java LinkedList, you can invoke Collections.sort() to sort them.
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Figure 2: Merging trees. Working bottom-up, we sort the roots at each level, and then merge
consecutive pairs until either zero or one root remains.

ArrayList<String> listHeap(): This operation lists the contents of your structure in the form
of an array-list of strings. The precise format is important, since we check for correctness by
“diff-ing” your strings against ours.

Enumerate the levels of the tree from bottom up. For each level, do the following:

❼ If the the node count for this level is zero, skip this level and go on to the next. Otherwise,
sort the root nodes of this level by their key values, just as in getMinKey().

❼ Generate a level header in the form of a string “{lev: xxx nodeCt: yyy}” and add
it to the array-list. Here, “xxx” is the level index and “yyy” is the node count for
this level. For example, if there are four nodes on level two, this generates the string,
“{lev: 2 nodeCt: 4}”.

❼ For each root node r in the roots list for this level, enumerate the the nodes of this
tree based on a preorder traversal. For each node u visited in this traversal, we do the
following:

Internal: (u.level ≥ 1) Generate the string "(" + u.key + ")". Recursively visit
u.left and u.right.

Leaf: (u.level = 0) Generate the string "[" + u.key + " " + u.value + "]" (where
“ ” denotes a single space) and return.

Null: (u = null) This cannot happen in Part-A, but it can in Part-B. If so, generate
the string "[null]" and return.

As an example, invoking listHeap on the structure appearing in to Fig. 2(e) would result in
the 11-element array-list shown below. (For simplicity, we set the value of key x to be the
string “X0x”.)
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Index Array-List Contents

0: {lev: 0 nodeCt: 5}

1: [7 X07]

2: {lev: 1 nodeCt: 2}

3: {lev: 2 nodeCt: 1}

4: (2)

5: (2)

6: [2 X02]

7: [9 X09]

8: (3)

9: [3 X03]

10: [5 X05]

Unfortunately, it is not easy to interpret the tree structure from this preorder listing, but
we have provided a function in CommandHandler.java that reformats the tree so it is easier
to read. For example, given the above array-list, our function would generate the following
output for you. (Contrast this with the tree of Fig. 2(e).)

Structured list:

{lev: 0 nodeCt: 5}

Tree: 0

[7 X07]

{lev: 1 nodeCt: 2}

{lev: 2 nodeCt: 1}

Tree: 0

| | [2 X02]

| (2)

| | [9 X09]

(2)

| | [3 X03]

| (3)

| | [5 X05]

Skeleton Code: As in the earlier assignment, we will provide skeleton code on the class
Projects Page. The only file that you should need to modify is QuakeHeap.java. Re-
member that you must use the package “cmsc420 s22” in all your source files in order
for the autgrader to work. As before, we will provide the programs Tester.java and
CommandHandler.java to process input and output. You need only implement the data
structure and the functions listed above. Below is a short summary of the contents of
QuakeHeap.java.

package cmsc420_s22; // don’t change this!

import java.util.ArrayList;

public class QuakeHeap<Key extends Comparable<Key>, Value> {

class Node { ... }

public class Locator { ... }
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public QuakeHeap(int nLevels) { ... }

public void clear() { ... }

public Locator insert(Key x, Value v) { ... }

public Key getMinKey() throws Exception { ... }

public int getMaxLevel(Locator r) { ... }

public ArrayList<String> listHeap() { ... }

}

Efficiency requirements: The function insert() should run in O(1) time, the function
getMinKey() should run in time proportional to the number of roots (plus the time
needed for sorting each level), and the function getMaxLevel() should run in time
proportional to the maximum number of levels. A portion of your grade will depend on
the efficiency of your program.

Testing/Grading: Submissions will be made through Gradescope (you need only upload
your modified QuakeHeap.java file). We will be using Gradescope’s autograder and
JUnit for testing and grading your submissions. We will provide some testing data and
expected results along with the skeleton code.

The total point value is 30 points. Of these, 25 points will be purely for input/output
correctness as tested by the autograder, and the remaining 5 points will be for clean
programming style and the above efficiency requirements.
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CMSC 420: Spring 2022

Programming Assignment 1B: Quake Heaps (Decreasing and Extracting)

Handed out: Tue, Mar 8. Due: Thu, Mar 31, 11:59pm.

Overview: This assignment is the continuation of Programming Assignment 1A on the Quake
Heap. In Part-A, you implemented functions for insertion (and the use of locators), getting
the minimum key (and merging trees), and producing a symbolic listing of the structure.
In this part, we will complete the remainder of the structure by adding the operations of
decrease-key, extract-min, and a few others.

Quake Heap: Please refer to Part-A of the assignment for a general description of the Quake
Heap data structure (see Fig. 1. We will employ the same basic elements here. Further
details available on quake heap can be found in the CMSC420 Projects page and the Quake
Heap lecture notes. The operations from Part-A will be the same as before. This includes
the constructor, clear, insert, getMaxLevel, getMinKey, and listHeap. In this part, you
will implement the following additional operations:

1632041

1 4 3

1 3

1

5 10

3

2

4

1

0

nodeCt

1 6 4 9 20 3 14 1610 115 821

roots

10

2
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1

7

13

Figure 1: A quake heap storing 13 keys {21, 5, 8, 10, . . . , 16} (values are not shown).

void decreaseKey(Locator r, Key newKey): This decreases the key of the item referenced by
locator r to have the key value of newKey. If newKey is strictly larger than the current key
for this item, an Exception is thrown with the message "Invalid key for decrease-key".
Otherwise, the decrease-key operation described in class is performed. (For testing purposes,
we would like you to perform the operation even if the new key value is the same as the
original key value.)

In class, we presented two methods. One was a simple method running in O(log n) time
and the other was more sophisticated and ran in O(1) time. You may implement the simple
method for full credit, and we will leave the sophisticated method as a challenge problem for
extra credit points.

The simple method starts with the leaf node u specified by the locator r. It walks up the
tree, always following left-child links. For each node visited (including the initial leaf) the
key value is changed to newKey. The process stops either when we pop off the top of the tree
or when we first visit a parent along a right-child link.

Note that there may be duplicate keys in the heap. For this reason, it is not a good idea to
compare keys to determine whether a node is the left child of its parent.

1
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Value extractMin(): If the heap is nonempty, this function finds the entry with the smallest key
value, removes this entry from the heap, and returns the associated value. This is done by
the process described in the class notes, which involves first searching to find the root node
with the smallest key, performing cuts along its left-most path, merging trees, and quaking.
If there are ties for the minimum key, you may extract any one. If the heap is empty, an
Exception is thrown with the message "Empty heap".

The processes of searching for the smallest key and merging trees are exactly the same as in
Part-A. (Remember that tree roots are to be sorted on each level before merging. This is not
required by the quake heap, but it useful for testing purposes.) The processes of cutting and
quaking are described in the lecture notes.

Note that unlike getMinKey(), this function returns the value associated with the minimum
key, not the key itself.

int size(): This returns the number of entries in the heap, which is equivalent to the number
of leaf nodes in all the trees. This should be answered in O(1) time. The easiest way to
implement this is just to maintain a counter, which is incremented whenever entries are
inserted and decremented when entries are removed.

void setQuakeRatio(double newRatio): This sets the quake ratio from its current value (which
is initially 3/4) to the value newRatio. If newRatio is strictly smaller than 1/2 or strictly
greater than 1, an Exception is thrown with the message "Quake ratio is outside valid

bounds". The current structure is not modified, but in all future instances where the quake
operation is performed, this value will be used.

void setNLevels(int nl): This sets the number of levels in the quake heap to nl. If nl is
smaller than 1, an Exception is thrown with the message "Attempt to set an invalid

number of levels". Otherwise, the function sets the number of levels to this value, and
adjusts the roots and nodeCt arrays accordingly.

If nl is greater than or equal to the current number of levels, these new levels are added to the
structure. The structure is otherwise unchanged. (In particular, we do not invoke merge-trees
at this time to take advantage of the fact that there are additional levels. The next time that
merge-trees would have been invoked, we will take advantage of the new levels.)

On the other hand, if nl is smaller than the current number of levels, we remove all nodes
in the tree at levels greater than or equal to nl (in the same manner as if we were to force
a quake were triggered), and convert all the newly exposed nodes at level nl − 1 to be new
root nodes. Then we reduce the number of levels to the new value.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. The only file
that you should expect to modify is QuakeHeap.java. Use must use the package “cmsc420 s22”
for all your source files. (This is required for the autgrader to work.) We will provide a driver
program that will input a set of commands. You need only implement the data structure and
the functions listed above. Here is a portion of the class’s public interface (and of course, you
will add all the private data and helper functions).

package cmsc420_s22;
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import java.util.ArrayList;

public class QuakeHeap<Key extends Comparable<Key>, Value> {

class Node { ... }

public class Locator { ... }

public QuakeHeap(int nLevels) { ... }

public void clear() { ... }

public Locator insert(Key x, Value v) { ... }

public Key getMinKey() throws Exception { ... }

public int getMaxLevel(Locator r) { ... }

public ArrayList<String> listHeap() { ... }

// New functions

public int size() { ... }

public void setQuakeRatio(double newRatio) throws Exception { ... }

public void setNLevels(int nl) throws Exception { ... }

public Value extractMin() throws Exception { ... }

}

Efficiency requirements: As in Part-A, the function insert() should run in O(1) time, the
function getMinKey() should run in time proportional to the number of roots (plus the
time needed for sorting each level), and the function getMaxLevel() should run in time
proportional to the maximum number of levels. For Part-B, the function size should run in
O(1) time, and decreaseKey should run in time proportional to the number of levels.

Testing/Grading: Submissions will be made through Gradescope (you need only upload your
modified QuakeHeap.java file). We will be using Gradescope’s autograder and JUnit for
testing and grading your submissions. We will provide some testing data and expected results
along with the skeleton code.

The total point value is 50 points. Of these, 45 points will be purely for input/output correct-
ness as tested by the autograder, and the remaining 5 points will be for clean programming
style and the above efficiency requirements.

Challenge Problem: The simple decrease-key function described above takes time proportional
to the tree height, which is O(log n) time. Using the methods described in the lecture notes,
implement decrease-key to run in O(1) time.

If you attempt this, add a comment in the first line of your program (or somewhere near the
top) so we can check it. Please tell us where your decreaseKey function can be found in your
source code. For example:

// I HAVE ATTEMPTED THE CHALLENGE PROBLEM. SEE DECREASEKEY ON LINE 327

package cmsc420_s22;

...
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CMSC 420: Spring 2022

Programming Assignment 2: Height-Balanced kd-Trees

Handed out: Tue, Apr 19. Due: Tue, Apr 26, 11:59pm. (Submission via Gradescope.)

Overview: In this assignment you will implement a variant of the kd-tree data structure, called a
height-balanced kd-tree (or HBkdTree) to store a set of points in 2-dimensional space. It will
support insertion, deletion, and a few other queries.

This data structure borrows ideas from AVL trees, scapegoat trees, and classical point kd-
trees. When constructed, a positive integer parameter maxHeightDifference is given. When-
ever an internal node’s two subtrees have heights that differ by more than this value, the sub-
tree rooted at this node is rebuilt1 into a perfectly balanced tree (in the manner of scapegoat
trees).

The data structure is generic and is templated with the point type, which call a labeled

point. This encapsulates the concept of a 2-dimensional point that is associated with a string,
called its label. This may be any class that implements the Java interface (which we will
provide) called LabeledPoint2D. Such an object is a 2-dimensional point, represented by its
(x, y)-coordinates and an associated string label.

public interface LabeledPoint2D {

public float getX(); // get point’s x-coordinate

public float getY(); // get point’s y-coordinate

public float get(int i); // get point’s i-th coordinate (0=x, 1=y)

public Point2D getPoint2D(); // get the point itself

public String getLabel(); // get the label

}

The Point2D object is an enhanced version of the Java built-in Point2D object, which we
will provide to you.

In our case, the labeled points represent airports, where the (x, y) coordinates are the airports
location (think latitude and longitude) and the labels are the 3-letter airport codes (e.g., “BWI”
for Baltimore-Washington Airport). The individual coordinates (which are doubles) can be
extracted directly using the functions getX() and getY(), or get(i), where i = 0 for x and
i = 1 for y.

Your wrapped kd-tree will be templated with one type, which we will call LPoint (for “labeled
point”). For example, your file HBkdTree will contain the following public class:

public class HBkdTree<LPoint extends LabeledPoint2D> { ... }

Height-Balanced kd-Tree: Recall that a point kd-tree is a data structure based on a hierarchical
decomposition of space through the use of axis-orthogonal splits. A height-balanced kd-tree

imposes the additional requirement that for every internal node, the heights of its two subtrees

1You might wonder why we don’t just apply rotations as we did with AVL trees. The issue is that rotations are

a one-dimensional operation and they do not make sense in the context of multidimensional structures like kd-trees.
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can differ by at most a user-specified integer parameter maxHeightDifference, which is at
least 1. The insertion and deletion processes are exactly the same as given in the lecture on
kd-trees (see the latex lecture notes for Lecture 13, which has all the details spelled out),
but when inserting a new point, the cutting dimension is selected based on the shape of the
current cell. We select the cutting dimension so that we split the longer side of the current
cell. More formally, if its width (along x) is greater than or equal to its height (along y) the
cutting dimension is 0 (x or vertical) and otherwise it is 1 (y or horizontal). Note that ties
are broken in favor of vertical cuts.

For example, consider the insertion of ATL in Fig. 1. When we fall out of the tree (along
the left child link from ORD), the cell associated with this null pointer is the rectangle whose
lower-left corner is (0, 4) and whose upper-right corner is (2, 8).) Since this rectangle is taller
than wide, we cut horizontally, thus setting the cutting dimension of the new node to 1.

After a point has been inserted into or deleted from the tree, we walk backwards upward
along the search path (exactly has we would do if this were an AVL), updating the heights
as we go. Whenever we reach a node p where the heights of its two subtrees differ by more
than maxHeightDifference, we completely rebuild the subtree rooted at p. We first traverse
the subtree rooted at p and store all the labeled points of this subtree in a list (e.g., a Java
ArrayList). Given this list, the subtree is rebuilt by the following recursive process (see
Fig. 1):

Basis: If the list is empty, return null. Otherwise, continue with the following steps.

Cutting Dimension: Let cell denote the cell associated with the current node. As with
insertion, we select the cutting dimension so that it splits the longer side of cell.

Sort: Sort the points according to the cutting dimension. If the cutting dimension is x, sort
the points in increasing order first by x and break ties by sorting in increasing order y.
If the cutting dimension is y, then sort first by y with ties broken by x.

Split and Recurse: Letting k denote the size of the list (and assuming as usual that entries
are indexed from 0 to k−1), define the median element to be point at index m← ⌊k/2⌋.
Recursively build a balanced tree on the left-side sublist of entries with indices 0 through
m−1, and recursively build a balanced tree on the right-side sublist of entries with indices
m + 1 through k − 1. Join these two subtrees under a node whose point is the median
point, and whose cutting dimension is as chosen above. Return this tree.

Unlike scapegoat trees (where each operation can trigger at most one rebuild), we continue
all the way up to the root, updating the heights as we go and checking the height difference
condition. This may trigger further rebuilds. (See Fig. 1 for an example.)

Requirements: Your program will implement the following functions for the HBkdTree. While
you can implement the data structure internally however you like (subject to the style and
efficiency requirements given below), the following function signatures should not be altered.
As part of the skeleton code, we will provide you with the LabeledPoint2D interface, and
two useful classes, Point2D and Rectangle2D. (If you wish to modify these objects, do not
alter them. Instead, create your own copy, say MyPoint2D, and make modifications there.)

HBkdTree(int maxHeightDifference, Rectangle2D bbox): This constructs a new HBkdTree

with the given max height difference and the given axis aligned bounding box.
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Figure 1: Let maxHeightDifference = 1. Suppose we insert ATL at (1, 5). This is inserted as
the left child of ORD. On returning from the recursive calls, we update the node heights at ORD,
DFW, and IAD. At IAD,the absolute height difference in our left and right subtrees is 2 − 0 = 2,
which exceeds maxHeightDifference. We rebuild this entire subtree highlighted in blue. Since
the cell (shaded in blue) is taller than wide, we cut horizontally. We sort along y (yielding
〈LAX, IAD, ATL, ORD, DFW, SFO〉) and split about the median ORD. We recursively build the other sub-
trees similarly. We continue back up the root, updating heights, but no further rebuilds are needed.
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LPoint find(Point2D pt): Given an (unlabeled) point, determine whether it exists within
the tree, and if so return the associated labeled point. Otherwise, return null.

void insert(LPoint pt): Inserts point given labeled point in the tree (and performs re-
building if necessary, as described above). If the point lies outside the bounding box,
throw an Exception with the error message "Attempt to insert a point outside

bounding box". If a point with the same coordinates (and possibly different label) exists
in the tree, throw an Exception with the message "Attempt to insert a duplicate

point". Otherwise, apply the insertion and rebuilding process described above.

void delete(Point2D pt) throws Exception: Given an (unlabeled) point, this deletes
the point of the tree having the same coordinates (and performs rebuilding if neces-
sary, as described above). If there is no such point, it throws an Exception with the
error message "Attempt to delete a nonexistent point". The deletion process is
the same as described in the Lecture 13 notes. (In particular, the process by which the
replacement nodes are selected is the same as given in the lecture notes.)

Update (4/20): In the utility function findMin, which is used to find the replacement
node, if there are ties for the point with the smallest ith coordinate, break the ties by
taking the point with the smallest other coordinate (that is, coordinate 1− i).

Update (4/20): The one change is that on returning up along the search path node
heights are to be updated, and whenever a node is found to fail the height difference
criteria, its subtree is rebuilt. Generally, a deletion may result in multiple replacements.
The balance condition testing and rebuilding is applied only after the standard deletion
process is completely finished. Balance checking commences at the final leaf node whose
deletion terminates the standard kd-tree deletion process. This is very easy to code.
Simply code the deletion as given in the lecture notes, but just prior to returning from
the deletion helper (that is, just prior to the line “return p” from the lecture notes),
update the current node’s height, check the height difference, and trigger rebuilding if
needed. If the tree is rebuilt, return a pointer to the newly rebuilt tree.

Update (4/20): Note, by the way that due to replacement, many cells in the tree
can change shape. (In particular, these are the cells that are incident on the splitting
line through the deleting point.) As a result, some cells that were taller have switched
to being wider and vice versa. However, you should not alter the cutting dimension
for any of the nodes. Once the cutting dimension of a node has been set, it should
remain unchanged until the node is deleted or it has been part of a rebuilding. (As a
consequence of this, you should not store each node’s cell as a member of the kd-tree
node, since otherwise updating these cells will take too much time. Instead, you should
compute cells on the fly as you traverse the tree.)

ArrayList<String> getPreorderList(): This operation generates a preorder enumeration
of the nodes in the tree. This is represented as a Java ArrayList of type String, with
one entry per node. You will probably implement this by writing a recursive helper
function that starts at the root. When it visits a node p, it does the following. If p

== null, then generate the string "[]" and return. Otherwise, generate the following
string and recursively invoke the procedure on the left and right children. Depending on
whether the cutting dimension is x or y, this generates either:

"(x=" + cutVal + " ht=" + height + ") " + point.toString()
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(see Lecture 13 notes)

Figure 2: Let maxHeightDifference = 1. (Note that this tree is not valid, since it fails the
height-difference condition at many nodes. We have chosen it to match the example from Lec-
ture 13.) Suppose we delete the point (35,60). We first perform the standard kd-tree dele-
tion as described in Lecture 13. Note that when the replacement point (50,30) is copied to
the root, the root’s cutting dimension does not change. At the end of the process, on returning
from the recursive calls, we update the node heights at (70,20) (now 0), (60,10) (now 1), and
(80,40) (now 2). At (60,80), the absolute height difference in the left and right subtrees is
2 − (−1) = 3, which exceeds maxHeightDifference. We rebuild this entire subtree highlighted
in blue. Since the cell (shaded in blue) is taller than wide, we cut horizontally. We sort along
y (yielding 〈(60,10), (70,20), (80,40), (90,60), (60,80)〉) and split about the median (80,40).
We recursively build the other subtrees similarly. We continue back up the root, updating heights,
but no further rebuilds are needed.
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"(y=" + cutVal + " ht=" + height + ") " + point.toString()

where cutVal is the cutting value for this node (that is, the coordinate of the node’s point
associated with the cutting dimension), height is the height of the subtree rooted at
this node, and point.toString() invokes the toString() method for the point stored
in this node. (This function will be provided to you as part of our skeleton code.)

Here is example of what this would look like for the tree at the top of Fig. 1.

(x=5.0 ht=3) SEA: (5.0,5.0)

(y=4.0 ht=2) IAD: (3.0,4.0)

(x=4.0 ht=0) LAX: (4.0,2.0)

[]

[]

(y=8.0 ht=1) DFW: (3.0,8.0)

(x=2.0 ht=0) ORD: (2.0,6.0)

[]

[]

(x=1.0 ht=0) SFO: (1.0,9.0)

[]

[]

(y=7.0 ht=1) DCA: (6.0,7.0)

(y=3.0 ht=0) JFK: (9.0,3.0)

[]

[]

(x=8.0 ht=0) BWI: (8.0,8.0)

[]

[]

Note that our autograder is sensitive to both case and whitespace.

ArrayList<LPoint> orthogRangeReport(Rectangle2D query): This function performs an
orthogonal range reporting query. It is given an axis-aligned rectangle query and it re-
turns a Java ArrayList containing the points lying within this rectangle. (You may find
it useful to use the function from class Rectangle2D, such as contains, leftPart, and
rightPart.) The order in which elements appear in the final list does not matter. We
will sort the list before outputting it.

void clear(): This removes all the entries of the tree.

int size(): Returns the number of points in the tree. For example, for the tree at the top
of Fig. 1, this would return 9.

void setHeightDifference(int newDiff): Update (4/19): You no longer need to im-
plement this operation.

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You should
replace the HBkdTree.java file with your own, and you should add the implementation of
the above functions to HBkdTree.java. You should not modify any of the other files, but you
can add new files of your own.

As mentioned above, you should not modify Point2D or Rectangle2D (since our testing
functions use these), but you can create copies and make modifications to these copies if you
like.
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You must use the package “cmsc420 s22” for all your source files. (This is required for
the autgrader to work.) As usual, we will provide a driver program (Tester.java and
CommandHandler.java) that will input a set of commands. Here is a portion of the class’s
public interface (and of course, you will add all the private data and helper functions). You
should not modify the signature of the public functions, but you are free to set up the internal
structure however you like.

package cmsc420_s22;

import java.util.ArrayList;

public class HBkdTree<LPoint extends LabeledPoint2D> {

public HBkdTree(int maxHeightDifference, Rectangle2D bbox) { /* ... */ }

public LPoint find(Point2D pt) { /* ... */ return null; }

public void insert(LPoint pt) throws Exception { /* ... */ }

public void delete(Point2D pt) throws Exception { /* ... */ }

// ... and so on

}

Efficiency requirements: Update (4/19): Excluding the time for rebuilding, the operations
find, insert, and delete must run in time proportional to the tree height. (Because of
rebalancing, the tree height will be O(log n).) The operation orthogRangeReport should be
efficient in the sense that it does not waste time making recursive calls into subtrees whose
cell does not overlap the query range. For this reason, the helper function for this operation
will need to test the node’s cell against the query range.

The operation size should run in constant time. (This is best handled by maintaining a
separate counter that keeps track of the number of points currrently in the structure.)

Testing/Grading: Update (4/19): We will use the standard Gradescope-based grading process
that we have used in previous assignments.
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CMSC 420: Spring 2022

Programming Assignment 3: Euclidean Minimum Spanning Trees

Handed out: Thu, Apr 28. Due: TBD.

Overview: The principal purpose of this assignment is to combine some of the data structures
we have seen to compute a fundamental geometric structure, called the Euclidean minimum

spanning tree (EMST).

Let us first recall the graph-based minimum spanning tree. Given a connected, undirected
graph G = (V,E) with vertex set V and edge set E, assume that each edge (u, v) ∈ E has an
associated weight w(u, v). A spanning tree is a subset of edges of E so that the subgraph of
G induced by these edges is connected, acyclic, and includes all the vertices of G. The weight
of the spanning tree is the sum of its edge weights. The minimum spanning tree (MST) is the
spanning tree of minimum weight. (If there are multiple spanning trees of the same minimum
weight, any of them is a valid answer to the MST problem.)

We can define the MST problem in a geometric context. We are given a set P = {p1, . . . , pn}
in R

2. This set implicitly defines a graph, called the Euclidean graph, whose vertex set is P ,
whose edges consist of all (unordered) pairs (pi, pj), and where the weight of an edge is the
Euclidean distance between these points. Note that |E| =

(

n
2

)

, so G has O(n2) size. The
Euclidean minimum spanning tree (EMST) is the MST of P ’s Euclidean graph (see Fig. 1).
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EMST(P )
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Point set P

Figure 1: Euclidean minimum spanning tree.

In this assignment, you will implement a class EMSTree, whose principal purpose is to compute
the EMST of a set of points in the plane efficiently. This class with provide functions for
adding points to the set, clearing the set, and computing the EMST of the set. As in our
previous assignment, it is templated with the point type, which as in the previous assignment
will be labeled point:

public class EMSTree<LPoint extends LabeledPoint2D>

The EMST will be computed by a geometric variant of Prim’s MST algorithm. In order
to achieve efficiency, your program will need to implement a kd-tree (e.g., your HBkdTree
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from Programming Assignment 2) augmented with a function for answering nearest-neighbor

queries and a priority queue (e.g., your QuakeHeap from Programming Assignment 1).

Points and Distances: As in the previous assignment, the points in our assignment will be any
class that implements the LabeledPoint2D interface, such as the Airport class.

The EMST has the same structure whether defined in terms of Euclidean distances or squared
Euclidean distances.1 By avoiding square roots, it will be both more efficient and more
accurate. Letting pi = (xi, yi), the weight of the edge between them will be the squared

Euclidean distance defined as

d(pi, pj) = (xi − xj)
2 + (yi − yj)

2.

To assist you, we have added a member function double distanceSq(Point2D q) to the
class Point2D, which computes the squared distance between the current point and another
point q. For example, the squared distance between points p and q can be computed as
p.distanceSq(q). This function has the feature that if the argument is null, it returns
Double.POSITIVE INFINITY.)

Prim’s Algorithm: Prim’s MST algorithm is given a starting vertex s0, and builds the spanning
tree by repeatedly adding the point that lies outside the tree, but is closest to some point of
the tree. A new point is added with each iteration. Let S denote the set of points that are
currently in the spanning tree (see the shaded region in Fig. 2). Initially S = {s0} and the
algorithm terminates when all the points of P are in S.
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DCA
DFW

IAD

LAX

SFO BWI

ORD

SEA

New nearest

(ORD,IAD)

S

P \ S

S

(IAD->LAX)

(ATL->LAX)

(ORD->SEA)

ATL

P \ S

neighbors:

Add:

Figure 2: Originally, S = {SFO, DFW, ORD, ATL} with the nearest-neighbor pairs (SFO,BWI),
(DFW,DCA),(ORD,IAD), and (ATL,IAD). The closest of these, (ORD,IAD) is added to the EMST, IAD
is added to S, and new nearest neighbors (ATL,IAD), (ORD,IAD), and (IAD,SEA) are computed.

Each point pi ∈ S computes its nearest point in the complement set P \ S (indicated by red
broken lines in the figure). Let’s call these the nearest neighbor pairs. Let (pi, pj) be the
closest of all the nearest neighbors. In the next iteration, this edge is added to the spanning
tree, pj is added to S, and we need to update the nearest neighbors. This will certainly
include pi, pj , and any it will also include any other points of S whose nearest neighbor was
pj (see Fig. 2). The process is repeated n − 1 times, after which all the points have been
added to the spanning tree.

Implementing this algorithm efficiently will involve a number of data structures.

1This fact is by no means obvious. In fact it holds for any strictly monotone function of distance.
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List: to store the edges of the spanning tree. This can be implemented using a Java
ArrayList or LinkedList. Since Java has no primitive type for storing a pair, we
will provide you with a simple generic class Pair in the skeleton code. You can create
a new pair (new Pair(a,b)), access its components (getFirst(), getSecond()), and
test equality (pair1.equals(pair2)).

Set: to maintain the points of S. This must support the operations insert and contains

(to test membership). This can be done using a Java HashSet.

Spatial index: to store the points of P \S waiting to be inserted into the EMST. This must
support the operations of insert, delete, and nearestNeighbor. In a nearest-neighbor
query, we are given a query point q, and the answer is the closest point in the tree to q.
This can be done using your HBkdTree from Programming Assignment 2, and adding a
nearest-neighbor function. (See Lecture 14 latex notes for details on how to do this.)

Priority Queue: to store the nearest-neighbor pairs ordered by their distance. Each entry
stores the associated pair of points (e.g., from Fig. 2, (SFO, BWI) is one of these pairs,
and the associated key is the squared distance d(SFO, BWI).) This can be implemented
using your QuakeHeap data structure from Programming Assignment 1.

Initially, all the points except the start point s0 are inserted into a kd-tree, we compute
s0’s nearest neighbor, and add this pair to the initially empty priority queue. Then we each
iteration, we extract the closest pair (pi, pj) from the priority queue, add this edge to the
spanning tree edge list, add pj to the set S, remove pj from the kd-tree, and finally update
the nearest neighbor pairs and insert them in the priority queue based on squared distances.

Dependents Lists: The final question that we need to answer is how to determine which points
of S need their nearest neighbors updated at the end of each iteration. Certainly, we need
to do this for the new point pj . In addition, every point pk ∈ S that depends on pj as its
nearest neighbor must also be updated.

We say that pk depends on pj ∈ P \S if pj is the nearest neighbor of pk. The set of all points
in S that depend on pj constitute its dependents list, denoted dep(pj). Whenever a point
pj ∈ P \ S is added to the spanning tree, we need to update the nearest neighbor of pj and
all the members of dep(pj). For example, for the situation shown on the right side of Fig. 2,
we have the following. (Note that the points of S do not need dependents lists.)

Point (p) Dependency list (dep(p))

BWI {SFO}
DCA {DFW}
SEA {}
IAD {ORD, ATL}
LAX {}

Each such list can be stored, for example, as a Java ArrayList. There is one for each point
of P \ S. Initially, all of these lists are empty. Whenever we add an entry (pi, pj) is added to
the priority queue, we add pi to dep(pj) as well.

So, when pj is added to the spanning tree, we iterate through the members of dep(pj) and
compute its new nearest neighbor. But now the question emerges, how to we access this
dependency list efficiently? We can do this by creating one more data structure:
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Hash Map: to store the points of P \ S. Each element of the map is associated with its
dependents list. This can be done using a Java HashMap.

In the parlance of this assignment, each point is a labeled point, say LPoint. An array
list of points is of type ArrayList<LPoint>. A hash map that maps a point to its
associated dependents list is therefore HashMap<LPoint, ArrayList<LPoint>>. If we
create such an object, called, say, dependents, and given a point pt, we can access
dep(pt) with: ArrayList<LPoint> dep = dependents.get(pt).

Redundant Priority Queue Entries: There is a subtle issue with our algorithm as described.
Whenever we compute a new nearest-neighbor pair (pi, pj) to add to our priority queue, it is
possible that there was already a nearest neighbor pair (pi, p

′

j) in the queue. Ideally, we should
remove this from the priority queue, but most priority queues (including our QuakeHeap) do
not support deletion.

There is an easy fix, however. The only reason that one pair (pi, pj) overrides another (pi, p
′

j)
is that p′j was added to the spanning tree. Whenever we remove a pair (pi, p

′

j) from the
priority queue, we check whether p′j is in the tree. We can do this efficiently by accessing our
set data structure for S. If so, we ignore this edge and go on to the next one.

Summary: That’s a lot of data structures! But this is typical of many efficient algorithms. We
need to access the various structures as efficiently as possible, and the best way to do this
is to store them in an appropriate data structure. Fig. 3 demonstrates the iterations of the
algorithm. For further information about the algorithm, consult the lecture notes.
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Figure 3: Prim’s EMST algorithm walkthrough.

Requirements: Your program will implement the following functions for the EMSTree. While you
can implement the operations internally however you like (subject to the style and efficiency
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requirements given below), the following function signatures should not be altered. As part
of the skeleton code, we will provide you with the LabeledPoint2D interface, and two useful
classes, Point2D and Rectangle2D. (If you wish to modify these objects, do not alter them.
Instead, create your own copy, say MyPoint2D, and make modifications there.)

EMSTree(Rectangle2D bbox): This initializes by creating the basic objects (set, kd-tree,
heap, hashmap) needed by the EMST algorithm. The bounding box can be passed into
your constructor for your kd-tree. You may set the other parameters for the kd-tree and
quakeheap as you like. (We would suggest using a max-height-difference of 2 for your
kd-tree and a number of levels of 10 for your quakeheap.)

void addPoint(LPoint pt): This inserts a point into the set P of points that will form the
EMST. The EMST is not constructed at this point, and no error checking is done.

We would recommend doing two things. First, insert pt into your set of points P . Sec-
ond, create a dependents list for this point. If you are using a hash map of array lists for
dependents, this can be done with dependents.put(pt, new ArrayList<LPoint>()).

void clear(): This removes all the points from your points set P , clears the edge list for
the EMST. You can also clear the kd-tree, the priority queue, and the hash map used
for the dependents lists.

int size(): Returns the current number of points in P .

ArrayList<String> buildEMST(LPoint start) throws Exception: Builds the EMST for
the current point set P , where start is the starting vertex (called s0 above). For
the purposes of testing, it returns a Java ArrayList of strings (described below) that
provides a summary of the construction process.

This function checks for the validity of the point set. If any point lies outside the bound-
ing box, it throws an Exception with the error message "Attempt to insert a point

outside bounding box". If there are two or more points with the same coordinates,
it throws an Exception with the message "Attempt to insert a duplicate point".
(Update: 4/30) If multiple points fail these conditions, the first to be added triggers the
exception. If an exception is thrown, the EMST that results is empty.

This function computes the entire EMST. It begins by clearing out the point set S, the
list of tree edges, the kd-tree, and the priority queue. It clears the dependents lists for
all the points. It inserts all the points into the kd-tree except the start point. And then
it starts Prim’s algorithm.

ArrayList<String> listTree(): This lists the edges of the EMST. If the tree has not yet
been built (e.g., points were added but buildEMST was not called) then it returns an
empty list. Otherwise, it returns the edges in the order that they were added by Prim’s
algorithm. Assuming that you represent your each edges as Pair<LPoint>, the edge e

could be listed using:

"(" + e.getFirst().getLabel() + "," + e.getSecond().getLabel() + ")"

For example, the tree shown in Fig. 3 would generate an array list with the following 6
entries

"(SFO,DFW)" "(DFW,ORD)" "(ORD,ATL)" "(ORD,IAD)" "(IAD,SEA)" "(SEA,DCA)"
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Summary of buildEMST: The array list returned by your buildEMST function (see above)
summarizes the algorithm’s processing. It contains a line for every new point inserted
into the EMST. The first line just gives the pair consisting of the start vertex (start)
and its nearest-neighbor (nn),

"new-nn: (" + start.getLabel() + "->" + nn.getLabel() + ")"

(This is the first entry that is placed in your priority queue.)

For each remaining point added to the tree, it prints the newly added edge. If you store
your edge as a Pair object, you can just rely on the toString method provided by this
object. For example, if edge denotes the newly created pair, of type Pair<LPoint>, the
added edge is reported with:

"add: " + edge + " new-nn:"

Following this, on the same line, you will output all the updated nearest-neighbor pairs.
For each new nearest-neighbor pair consisting of a point pt from S and its nearest
neighbor nn from P \ S, the output consists of the labels of these two points:

"(" + pt.getLabel() + "->" + nn.getLabel() + ")"

For example, when we added the edge (DFW,ORD) in Fig. 3, we generated the following
new nearest-neighbor pairs:

(DFW->SEA) (ORD->ATL) (SFO->ATL)

There is one final issue. For testing purposes, we need your nearest-neighbor list to
match ours exactly. For this reason, you should sort the entries of this list. You can do
this easily using Collections.sort. (There is no need to design a special comparator.)

Below, we given an example of the seven entries in the array list returned by buildEMST

on the example from Fig. 3. (The “... more, omitted” is not really in the string.
We just ran out of space!)

new-nn: (SFO->DFW)

add: (SFO:(12.0,88.0)--DFW:(30.0,84.0)) new-nn: (DFW->ORD) (SFO->ORD)

add: (DFW:(30.0,84.0)--ORD:(19.0,58.0)) new-nn: (DFW->SEA) (ORD->ATL) (SFO->ATL)

add: (ORD:(19.0,58.0)--ATL:(5.0,51.0)) new-nn: (ATL->IAD) (ORD->IAD) (SFO->IAD)

add: (ORD:(19.0,58.0)--IAD:(32.0,41.0)) new-nn: (ATL->SEA) (IAD->SEA) (ORD->SEA) (SFO->SEA)

add: (IAD:(32.0,41.0)--SEA:(51.0,53.0)) new-nn: (ATL->DCA) (DFW->DCA) ... more, omitted

add: (SEA:(51.0,53.0)--DCA:(65.0,68.0)) new-nn:

Skeleton Code: As usual, we will provide skeleton code on the class Projects Page. You should
replace the EMSTree.java file with your own. We have provided a number of utility objects
for you, include the Point2D, Rectangle2D, and Airport from the previous assignment. We
have also provided Pair for storing edges.

You must use the package “cmsc420 s22” for all your source files. (This is required for
the autgrader to work.) As usual, we will provide a driver program (Tester.java and
CommandHandler.java) that will input a set of commands. Here is a portion of the class’s
public interface (and of course, you will add all the private data and helper functions). You
should not modify the signature of the public functions, but you are free to set up the internal
structure however you like.
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package cmsc420_s22;

import java.util.ArrayList;

public class EMSTree<LPoint extends LabeledPoint2D> {

public EMSTree(Rectangle2D bbox) { ... }

public void addPoint(LPoint pt) { ... }

public void clear() { ... }

public int size() { ... }

public ArrayList<String> buildEMST(LPoint start) throws Exception { ... }

public ArrayList<String> listEMST() { ... }

// ... and so on

}

Hints: (Update: 4/30) Here are some of the data objects that were referred to in the above
descriptions and how they might be implemented. These are best implemented as private
members of your EMSTree structure. (The following are only suggestions, and you may
implement these how you, subject to the efficiency requirements below.)

ArrayList<LPoint> pointList All the points (P )
HashSet<LPoint> inEMST Subset of points in the tree (S)
ArrayList<Pair<LPoint>> edgeList List of edges in the EMST
HBkdTree<LPoint> kdTree The kd-tree for P \ S
QuakeHeap<Double, Pair<LPoint>> heap priority queue of NN pairs
HashMap<LPoint, ArrayList<LPoint>> dependents dependents lists

We will provide the same objects as in Programming Assignment 2, including Point2D,
Rectangle2D, and a simple class Pair for storing pairs. Although we have included skeletons
of QuakeHeap.java and HBkdTree.java in the skeleton code, you can replace them with any
objects you wish.

Efficiency requirements: (Update 4/30) While you are encouraged to use your own QuakeHeap
and HBkdTree data structures, you are allowed to use any comparably efficient structure
(e.g., you may use Java’s built-in PriorityQueue data structure). You may substitute other
structures for the ones we have recommended (e.g., HashSet, HashMap, ArrayList) provided
that the required operations can be performed efficiently, say in O(log n) time.

Testing/Grading: (Update 4/30) We will use the standard Gradescope-based grading process
that we have used in previous assignments.

The autograder will provide files Point2D.java, LabeledPoint2D.java, Rectangle2D.java,
Pair.java, Tester.java, and CommandHandler.java. You will need to upload all other files
as needed by your program. At a minimum, this will consist of EMSTree.java. If you use
any other files, such as QuakeHeap.java and HBkdTree.java, these will be uploaded as well.
(Update 5/1) An example of what your Gradescope submission window might look like is
shown in Fig. 4
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Figure 4: Possible Gradescope submission window.
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CMSC 420: Spring 2022

Homework 1: Basic Data Structures and Trees

Handed out Tue, Feb 8. Due at 11:59pm, Tue, Feb 15. Point values given with each problem
may vary. Please see the notes at the end about submission instructions.

Problem 1. (25 points) Answer the following questions involving the rooted trees shown in Fig. 1.

(a) (4 points) Consider the rooted tree of Fig. 1(a). Draw a figure showing its representation
in the “first-child/next-sibling” form.

(a) (b)
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root

Figure 1: Rooted trees.

(b) (4 points) Consider the rooted tree of Fig. 1(b) represented in the “first-child/next-
sibling” form. Draw a figure showing the equivalent rooted tree.

(c) (6 points) List the nodes of the tree of Fig. 1(a) in preorder. List them in postorder.

(d) (9 points) List the nodes of the tree of Fig. 1(c) in preorder. List them in inorder. List
them in postorder.

(e) (2 points) Consider the binary tree of Fig. 1(c). Draw a figure showing the tree with
inorder threads (as in Fig. 7 from the latex lecture notes for Lecture 3).

Problem 2. (5 points) Present pseudocode for a procedure int getHeight(Node root), which
is given the root of a tree represented using the first-child/next-sibling representation, and
returns the height of the tree. For full credit your procedure should run in time proportional
to the number of nodes in the tree. (For example, given the tree shown in Fig. 1(b), your
function would return three.)

Give a short explanation in English how your procedure works. Hint: Use recursion.

Problem 3. (5 points) You have a binary trees in which each node, in addition to having links
left, right, has a link parent, which points to the node’s parent (and note that root.parent
== null).

Present pseudocode for a function Node inorderSuccessor(Node p), which returns p’s in-
order successor, that is, the node that follows p in an inorder traversal. If p is the last
node in the inorder traversal, your function should return null. (For example, given the
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tree shown in Fig. 1(c), inorderSuccessor(c) would return the node labeled “i” and
inorderSuccessor(h) would return the node labeled “a”.)

Give a short explanation in English how your procedure works.

Hint: You should not assume that this is a binary search tree. If you want to know whether
a node p is the left or right child of its parent, you can do “if (p == p.parent.left)”. Of
course, beware of dereferencing null pointers.

Problem 4. (5 points) Suppose that you have a rooted tree, where all the leaves are at the same
depth. We partition the nodes of the tree into levels as follows. The leaves are at level 0,
their parents are at level 1, their grandparents are at level 2, and so on up to the root, which
is at some level L (see Fig. 2). Let n denote the number of leaf nodes (all at level 0), and
generally, for 0 ≤ i ≤ L, let ni denote the number of nodes on level i of this tree.

a

f

c

g h i j k l m

b d e

Level: i ni

0 8

1 4

2 1

Figure 2: A tree with maximum level L = 2.

Suppose that the number of nodes in each level decreases by at least some constant factor,
that is, suppose that there is a fixed real number 0 < α < 1 (which does not depend on n
or L) such that ni+1 ≤ αni, for 0 ≤ i < L. Prove that there exists a constant c (depending
on α) such that L ≤ c lg n. (Recall that lg means logarithm base 2.) You should derive the
smallest value of c such that this holds.

Hint: If you have difficulty solving this, you can solve the following more concrete version for
half credit. Suppose that the number of nodes in each level decreases by at least one third,
that is, ni+1 ≤ ni/3. Prove that L ≤ (lg n)/(lg 3). (Recall that lg means logarithm base 2.)

Problem 5. (10 points) In this problem, we will consider modification and generalization of the
amortized analysis of the dynamic stack algorithm from Lecture 2. We will make two changes:
(1) we will slightly change the algorithm and cost model when expanding the stack, and (2)
we will allow the stack to contract when the number of elements gets too small.

Throughout, let n denote the number of elements in the stack, and let m denote the size of
the current array. Here is a formal description of our new dynamic stack and the actual cost
of the two stack operations. We assume that we start with an array of size m = 1 containing
n = 0 elements. Throughout, we maintain the condition that (unless the stack is empty)
m

4
< n < m.

push(x): Add x to the top of the stack and increase n by one. (This is always possible, by
our assumption that n < m).

If n < m (normal case), we are done, and the actual cost is +1. On the other hand, if
n = m (overflow case), we double the array size (setting m← 2m), allocate a new array
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of this doubled size, copy the contents of the stack into the new array (see Fig. 3(a)).
Letting n denote the number of elements after the push, the actual cost is n + 1 (+1
for the push, and n for the time to copy the elements). Observe that the new array is
exactly half full.
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Figure 3: Expanding/Shrinking stack.

pop(): If n = 0, there is nothing to pop, and we return null, at an actual cost of +1.
Otherwise, we pop the top element from the stack, and decrease n by one.

If after the pop, n > m

4
(normal case), we are done, and the actual cost is +1. On

the other hand, if after the pop we have n ≤ m

4
and m ≥ 2 (underflow case), we halve

the array size (setting m ← m

2
), allocate a new array of this halved size, and copy the

contents of the stack into the new array (see Fig. 3(b)). Letting n denote the number of
elements after the pop, the actual cost is n + 1 (+1 for the pop, and n for the time to
copy the elements). Observe that the new array is exactly half full.

The objective of this problem is to show that, over a long sequence of operations, the amortized
cost (that is, the total actual cost divided by the number of operations) is some constant.
We assume that we start within an empty stack (n = 0 and m = 1). Define run to be the
sequence of operations starting just after the last array reallocation and running through the
next array reallocation.

(a) (5 points) Suppose that the array size is m at the start of the run (and hence n = m/2),
and the run ends with an expansion to size 2m. Prove that there exists is a constant
α1 so that the amortized cost of the run (that is, the total cost of operations divided by
the number of operations) is at most α1.

(b) (5 points) Suppose that the array size is m at the start of the run (and hence n = m/2),
and the run ends with a contraction to size m

2
. Prove that there exists is a constant α2

so that the amortized cost of the run (that is, the total cost of operations divided by the
number of operations) is at most α2.

For full credit, in each case compute the smallest value of α that works. You may assume
that n is very large, so small additive constant terms do not matter.
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Note: Challenge problems are not graded as part of the homework. The grades are recorded
separately. After final grades have been computed, I may “bump-up” a grade that is slightly below
a cutoff threshold based on these extra points. (But there is no formal rule for this.)

Challenge Problem: Consider the setup in Problem 4 but suppose that the number of nodes
decreases even faster. In particular, suppose that ni+1 ≤

√
ni. Prove that there is a constant

c such that L ≤ c lg lg n (that is, the log of the log of n). Since
√
1 = 1, we could loop

infinitely at the root level. Let’s assume we end at level L, where nL = 2.

General note regarding coding in homeworks: A common question at the start of the semester
is “how much detail are you expecting?” You will figure this out as the semester goes on, but here
are some basic guidelines.

Prove vs. Show: If we ask you to “prove” something, we are looking for a well structured proof.
If you are applying induction, please be careful to distinguish your basis case(s) and indicate
what your induction hypothesis is. If we ask you to “show,” “explain,” or “justify”, we are
usually just expecting a brief English explanation. If you are unsure, please check.

Algorithm vs. Pseudocode: When we ask for an “algorithm” we are expecting a high-level
description of some computational process, usually in a combination of English and mathe-
matical notation (e.g., “sort the n keys and locate x using binary search”). For the latter, we
are expecting a more detailed step-by-step description that look much more like Java (e.g.,
“Node q = p.left”).

Remember that you are writing your code to be read by a human, and not a Java compiler.
Please omit extraneous details that are easily converted into Java. For example, it is easier to
understand “i = ⌈n/m⌉” than “int i = (int) Math.ceil((double) n / (double) m))”.

Even if we do not explicitly ask for it, whenever you give an algorithm or pseudocode, you
should always provide a brief English explanation. This helps the grader understand
what your intentions are, and if there is a small error in your code, we can often use your
explanation to understand what your actual intentions were. Even if your solution is

technically correct, we reserve the right to deduct points if it is not clear to us

why it is correct.

Submission Instructions: Please submit your assignment as a pdf file through Gradescope. Here
are a few instructions/suggestions:

❼ You can typeset, hand-write, or use a tablet or any combination. We just need a readable
pdf file with all the answers. Be generous with figures and examples. If there is a minor error
in your pseudo-code, but the figure illustrates that you understood the answer, we can give
partial credit.

❼ When you submit, Gradescope will ask you to indicate which page each solution appears on.
Please be careful in doing this! It greatly simplifies the grading process for the graders,
since Gradescope takes them right to the page where your solution starts. If done incorrectly,
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the grader may miss your answer, and you may receive a score of zero. (If so, you can appeal.
But hunting around for your answer is troublesome, and it is always best to keep the grader
in a good mood!) This takes a few minutes, so give yourself enough time if you are working
close to the deadline.

❼ Try to keep the answer to each subproblem (e.g. 5.2) on a single page. You can have multiple
subproblems on the same page, but Gradescope displays one one page at a time. It is easiest
to grade when everything needed is visible on the same page. If your answer spans multiple
pages, it is a good idea to indicate this to alert the grader. (E.g., write “Continued” or “See
next page” at the bottom of the page.)

❼ Most scanners (including your phone) do not take very good pictures of handwritten text.
For this reason, write with dark ink on white paper. Use an image-enhancing app such as
CamScanner or Genius Scan to improve the contrast.

❼ Writing can bleed through to the other side. To be safe, write on just one side of the paper.

❼ Students often ask me what typesetting system I use. I use LaTeX for text. This is commonly
used by academicians, especially in math, CS, and physics, and is worth taking the time to
learn if you are thinking about doing research. If you use LaTeX, I would suggest downloading
an IDE, such as TeXnicCenter or TeXstudio. I draw my figures using a figure editor called
IPE for drawing figures.

5
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CMSC 420: Spring 2022

Homework 2: Search Trees

Handed out Tue, Feb 22. Due Wed, Mar 2, 11:59pm. Point values are tentative and subject to
change.

Important! Solutions will be discussed in class on Thu, Mar 3, so no late submissions will be

accepted. Turn in whatever you have completed by the due date.

Problem 1. (12 points) Consider the AVL tree shown in Fig. 1.

6

7 12

11

10

9

8

17

15

14

16 20

19

18

13

1

2

3

4

5

Figure 1: AVL Trees.

(a) (5 points) Draw the tree again, indicating the balance factors associated with each node.

(b) (7 points) Show the tree that results from the operation delete(19), after all the re-
balancing has completed. (We only need the final tree. You can provide intermediate
results for partial credit.)

Problem 2. (12 points) Consider the AA trees shown in Fig. 2.

insert(3)

13

1 7 9

5

6

8

10 15

14 16 1

delete(5)

4

5 7

6 8

3

2

(a) (b)

2

4 11

13

11

12 149 10

Figure 2: AA Trees.
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(a) (6 points) Show the result of performing the operation insert(3) into the tree in
Fig. 2(a).

(b) (6 points) Show the result of performing the operation delete(5) from the tree in
Fig. 2(b).

(In both cases, we only need the final tree. You can provide intermediate results for partial
credit. If you don’t have two different colored pens, you can indicate red nodes with dashed
edges and/or encircle circle groups of nodes as we do in our figures.)

Problem 3. (7 points) Recall the right rotation operation for a binary tree (given in Lecture 5).

Node rotateRight(Node p) {

Node q = p.left

p.left = q.right

q.right = p

return q

}

Suppose that we wish to apply this to a threaded binary tree using inorder threads (defined
in Lecture 3). Explain what modifications (if any) are needed to perform a right rotation at
node p so that after your modified function executes, all child links and threads are properly
set. You may assume that the call is valid, in particular, p is non-null and p’s left-child link
is standard parent-child pointer, and not a thread. Present your modified pseudocode and
briefly explain why it is correct.

Note 1: Recall that the boolean’s leftIsThread and rightIsThread are used to indicate
that the left/right child link is a thread. These values may also need to be updated.

Note 2: It is possible that the rotation operation cannot be defined because it involves global
knowledge of the tree structure beyond what is accessible through node p. If this is so, please
explain why this is the case.

Problem 4. (7 points) Recall the code (shown below) for the operations skew and split for
AA-trees (from Lecture 7).

AANode skew(AANode p) { | AANode split(AANode p) {

if (p == nil) return p | if (p == nil) return p

if (p.left.level == p.level) { | if (p.right.right.level == p.level) {

AANode q = p.left | AANode q = p.right

p.left = q.right | p.right = q.left

q.right = p | q.left = p

return q | q.level += 1

} | return q

else return p | }

} | else return p

| }

Also recall that each invocation of the insert function, the last line is “return split(skew(p))”.
There is an interesting phenomenon that sometimes occurs. It is illustrated in Fig. 3.
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Figure 3: Ineffective skew-split combination.

Observe that the invocation of skew(8) results in a right rotation at 8 and returns a reference
to node 6. The subsequent invocation of split(6) results in a left rotation at 8 (thus undoing
the previous rotation). It then promotes 8 to the next higher level. These two rotations
effectively undo each other, and we call this skew-split combination ineffective.

In an effort to improve the efficiency of the AA tree, your task is to write an “effective”
variant of skew-split. Your function, called effectiveSkewSplit(p) must be functionally
equivalent to split(skew(p)). That is, it must have the same effect on the tree’s structure,
and it must return the same result. The only difference is that, it detects when an ineffective
skew-split is about to occur and avoids doing the two rotations.

Present pseudocode for your function and explain why it is correct. As with skew and split,
your function should run in O(1) time.

Problem 5. (12 points) Each node of a 2-3 tree may have either 2 or 3 children, and these nodes
may appear anywhere within the tree. Let’s imagine a much more rigid structure, where the
node types alternate between levels. The root is a 2-node, its two children are both 3-nodes,
their children are again 2-nodes, and so on (see Fig. 4). Generally, depth i of the tree consists
entirely of 2-nodes when i is even and 3-nodes when i is odd. (Remember that the depth of a
node is the number of edges on the path to the root, so the root is at depth 0.) We call this
an alternating 2-3 tree. While such a structure is too rigid to be useful as a practical data
structure, its properties are easy to analyze.

18

6 : 12

93 15

24 : 30

2721 33

4 : 51 : 2 all 3-nodes

0

1

2

Figure 4: Alternating 2-3 tree.

(a) (6 points) For i ≥ 0, define n(i) to be the number of nodes at depth i in an alternating
2-3 tree. Derive a closed-form mathematical formula (exact, not asymptotic) for n(i).
Present your formula and briefly explain how you derived it.

By “closed-form” we mean that your answer should just be an expression involving stan-
dard mathematical operations. It is not allowed to involve summations or recurrences,
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but it is allowed to include cases, however, such as

n(i) =

{

. . . if i is even

. . . if i is odd.

(b) (6 points) For i ≥ 0, define k(i) to be the number of keys stored in the nodes at depth i

in an alternating 2-3 tree. (Recall that each 2-node stores one key and each 3-node stores
2 key). Derive a closed-form mathematical formula for k(i). Present your formula and
briefly explain how you derived it. (The same rules apply for “closed form”, and further
your formula should stand on its own and not make reference to n(i) from part (a).)

Challenge Problem 1: Continuing Problem 5 on the alternating 2-3 tree, for i ≥ 0, define N(i)
to be the total number of nodes in all depths from 0 through i, and define K(i) to be the total
number of keys in all depths from 0 through i. Derive a closed-form mathematical formula
for N(i) or K(i) (your choice). Present your formula and briefly explain how you derived it.
As before, your formula should stand on its own and not make reference to n(i) or k(i).)

Challenge Problem 2: This problem is actually quite simple, but the “challenge” is to familiarize
yourself with the section of the Latex lecture notes, Lecture X01, that discusses the amortized
analysis of quake heaps.) In this problem we are going to do a walk-through of the amortized
analysis of Quake Heaps for a single example of extract-min shown in Fig. 5.

(f)

9

nodeCt[2] = 4 > 3
4 · nodeCt[1] = 3.75!!

quake()
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Figure 5: Quake Heap amortized analysis.
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Recall that the potential for the data structure is defined to be Ψ = N + 2R+ 4B, where N

is the total number of nodes (both internal nodes and roots), R is the number of root nodes,
and B is the number of nodes that have exactly one child (so called “bad nodes”).

(a) Consider the initial quake heap shown in Fig. 5(a). For this tree, what are the values of
N , R, B, and the potential Ψ?

(b) First, the algorithm searches all the roots to find the smallest key. Let Tb denote the
actual cost, namely number of roots roots visited. What is Tb? Has the potential changed
at all?

(c) Second, we delete all the nodes along the left path leading to the minimum root 4 (see
Fig. 5(b)-(c)). Let Tc denote the actual number of nodes deleted. What is the value of
Tc, and what is the net change to N , R, and B as a result? (Note that we have created
some new roots in the process. If the number decreases, then the net change is negative.)
Let ∆Ψc denote the net change to the potential. What is ∆Ψc and what is the total
contribution Tc +∆Ψc to the amortized cost?

(d) Next, we perform merge-trees (see Fig. 5(e)). Let Td denote the actual cost of the number
of new nodes created by the merging process. What is the value of Td, and what is the
net change to N , R, and B as a result? Let ∆Ψd denote the net change to the potential.
What is ∆Ψd and what is the total contribution Td +∆Ψd to the amortized cost?

(e) Finally, we perform the quake operations (see Fig. 5(f)). Let Te denote the actual cost
of the number of new nodes deleted by the quake operations. What is the value of Te,
and what is the net change to N , R, and B as a result? Let ∆Ψe denote the net change
to the potential. What is ∆Ψe and what is the total contribution Te + ∆Ψe to the
amortized cost?

(f) In summary, what is the total actual costs from this operation T = Tb + · · ·+ Te, what
is the total change in potential ∆Ψ = ∆Ψc + · · ·∆Ψe, and what is the final amortized
cost T +∆Ψ? (Note that total amortized cost may be negative, since we have improved
the structure more than the actual amount of work needed to perform the operations.)
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CMSC 420: Spring 2022

Practice Problems for Midterm 1

The exam will be held in class on Tue, Mar 8. It is close-book, closed-notes, but you will be
allowed one sheet of notes, front and back.

Problem 0. Expect at least one question of the form “apply operation X to data structure Y ,”
where X is a data structure that has been presented in lecture. (Likely targets: AVL trees,
2-3 trees, AA trees, treaps, skiplists). Here is an example from last semester.

(a) Consider the 2-3 tree shown the figure below. Show the final tree that results after the
operation insert(6). When rebalancing, use only splits, no adoptions (key rotations).

2

1 3 5 : 7 9 14

8 : 12

4

15

30

23 272017 25

21 : 26

32 : 36

2418

Figure 1: 2-3 tree insertion and deletion.

(b) Returning to the original tree, show the final tree that results after the operation
delete(20) When rebalancing, you may use both merge and adoption (key rotation). If
either operation can be applied, give priority to adoptions.

In both cases, you should use the algorithm presented in class. (You will receive partial credit
if you produce a valid 2-3 tree, but not using the algorithm from class.)

Hint: Don’t waste too much time showing intermediate results. You can return to this if
you have spare time.

Problem 1. Short answer questions. Except where noted, explanations are not required, but may
be given to help with partial credit.

(a) A binary tree is full if every node either has 0 or 2 children. Given a full binary tree
with n total nodes, what is the maximum number of leaf nodes? What is the minimum
number? Give your answer as a function of n (no explanation needed).

(b) True or false? Let T be extended binary search tree (that is, one having internal and
external nodes). In an inorder traversal, internal and external nodes are encountered in
alternating order. (If true, provide a brief explanation. If false, show a counterexample.)
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(c) True or false? In every extended binary tree having n external nodes, there exists an
external node of depth ≤ ⌈lg n⌉. Explain briefly. Hint: Read this carefully before

answering.

(d) You have a binary tree with inorder threads (for both inorder predecessor and inorder
successor). Let u and v be two arbitrary nodes in this tree. True or false: There is a
path from u to v, using some combination of child links and threads. (No justification
needed.)

(e) What are the minimum and maximum number of levels in a 2-3 tree with n nodes.
(Define the number of levels to be the height of the tree plus one.) Hint: It may help to
recall the formula for the geometric series:

∑
m−1

i=0
ci = (cm − 1)/(c− 1).

(f) You are given a 2-3 tree of height h, which has been converted into an AA-tree. As
a function of h, what is the minimum number of red nodes that might appear on any
path from a root to a leaf node in the AA tree? What is the maximum number? Briefly
explain.

(g) Unbalanced search trees, treaps and skiplists all support dictionary operations inO(log n)
“expected time.” What difference is there (if any) in the meaning of “expected time” in
these contexts?

(h) You have a valid AVL tree with n nodes. You insert two keys, one smaller than all
the keys in the tree and the other larger than all the keys in the tree, but you do no
rebalancing after these insertions. True or False: The resulting tree is a valid AVL
tree. (Briefly explain.)

(i) By mistake, two keys in your treap happen to have the same priority. Which of the
following is a possible consequence of this mistake? (Select one)

(i) The find algorithm may abort, due to dereferencing a null pointer.

(ii) The find algorithm will not abort, but it may return the wrong result.

(iii) The find algorithm will return the correct result if it terminates, but it might go
into an infinite loop.

(iv) The find algorithm will terminate and return the correct result, but it may take
longer than O(log n) time (in expectation over all random choices).

(v) There will be no negative consequences. The find algorithm will terminate, return
the correct result, and run in O(log n) time (in expectation over all random choices).

(j) You are given a sorted set of n keys x1 < x2 < · · · < xn (for some large number n).
You insert them all into an AA tree in some arbitrary order. No matter what insertion
order to choose, one of these keys cannot possibly be a red node. Which is it? (Briefly
explain)

(k) You are given a skip list storing n items. What is the expected number of nodes that are
at level 3 and higher in the skip list? (Express your answer as a function of n. Assume
that level 0 is the lowest level, containing all n items. Also assume that the coin is fair,
return heads half the time and tails half the time.)

Problem 2. You are given a degenerate binary search tree with n nodes in a left chain as shown
on the left of Fig. 2, where n = 2k − 1 for some k ≥ 1.
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(a) Derive an algorithm that, using only single left- and right-rotations, converts this tree
into a perfectly balanced complete binary tree (right side of Fig. 2).

a

c

d

e

f

g

b

d

a

b

c e g

f

Figure 2: Rotating into balanced form.

(b) As an asymptotic function of n, how many rotations are needed to achieve this? O(log n)?
O(n)? O(n log n)? O(n2)? Briefly justify your answer.

Problem 3. You are given a binary search tree where, in addition to the usual fields p.key,
p.left, and p.right, each node p has a parent link, p.parent. This points to p’s parent,
and is null if p is the root. Given such a tree, present pseudo-code for a function

Node preorderPred(Node p)

which is given a non-null reference p to a node of the tree and returns a pointer to p’s preorder
predecessor in the tree (or null if p has no preorder predecessor). Your function should run
in time proportional to the height of the tree. Briefly explain how your function works.

Problem 4. Recall that in a binary tree the depth of a node is defined to be the number of edges
from the root to the node. The height of a node is defined to be the height of the subtree
rooted at this node, that is, the maximum number of edges on any path from this node to
one of its leaves.

In this problem, we will consider some questions involving nodes of a particular depth and
height in an AVL tree. Let us assume (as in class) that an AVLNode stores its key, value,
left, right, and height, and let us assume that the AVLTree stores a pointer to the root

node.
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listAtDepth(2) = 〈3, 6, 13, 21〉

listAtHeight(1) = 〈3, 13, 18〉

Figure 3: AVL tree heights and depths.
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(a) Present an algorithm listAtHeight(int h), which is given an integer h ≥ 0, and
returns a list (e.g., a Java ArrayList) containing all the keys, in increasing order, asso-
ciated with all the nodes that are at height h in the AVL tree. If there are no nodes at
height h, the function returns an empty list.

For example, in Fig. 3, the call listAtHeight(1) would return the list 〈3, 13, 18〉.

Briefly explain how your algorithm works, present a description (pseudocode preferred
or a clear English explanation), and briefly explain its running time. The running time
should be proportional to the number of nodes at height ≥ h. (For example, in the case
of listAtHeight(1), there are 7 nodes of equal or greater height.)

(b) Present an algorithm listAtDepth(int d), which is given an integer d ≥ 0, and returns
a list (e.g., a Java ArrayList) containing all the keys, in increasing order, associated
with all the nodes that are at depth d in the AVL tree. If there are no nodes at depth d,
the function returns an empty list. Note: Nodes do not store their depths, only their
heights.

For example, in Fig. 3, the call listAtDepth(2) would return the list 〈3, 6, 13, 21〉.

In each of the coding problems, briefly explain how your algorithm works, present a
description (pseudocode preferred or a clear English explanation), and briefly explain its
running time. The running time of your algorithm should be proportional to the number
of nodes at depths ≤ d. (For example, in the case of listAtDepth(2), there are 7 nodes
of equal or lesser depth.)

(c) Prove that in any AVL tree, the maximum number of nodes that there are can be at
depth d ≥ 0 is 2d. (Hint: This is intended to be easy. Even so, please give a short
proof, even you think the observation is “obvious”.)

(d) Given any AVL tree T and depth d ≥ 0, we say that T is full at depth d if it has 2d

nodes at depth d. (For example, the tree of Fig. 3 is full at depths 0, 1, and 2, but it is
not full at depths 3 and 4.) Prove that for any h ≥ 0, an AVL tree of height h is full at
all depths from 0 up to ⌊h/2⌋. (For example, the AVL tree of Fig. 3 has height 4, and
is full at levels 0, 1, and 2.)

Problem 5. Consider the following possible node structure for 2-3 trees, where in addition to the
keys and children, we add a link to the parent node. The root’s parent link is null.

class Node23 { // a node in a 2-3 tree

int nChildren // number of children (2 or 3)

Node23 child[3] // our children (2 or 3)

Key key[2] // our keys (1 or 2)

Node23 parent // our parent

}

Assuming this structure, answer each of the following questions:

(a) Present pseudocode for a function Node23 rightSibling(Node23 p), which returns a
reference to the sibling to the immediate right of node p, if it exists. If p is the rightmost
child of its parent, or if p is the root, this function returns null. (For example, in Fig. 4,
the right sibling of the node containing “2” is the node containing “8:12”. Since the
node containing “8:12” is the rightmost node of its parent (“4”), it has no right sibling.)
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Figure 4: Sibling and level successor in a 2-3 tree.

Your function should run in O(1) time.

(b) For a node p in a 2-3 tree, its level successor is the node to its immediate right at the
same level. Give pseudocode for a function Node23 levelSuccessor(Node23 p), which
returns a reference to p’s level successor, if it exists. If p is the rightmost node on its
level (including the case where p is the root), this function returns null. (For example,
in Fig. 4, the level successor of the node containing “2” is the node containing “8:12”,
and the level successor of “8:12” is the node containing “19:21”.)

Your function should run in O(log n) time. If you like, you may use rightSibling.

(c) Suppose we start at any node p in a 2-3 tree with n nodes, and we repeatedly perform
p = levelSuccessor(p) until p == null. What is the (worst-case) total time needed
to perform all these operations? (Briefly justify your answer.)

Problem 6. A social-distanced bit vector (SDBV) is an abstract data type that stores bits, but
no two 1-bits are allowed to be consecutive. It supports the following operations (see Fig. 5):

❼ init(m): Creates an empty bit vector B[0..m-1], with all entries initialized to zero.

❼ boolean set(i): For 0 ≤ i ≤ m (where m is the current size of B), this checks whether
the bit at positions i and its two neighboring indices, i− 1 and i+ 1, are all zero. If so,
it sets the ith bit to 1 and returns true. Otherwise, it does nothing and returns false.
(The first entry, B[0], can be set, provided both it and B[1] are zero. The same is true
symmetrically for the last entry, B[m-1].)

For example, the operation set(9) in Fig. 5 is successful and sets B[9] = 1. In contrast,
set(8) fails because the adjacent entry B[7] is nonzero.

There is one additional feature of the SDBV, its ability to expand. If we ever come to a
situation where it is impossible set any more bits (because every entry of the bit vector is
either nonzero or it is adjacent to an entry that is nonzero), we reallocate the bit vector to
one of three times the current size. In particular, we replace the current array of size m with
an array of size 3m, and we copy all the bits into this new array, compressing them as much
as possible. In particular, if k bits of the original vector were nonzero, we set the entries
{0, 2, 4, . . . , 2k} to 1, and all others to 0 (see Fig. 5).

The cost of the operation set is 1, unless a reallocation takes place. If so, the cost is m,
where m is the size of the bit vector before reallocation.
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Figure 5: Social-distanced bit vector. (Shaded entries cannot be set to one, due to social-distancing.)

Our objective is to derive an amortized analysis of this data structure.

(a) Suppose that we have arrived at a state where we need to reallocate an array of size m.
As a function of m, what is the minimum and maximum number of bits of the SDBV
that are set to 1? (Briefly explain.)

(b) Following the reallocation, what is the minimum number of operations that may be
performed on the data structure until the next reallocation event occurs? Express your
answer as a function of m. (Briefly explain.)

(c) As a function of m, what is the cost of this next reallocation event? (Briefly explain.)

(d) Derive the amortized cost of the SDBV. (For full credit, we would like a tight constant,
as we did in the homework assignment. We will give partial credit for an asymptotically
correct answer. Assume the limiting case, as the number of operations is very large and
the initial size of the bit vector is small.)

Throughout, if divisions are involved, don’t worry about floors and ceilings.
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CMSC 420: Spring 2022

CMSC 420 (0101) - Midterm Exam 1

Problem 1. (10 points) For this problem, use the algorithms presented in class for 2-3 trees. (You
will receive partial credit if you produce a valid 2-3 tree, but not using the algorithm from
class.) Intermediate results are not required.

(a) (5 points) Show the final tree that results after the operation insert(5) to the 2-3
tree in the figure below.

20

21186 : 8 132

3 : 11

15 insert(5)

(b) (5 points) Show the final tree that results after the operation delete(4) to the 2-3
tree in the figure below.

3

1 4 9 : 106 14

8 : 12

5 delete(4)

Problem 2. (30 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(a) (4 points) You have an inorder-threaded binary tree with n nodes. Without knowing
the tree structure, is it possible to know how many of the links in this tree are threads
(versus normal parent-child links)? If so, indicate how many as a function of n.

(b) (6 points) You have a standard (unbalanced) binary search tree storing the consecutive
odd keys {1, 3, 5, 7, 9, 11, 13} (which may have been inserted in any order). Into this
tree you insert the consecutive keys {0, 2, 4, 6, 8, 10, 12, 14} (also inserted in any order).
Which of the following statements hold for the resulting tree. (Select all that apply.)

(1) It is definitely a full binary tree

(2) It is definitely not a full binary tree

(3) It is definitely a complete binary tree

(4) It is definitely not a complete binary tree

(5) Its height is larger than the original by exactly 1

(6) Its height is larger than the original, but the amount of increase need not be 1

1



(c) (5 points) You have an AA tree that contains an even number of keys n. As a function
of n, what is the minimum and maximum number of red nodes that might be in this
tree?

(d) (5 points) Suppose that you insert 13 keys into a quake heap and then perform the
merge-trees operation. How many roots are there at each of the levels 0–4 in the resulting
structure?

(e) (4 points) You insert a node x into a treap having at least three entries, and you observe
that after the insertion, x is at the root of the tree. What can you say about the random
priority assigned to x?

(1) It is the smallest

(2) It is the largest

(3) It is the median

(4) You can’t infer anything about x’s priority

(f) (6 points) A hacker tries to mess with your skip list as follows. First, they insert a large
number of keys. After this, they delete all the keys with nodes that contribute to levels
1 and higher, effectively reducing your skip list to a standard linked list.

Is this an issue that the skip-list designer needs to worry about? Take a position (either
“This is an issue” or “This is not an issue”) and briefly justify your position. (You may
assume the hacker does not have access to your random number generator.)

Problem 3. (20 points) Given two nodes p and q in a binary tree, their lowest common ancestor,
denoted LCA(p,q), is the common ancestor of these two nodes that is closest to both. (For
example, in the figure below LCA(p,q) is the node labeled “c”.) If q is an ancestor of p

(possibly p itself), then LCA(p,q) = q.
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ℓ m

LCA(p,q)

q

p

In this problem, we assume that we are given a binary tree. Each node p is associated with
the usual child pointers p.left and p.right as well as a parent pointer, p.parent.

(a) (10 points) Each node p is associated with a level number, p.level, which grows by 1
as we go from child to parent. Present pseudocode for a function

Node LCA(Node p, Node q)

which returns the LCA of p and q. (For full credit, it should run in time proportional
to the height of the tree and should not modify the tree.)

Hint: Move p and q up in a coordinated manner until they converge at the LCA.
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(b) (10 points) Repeat part (a), but with the following twist. The tree is a (valid) AA-tree.
This means that a node and its parent might be at the same level, according to the rules
of AA trees. Call this function AA LCA.

13

1 7 9

12

6

8

10 15

14 16

2

4 11

Level: 3

2

1

AA LCA(p,q)

p

q

Problem 4. (20 points) This is a variant of the HW 2 problem called a skewed alternating 2-3

tree. The root is a 2-node. Its left child is a 2-node, and its right child is a 3-node. For
each successive level the nodes alternate. The children of each 2-node are 3-nodes, and the
children of each 3-node are 2-nodes.

0

1

2

Depth:

3

(a) (10 points) For i ≥ 0, define n(i) to be the number of nodes at depth i in a skewed
alternating 2-3 tree. Derive a recurrence for n(i). Present your recurrence and briefly
explain how you derived it.

Hint: I believe that the recurrence is simplest when you work two levels at a time, for
example, try to express n(i) in terms of n(i− 2). Be sure to give the base case(s).

(b) (10 points) Derive a closed-form mathematical formula (exact, not asymptotic) for
n(i). Present your formula and briefly explain how you derived it.

As in the homework, your formula should not involve summations or recurrences, but
can involve multiple cases. You do not need to use the result of (a), and you do not

need to give a formal proof of correctness.

Problem 5. (20 points) In this problem, we will consider variations on the amortized analysis of
the dynamic stack. Let us assume that the array storage only expands, it never contracts. As
usual, if the current array is of size m and the stack has fewer than m elements, a push costs
1 unit. When the mth element is pushed, an overflow occurs.

(a) (10 points) You are given two constants γ, δ > 1. When an overflow occurs, we allocate
a new array of size γm, copy the elements from the old array over to the new array.
The total cost is 1 (for the push) plus δm (for copying). Derive a tight bound on the
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amortized cost, which holds in the limit as m → ∞. Express your answer as a function
of γ and δ. Explain your answer.

(You can do the special case γ = 2 for half-credit.)

(b) (10 points) Your computer has a hardware accelerator that copies a block of memory of
size k in time k/(lg k). When the stack overflows, we allocate a new array of size 2m,
copy the elements from the old array over to the new array. The total cost is 1 (for the
push) plus m/(lgm) (for copying). Derive a tight bound on the amortized cost, which
holds in the limit as m → ∞. Explain your answer.
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CMSC 420: Spring 2022

Homework 3: More Search Trees and kd-Trees

Handed out Wed, Mar 30. Due Wed, Apr 6, 11:59pm. (Solutions will be discussed in class on
Thu, Apr 7, so submissions will not be accepted after 9:30am, Apr 7.)

Problem 1. (15 points) Show the result of executing the operation splay(8) on the tree in Fig. 1.

6

8

7

3

12

9

10

11

5 14

15

1

2

4

Figure 1: Splaying.

Problem 2. (15 points) Consider the scapegoat tree shown in Fig. 2. We will trace through the
insertion of the key “p” into this tree (which fits between “o” and “q” alphabetically). For
this problem, you may assume that m == n and both are equal to the number of nodes in the
tree.

c

b

e

m

ℓ

o

q

s

r

t

j

i

k

g

n

insert(“p”)

Figure 2: Insertion into a scapegoat tree.

(a) Following the insertion of “p”, explain why a rebuild event will be triggered.

(b) Tracing the search path towards the root, which is the scapegoat node?

(c) Rebuild the subtree rooted at the scapegoat, and show the final tree with the rebuilt
subtree inserted into its place. (Use the same algorithm given in the lecture notes for
building the tree, with ties broken in the same manner.)
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Problem 3. (10 points) In our lecture on Scapegoat Trees, we proved that if the tree has a node
p at depth at least log3/2 n, then somewhere along the search path to this node, there must
exist a scapegoat node u. Recall that a node u is a scapegoat if

size(u.child)

size(u)
>

2

3
,

where size(u) denotes the number of nodes in the subtree rooted at node u, and u.child
denotes the child of u along the search path.

In this problem, we will ask you to generalize this result. Let α be any real constant, such
that α > 1. Complete the following lemma, and present a proof for it.

Lemma: Given a binary search tree of n nodes and any constant α > 1, if there exists a
node p such that depth(p) > logα n, then p has an ancestor (possibly p itself) such that

size(u.child)

size(u)
> [“You fill this in”]

For fullest credit, your answer to [“You fill this in”] should be as small as possible in the limit
as n → ∞. (Hint: Modify the proof from the Scapegoat tree lecture notes. You may also
assume that m == n.)

Problem 4. (10 points) Throughout this problem we are given a set P = {p1, . . . , pn} of n points
in 2D space stored in a point kd-tree (see Fig. 3(a)).

In a vertical line-sliding query, you are given an (infinitey) vertical line specified by its coor-
dinate x0 (see Fig. 3(b)). The query returns the first point pi ∈ P that is first hit if we slide
the segment to its right. If no point of P are hit, the query returns null.

p8

p1
p2

p3

p4

p5

p6

p7

p9

x

y

p8

p1
p2

p3

p6

p7

p9

P

(a) (b)

x0

p4

p5

Figure 3: Segment-sliding and minimum box queries.

Present pseudo-code for an efficient algorithm, Point vertLineSlide(scalar x0), which
given x0, the x-coordinate of the vertical line.

You may assume the standard kd-tree structure given in class, where each node stores a point
p.point, a cutting dimension p.cutDim, and left and right child pointers p.left and p.right,
respectively. You may make use of any primitive operations on points and rectangles. You
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may assume that there are no duplicate coordinate values among the points of P and no point
of P lies on the vertical line x = x0.

Briefly explain your algorithm and derive its execution time.

Hint: For fullest credit, your program should run in time O(
√
n), where n is the number

of points in the structure. You may assume that the cutting dimensions alternate between
x and y and that the tree is perfectly balanced, which means that if p’s subtree contains m
points then its children’s subtrees each contain at most m/2 points.

Challenge Problem: All modern text editors provide an undo command (e.g., “control-Z”). In
this problem, we would like to implement such an operation for a splay tree. Each time the
undo operation is applied, the most recent splay operation is undone (see Fig. 4). If undo is
performed multiple times, we step backwards undoing multiple splay operations until there
are no more.
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undo

Figure 4: Undo operation on a splay tree.

The question to explore is how to do this efficiently. Obviously, we could just store the entire
contents of every tree after each operation, but this would be hopelessly inefficient if the
tree is very large. We would like to store the minimum amount of information in order to
efficiently undo each splay.

(a) Here is an idea. There are essentially six different operations that a splay tree may
perform at a given node p. These are named based on the relationship between p and
its grandparent (see Fig. 5):

LL: Zig-zig, when p is a left-left grandchild (and the symmetrical RR operation)

LR: Zig-zag, when p is a left-right grandchild (and the symmetrical RL operation)

L: Zig, when p is the left child of the root (and the symmetrical R operation)

Each time we perform one of these operations as part of splaying, we push one of the
symbols {LL,RR,LR,RL,L,R} onto a stack S. Since each splay may consist of a
variable number of rotations, before pushing these symbols, we push a special stack
entry, ⊥, which indicates the end of the rotations that constitute the splay operation.
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Figure 5: Undo operation on a splay tree.

For example, the splay operation of Fig. 4 involves the three rotations RL, LL, and L
(from bottom to top). So the last four symbols in our stack would be 〈. . . ,⊥, RL, LL,L〉.)
Present an algorithm which given such a stack S containing a (valid) combination of the
7 symbols {LL,RR,LR,RL,L,R,⊥}, applies the appropriate modifications to restore
the previous splay tree in the sequence. In particular, as each symbol is popped off the
stack, explain exactly what operation is performed on the tree to undo the rotation.

(b) Taking this one step farther, suppose that we whenever the operation splay(x) is per-
formed, there is a node containing x, and this node is a leaf node in the current tree.
Show that under this assumption, it is possible to implement the undo operation without

the need of the special symbol ⊥.
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CMSC 420: Spring 2022

Practice Problems for Midterm 2

The exam will be held in class on Tue, Apr 12. It is close-book, closed-notes, but you will be
allowed one sheet of notes, front and back.

Disclaimer: These practice problems have been extracted from old homework assignments and
exams. Material changes from semester to semester. These do not necessarily reflect the actual
coverage, difficulty, or length of the midterm exam.

Problem 0. Expect at least one problem that involves working through some operations on a data
structure that we have covered since the previous exam.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) What is the purpose of the next-leaf pointer in B+ trees?

(b) Suppose you know that a very small fraction of the keys in an ordered dictionary data
structure are to be accessed most of the time, but you do not know which these keys are.
Among the various data structures we have seen this semester, which would be best for
this situation? Explain briefly.

(c) Both scapegoat trees and splay trees provide O(log n) amortized time for standard dic-
tionary operations (insert, delete, and find). Suppose that your application involves
many more find operations than insertions or deletions. Which of these two structures
would you prefer and why?

(d) What is the maximum number of points that can be stored in a 3-dimensional point
quadtree of height h? Express your answer as an exact (not asymptotic) function of h.
(Hint: It may be useful to recall the formula for any c > 1,

∑m
i=0

ci = (cm+1)−1)/(c−1).)
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Figure 1: Height of kd-tree.

(e) We have n uniformly distributed points in the unit square, with no duplicate x- or y-
coordinates. Suppose we insert these points into a kd-tree in random order (see the left
side of Fig. 1). As in class, we assume that the cutting dimension alternates between
x and y. As a function of n what is the expected height of the tree? (No explanation
needed.)
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(f) Same as the previous problem, but suppose that we insert points in ascending order of
x-coordinates, but the y-coordinates are random (see the right side of Fig. 1). What is
the expected height of the tree? (No explanation needed.)

(g) (Note: This problem is only applicable for the probing methods we discuss up to the
time of the midterm.) You are using hashing with open addressing. Suppose that the
table has just one empty slot in it. In which of the following cases are you guaranteed

to succeed in finding the empty slot? (Select all that apply.)

(1) Linear probing (under any circumstances)

(2) Quadratic probing (under any circumstances)

(3) Quadratic probing, where the table size m is a prime number

(4) Double hashing (under any circumstances)

(5) Double hashing, where the table size m and hash function h(x) are relatively prime

(6) Double hashing, where the table size m and secondary hash function g(x) are rela-
tively prime

Problem 2. Suppose that you are given a treap data structure storing n keys. The node structure
is shown in Fig. 2. You may assume that all keys and all priorities are distinct.
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key

class TreapNode {

Key key // key

int priority // priority

TreapNode left // left child

TreapNode right // right child

}

Figure 2: Treap node structure and an example.

(a) Present pseudocode for the operation int minPriority(Key x0, Key x1), which is
given two keys x0 and x1 (which may or may not be in the treap), and returns the
lowest priority among all nodes whose keys x lie in the range x0 ≤ x ≤ x1. If the treap
has no keys in this range, the function returns Integer.MAX VALUE. Briefly explain why
your function is correct.

For example, in Fig. 2 the query minPriority("c", "g") would return 2 from node
"e", since it is the lowest priority among all keys x where "c" ≤ x ≤ "g".

(b) Assuming that the treap stores n keys and has height O(log n), what is the running time
of your algorithm? (Briefly justify your answer.)

Problem 3. Define a new treap operation, expose(Key x). It finds the key x in the tree (throwing
an exception if not found), sets its priority to −∞ (or more practically Integer.MIN VALUE),
and then restores the treap’s priority order through rotations. (Observe that the node con-
taining x will be rotated to the root of the tree.) Present pseudo-code for this operation.

Problem 4. For this problem, assume that the structure of a node in a skip list is as follows:
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class SkipNode {

Key key; // key

Value value; // value

SkipNode[] next; // array of next pointers

}

The height of a node (that is, the number of levels to which it contributes) is given by the
Java operation p.next.length.

Often, when dealing with ordered dictionaries, we wish to perform a sequence of searches in
sorted order. Suppose that we have two keys, x < y, and we have already found the node p

that contains the key x. In order to find y, it would be wasteful to start the search at the
head of the skip list. Instead, we want to start at p. Suppose that there are k nodes between
x and y in the skip list. We want the expected search time to be O(log k), not O(log n).

(a) Present pseudo-code for an algorithm for a function Value forwardSearch(p, y), which
starting a node p (whose key is smaller than y), finds the node of the skip list containing
key y and returns its value. (For simplicity, you may assume that key y appears within
the skip list.) In addition to the pseudo-code, briefly explain how your method works.

Show that the expected number of hops made by your algorithm is O(log k), where k is the
number of nodes between x and y. The proof involves showing two things:

(b) Prove that the maximum level reached is O(log k) in expectation (over random coin
tosses).

(c) Prove that the number of hops per level is O(1) in expectation.

Problem 5. In this problem we will consider an enhanced version of a skip list. As usual, each
node p stores a key, p.key, and an array of next pointers, p.next[]. To this we add a
parallel array p.span[], which contains as many elements as p.next[]. This array is defined
as follows. If p.next[i] refers to a node q, then p.span[i] contains the distance (number
of nodes) from p to q (at level 0) of the skip list.

For example, see Fig. 3. Suppose that p is third node in the skip list (key value “10”), and
p.next[1] points to the fifth element of the list (key value “13”), then p.span[1] would be
5− 3 = 2, as indicated on the edge between these nodes.
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Figure 3: Skip list with span counts (labeled on each edge in blue).
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(a) Present pseudo-code for a function int countSmaller(Key x), which returns a count
of the number of nodes in the entire skip list whose key values are strictly smaller than
x. For example, in Fig. 3, the call countSmaller(22) would return 6, since there are
six items that are smaller than 22 (namely, 2, 8, 10, 11, 13, and 19).

Your procedure should run in time expected-case time O(log n) (over all random choices).
Briefly explain how your function works.

(b) Present pseudo-code for a function Value getMinK(int k), which returns the value
associated with the kth smallest key in the entire skip list. For example, in Fig. 3, the
call getMinK(5) would return 13, since 13 is the fifth smallest element of the skip list.
You may assume that 1 ≤ k ≤ n, where n is the total number of nodes in the skip list.

Your procedure should run in time expected-case time O(log n) (over all random choices).
Briefly explain how your function works.

Problem 6. It is easy to see that, if you splay twice on the same key in a splay tree (splay(x);
splay(x)), the tree’s structure does not change as a result of the second call.

Is this true when we alternate between two keys? Let T0 be an arbitrary splay tree, and let
x and y be two keys that appear within T0. Let:

❼ T1 be the result of applying splay(x); splay(y) to T0.

❼ T2 be the result of applying splay(x); splay(y); splay(x); splay(y) to T0.

Question: Irrespective of the initial tree T0 and the choice of x and y, is T1 = T2? (That
is, are the two trees structurally identical?) Either state this as a theorem and prove it or
provide a counterexample, by giving the tree T0 and two keys x and y for which this fails.

Problem 7. Consider the following possible node structure for 2-3 trees (that is, a B-tree of order
m = 3), where in addition to the keys and children, we add a link to the parent node. The
root’s parent link is null.

class Node23 { // a node in a 2-3 tree

int nChildren // number of children (2 or 3)

Node23 child[3] // our children (2 or 3)

Key key[2] // our keys (1 or 2)

Node23 parent // our parent

}

Assuming this structure, answer each of the following questions:

(a) Present pseudocode for a function Node23 rightSibling(Node23 p), which returns a
reference to the sibling to the immediate right of node p, if it exists. If p is the rightmost
child of its parent, or if p is the root, this function returns null. (For example, in Fig. 4,
the right sibling of the node containing “2” is the node containing “8:12”. Since the
node containing “8:12” is the rightmost node of its parent (“4”), it has no right sibling.)

Your function should run in O(1) time.

(b) For a node p in a 2-3 tree, its level successor is the node to its immediate right at the
same level. Give pseudocode for a function Node23 levelSuccessor(Node23 p), which
returns a reference to p’s level successor, if it exists. If p is the rightmost node on its
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Figure 4: Sibling and level successor in a 2-3 tree.

level (including the case where p is the root), this function returns null. (For example,
in Fig. 4, the level successor of the node containing “2” is the node containing “8:12”,
and the level successor of “8:12” is the node containing “19:21”.)

Your function should run in O(log n) time. If you like, you may use rightSibling.

(c) Suppose we start at any node p in a 2-3 tree with n nodes, and we repeatedly perform
p = levelSuccessor(p) until p == null. What is the (worst-case) total time needed
to perform all these operations? (Briefly justify your answer.)

Problem 8. Given a set P of n points in the real plane, a partial-range max query is given two
x-coordinates x1 and x2, and the problem is to find the point p ∈ P that lies in the vertical
strip bounded by x1 and x2 (that is, x1 ≤ p.x ≤ x2) and has the maximum y-coordinate (see
Fig. 5).

x1 x2

Answer

x

y

Figure 5: Partial-range max query.

Present pseudo-code for an efficient algorithm to solve partial-range max queries, assuming
that the points are stored in a point kd-tree. You may make use of any primitive operations
on points and rectangles (but please explain them). Hint: A possible signature for your
helper function might be:

Point partialMax(double x1, double x2, KDNode p, Rectangle cell, Point best)

Assuming the tree is balanced and the splitting dimension alternates between x and y, show
that your algorithm runs in time O(

√
n).
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Problem 9. In class we showed that for a balanced kd-tree with n points in the real plane (that
is, in 2-dimensional space), any axis-parallel line intersects at most O(

√
n) cells of the tree.

The purpose of this problem is to show that does not apply to lines that are not axis-parallel.
Show that for every n, there exists a set of points P in the real plane, a kd-tree of height
O(log n) storing the points of P , and a line ℓ, such that every cell of the kd-tree intersects
this line.

Problem 10. In this problem we will see how to use kd-trees to answer a common geometric
query, called ray shooting. You are given a collection of vertical line segments in 2D space,
each starts at the x-axis and goes up to a point in the positive quadrant. Let P = {p1, . . . , pn}
denote the upper endpoints of these segments (see Fig. 6). You may assume that both the x-
and y-coordinates of all the points of P are strictly positive real numbers.
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Figure 6: Ray shooting in a kd-tree.

Given a point q, we shoot a horizontal ray emanating from q to the right. This ray travels
until it hits one of these segments (or perhaps misses them all). For example, in the figure
above, the ray shot from q hits the segment with upper endpoint p8. The ray shot from q′

hits nothing.

In this problem we will show how to answer such queries using a standard point kd-tree for
the point set P . A query is given the point q = (qx, qy), and it returns the upper endpoint
pi ∈ P of the segment the ray first hits, or null if the ray misses all the segments.

Suppose you are given a kd-tree of height O(log n) storing the points of P . (It does not store
the segments, just the points.) Present pseudo-code for an efficient algorithm, rayShoot(q),
which returns an answer to the horizontal ray-shooting query (see the figure above, right).

You may assume the kd-tree structure given in class, where each node stores a point p.point,
a cutting dimension p.cutDim, and left and right child pointers p.left and p.right, respec-
tively. You may make use of any primitive operations on points and rectangles (but please
explain them). You may assume that there are no duplicate coordinate values among the
points of P or the query point.

Hint: You might wonder how to store segments in a kd-tree. It turns out that to answer this
query you do not need to store segments, just points. The function rayShoot(q) will invoke
a recursive helper function. Here is a suggested form, which you are not required to use:

Point rayShoot(Point2D q, KDNode p, Rectangle cell, Point best),
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Be sure to indicate how rayShoot(q) makes its initial call to the helper function.

Problem 11. (Note: This problem may not be applicable, depending on whether we discuss
deletion in hash tables before the exam.) In class we demonstrated a simple idea for deleting
keys from a hash table with open addressing. Namely, whenever a key is deleted, we stored a
special value “deleted” in this cell of the table. It indicates that this cell contained a deleted
key. The cell may be used for future insertions, but unlike “empty” cells, when the probe
sequence searching for a key encounters such a location, it should continue the search.

Suppose that we are using linear probing in our hashing system. Describe an alternative
approach, which does not use the “deleted” value. Instead it moves the table entries around
to fill any holes caused by a deleted items.

In addition to explaining your new method, justify that dictionary operations are still per-
formed correctly. (For example, you have not accidentally moved any key to a cell where it
cannot be found!)
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CMSC 420: Spring 2022

CMSC 420 (0101) - Midterm Exam 2

Problem 1. (20 points) This problem involves splay trees. In both cases, apply the splay-tree
algorithm given in the lecture notes.

3

6

4 9

7

8

delete(6)3

6

4 9

7

8

insert(5)

Figure 1: Splay tree operations

(a) (10 points) Show the steps involved in operation insert(5) for the tree in the figure.
Indicate what splays are performed, and what trees result from each splay. Also indicate
what node(s) are created, and show the final tree after insertion.

(b) (10 points) Show the steps involved in operation delete(6) for the tree in the figure. In
particular, indicate what splays are performed, and what trees result from each splay.
Also indicate what node(s) are removed, and show the final tree after deletion.

Problem 2. (30 points) Short answer questions. Unless requested, explanations are not required,
but may always be given to help with partial credit.

(a) (4 points) By mistake, two keys in your treap happen to have the same priority. When
you attempt to execute find, which of the following is a possible consequence? (Select
all that apply.)

(1) It might go into an infinite loop

(2) It might return the wrong result

(3) It might take longer than O(log n) expected time

(4) There are no significant negative consequences

(b) (4 points) You have a splay tree storing n keys x1 < x2 < · · · < xn. Suppose that you
perform n consecutive splay operations on these keys in sorted order:

splay(x1), splay(x2), . . . , splay(xn).

Which of the following is the total running time for all of these operations? (Give the
tightest correct bound.)

(1) O(n) (worst-case)
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(2) O(n log n) (worst-case)

(3) O(n) (expected case)

(4) O(n log n) (expected case)

(5) None of the above

(c) (6 points) Consider a B-tree of order m = 13. Answer the following questions for a single
node that is not the root and not a leaf.

(a) What is the maximum number of children?

(b) What is the minimum number of children?

(c) What is the maximum number of keys?

(d) What is the minimum number of keys?

(d) (2 points) True or false: After performing an insertion in a scapegoat tree (but before any
rebuilding), two or more nodes on the search path may satisfy the scapegoat condition
(size(p.child)/size(p) > 2/3).

(e) (2 points) True or false: As part of performing an insertion in a scapegoat tree, two or
more subtrees may be rebuilt.

(f) (4 points) In high dimensional spaces (say, dimensions greater than 10), kd-trees are
preferred over quadtrees. Why is this?

(g) (4 points) Given a balanced kd-tree storing n points in 2-dimensional space, where we
alternate the splitting axes, and given an axis-parallel line ℓ, what is the maximum
number of nodes whose cell intersects ℓ?

(1) O(log n)

(2) O(
√
n)

(3) O(n)

(4) None of the above

(h) (4 points) Repeat (g), but this time ℓ may have an arbitrary slope.

Problem 3. (15 points) We usually like our trees to be balanced. Here we will consider unbalanced
trees. Given a node p, recall that size(p) is the number of nodes in p’s subtree. A binary tree
is left-heavy if for each node p, where size(p) ≥ 3, we have size(p.left)/size(p) ≥ 2/3
(see the figure below). Let T be a left-heavy tree that contains n nodes.

T

s

t

Figure 2: A left-heavy tree.
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(a) (8 points) Consider any left-heavy tree T with n nodes, and let s be the leftmost node
in the tree. Prove that depth(s) ≥ log3/2 n. (If you are super careful in your proof, you
may discover this is not quite true. The actual bound is (log3/2 n)− c, for a constant c.
Don’t worry about this small correction term.)

(b) (7 points) Consider any left-heavy tree T with n nodes, and let t be the rightmost node
in the tree. Prove that depth(t) ≤ log3 n.

Problem 4. (15 points) You are given a set P = {p1, . . . , pn} of n points in 2D space, all having
positive x- and y-coordinates (see Fig. 3(a)). They have been stored in a perfectly balanced
kd-tree using alternating cutting dimensions, x, y, x, y, . . .. The kd-tree stores a bounding box
bbox that contains all the points and a pointer root to the root of the kd-tree.

x

y

p8
p1

p2

p3

p6

p7

p9

(a) (c)

p4

p5

bbox

x

y

p8
p1

p2

p3

p6

p7

p9

p4

p5

q

x

y

p8
p1

p2

p3

p6

p7

p9

p4

p5

q = (q.x, q.y)

(b)

Answer: p7

Figure 3: Platform dropping queries.

In a platform-dropping query, we are given a point q = (qx, qy) with positive coordinates. This
defines a horizontal segment running from the y-axis to q (see Fig. 3(b)). Our objective is to
report the first point p ∈ P that would be hit if we drop the platform. Formally, this point
has the maximum y-coordinate such that px ≤ qx and py ≤ qy (see Fig. 3(c)).

In this problem we will derive an efficient algorithm to answer such queries. You will fill in
the missing gaps to a recursive helper function. The helper is given the query point q, the
current node p being visited (which might be null), the associated rectangular cell for this
node, and best, the best answer seen so far. The function returns the new best point.

(a) (4 points) Give a condition on cell so that no point in p’s subtree can be hit by the
falling platform? Express your answer in terms of q = (q.x, q.y) and the low and
high cell corner points cell.lo and cell.hi.

(b) (3 points) What conditions must p.point satisfy to replace best as the new best answer
to the query?

(c) (4 points) Suppose that cell lies entirely to the left of q (that is, cell.hi.x ≤ q.x),
and further suppose that p has a cutting dimension of 1 (horizontal cut). Explain why
only one of p’s children need be searched for the answer. How would you determine
which child it is?

(d) (2 points) Based on your above answers, fill in the boxes boxes to complete the helper
function for answering platform dropping queries. It is given the query point q, the
current node p being visited (which might be null), the associated rectangular cell for
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this node, and best, the best answer seen so far. The function returns the new best
point. (If there is not change from the above, you can just say “Same as (a)”.)

Note: If the structure of our helper function does not make sense to you, you can
optionally provide your own helper function in its entirety at the end of the exam.
Please put in note in the first fill-in box that you are doing this.

Point platformDrop(Point q, KDNode p, Rectangle cell, Point best) {

if (p == null) return best

if ( ) return best

if ( ) best = p.point

Rectangle leftCell = cell.leftPart(p.cutDim, p.point)

Rectangle rightCell = cell.rightPart(p.cutDim, p.point)

if (cell.hi.x <= q.x && p.cutDim == 1) {

if ( )

best = platformDrop(q, p.left, leftCell, best)

else

best = platformDrop(q, p.right, rightCell, best)

} else {

best = platformDrop(q, p.right, rightCell, best)

best = platformDrop(q, p.left, leftCell, best)

}

return best

}

(c)

(b)

(a)

(e) (2 points) What is the initial call to the helper function?

Problem 5. (20 points)

(a) (10 points) Suppose that you are given a standard rooted binary tree, where in addition
to left and right, each node has a parent link. (There are no keys.)

class Node { // a node in the tree

Node left // left child

Node right // right child

Node parent // parent (null if root)

}

Present pseudocode for a function Node inorderPred(Node p), which returns a pointer
to inorder predecessor of p. If p has no inorder predecessor, it should return null.

p

inorderPred(p) = q
q
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Briefly explain how your function works. If you wish, you may define additional helper
functions. Your function should run in time proportional to the height of the tree.

(b) (10 points) Suppose that we are given a B-tree of order M , for some M ≥ 3. Let us
assume the following node structure:

class BNode { // a node in a B-tree

int nc // number of children

BNode child[M] // children pointers

Key key[M-1] // keys

BNode parent // parent

}

The children are child[0..nc-1] and the keys are key[0..nc-2]. The entry key[i]

sits between subtrees child[i] and child[i+1].

Present pseudocode for a function Key inorderPred(BNode p, int i), which returns
the key of the B-tree that immediately precedes p.key[i] in sorted order.

2314 1793

6 12

21

25

26 28

18

p

M = 3

inorderPred(p,0) = 18

inorderPred(p,1) = 21

Briefly explain how your function works. If you wish, you may define additional helper
functions. Your function should run in time proportional to the height of the tree
(assuming M is a constant).

Hint: There are a number of cases. You can get partial credit if you can solve some of
the subcases correctly. For example, you might start by considering what happens when
p is a leaf node.
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CMSC 420: Spring 2022

Homework 4: Range Trees, Hashing, and Tries

Handed out Tue, May 3. Due Tue, May 10, 11:00am. (Solutions will be discussed in class on
Tue, May 10, so turn in whatever you have finished by then.) You may drop the lowest of your
four homework scores. Even if you do not attempt this assignment, note that the material will be
covered on the final exam.

Problem 1. (15 points) In this problem, you will show the result of inserting a sequence of three
keys into a hash table, using linear and quadratic probing and double hashing. In each case,
at a minimum indicate the following:

❼ Was the insertion successful? (The insertion fails if the probe sequence loops infinitely
without finding an empty slot.)

❼ If the insertion is successful, indicate the number of probes, that is, the number of array
elements accessed. (The initial access counts as a probe, so if there is no collision, the
number of probes is 1.)

❼ Show contents of the hash table after each insertion. (You will show three tables for
each part.)

For the purposes of assigning partial credit, you can illustrate the probes made as we did in
the lecture notes (with little arrows).

(a) (5 points) Show the results of inserting the keys “X” then “Y” then “Z” into the hash
table shown in Fig. 1(a), assuming linear probing. (Insert the keys in sequence, so if all
are successful, the final table will contain all three keys.)

insert("Z") h("Z") = 14

insert("Y") h("Y") = 5

insert("X") h("X") = 13

(a) Linear probing

insert("Z") h("Z") = 3

insert("Y") h("Y") = 8

insert("X") h("X") = 4

(b) Quadratic probing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A M Q J C L H P WI B F P

0 1 2 3 4 5 6 7 8 9 10 11 12 13

LF NBQ W

Figure 1: Hashing with linear and quadratic probing.

(b) (5 points) Repeat (a) using the hash table shown in Fig. 1(b) assuming quadratic probing.

(c) (5 points) Repeat (a) using the hash table shown in Fig. 2 assuming double hashing,
where the second hash function g is shown in the figure.

Problem 2. (15 points) In this problem we will build a suffix tree for S = "baabaababaa✩".

(a) (7 points) Recall that the 12 suffixes of S are (in reverse order):

S11 = "✩", S10 = "a✩", S9 = "aa✩", . . . , S0 = "baabaababaa✩".
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P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LM

insert("Z") h("Z") = 3; g("Z") = 4

insert("Y") h("Y") = 4; g("Y") = 3

insert("X") h("X") = 13; g("X") = 6

(c) Double hashing

IBE F

Figure 2: Hashing with double hashing.

Let idj denote the substring identifier for Sj . (Recall from Lecture 17 that this is defined
to be the shortest prefix of Sj that uniquely identifies it.) List all 12 substring identifiers
for these suffixes in index order (from first to last id0 . . . id11).

(b) (8 points) Draw the suffix tree for S. Draw your tree in the same edge labeling style we
used in Fig. 7 in Lecture 17 LaTeX lecture notes. Order the children of each node in
alphabetical order from left to right. (The form of your drawing is important. There are
many online suffix-tree generators, and if it appears that you copied your answer from
one of these, you will receive no credit.)

Hint: Begin by writing out all the substring identifiers in alphabetical order, one above
the other. This makes it easy to determine common substrings.

Problem 3. (14 points) In this problem, we will consider how to use/modify range trees to answer
two queries efficiently. Throughout, P = {p1, . . . , pn} is a set of n points in R

2 (Fig. 3(a)).
Your answer should be based on range trees, you may make modifications to P including
possibly transforming the points and adding additional coordinates.

In each case, the various layers of your search structure (what points are stored there and how
they are sorted) and explain how your search algorithm operates. An English explanation
(as opposed to pseudocode) is sufficient. Justify your algorithm’s correctness and derive its
running time.

(a) (7 points) Assume that all the points of P have positive x- and y-coordinates. In a
platform-dropping query, we are given a point q = (qx, qy) with positive coordinates.
This defines a horizontal segment running from the y-axis to q. The objective is to
report the first point p ∈ P that would be hit if we drop the platform (see Fig. 3(b)).
Formally, this point has the maximum y-coordinate such that px ≤ qx and py ≤ qy. If
no point of P is hit by the platform, the query returns null.

Hint: Your data structure should use O(n log n) storage and answer queries in O(log2 n)
time.

(b) (7 points) In amax empty-triangle query you are given a point q = (qx, qy). The objective
is to compute the largest axis-parallel 45-45 right triangle that extends to the upper-right
of q and contains no point of P in its interior. The answer to the query is the point of
P that lies on the triangle’s hypotenuse (see Fig. 3(c)). (Alternatively, you can think of
this as sliding the 45◦ hypotenuse until it first hits a point of P ). If the triangle can be
grown to infinite size, return null.

Hint: Your data structure should useO(n log2 n) storage and answer queries inO(log3 n)
time.
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Figure 3: Platform-dropping and max empty-triangle queries.

Problem 4. (5 points) Consider the buddy-system memory allocation shown in Fig. 4, where
shaded blocks are allocated and white blocks are free. Suppose that we deallocate the block
of size 1 at address 22. Explain which blocks are merged together, and what single block
replaces them all.

0 4 8 12 16 20 24 28 32

avail

0

1

2

3

4

dealloc(22)

Figure 4: Buddy system memory allocation.

3
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Practice Problems for the Final Exam

Our final exam will be held on Fri, May 13, 4–6pm in Tydings Hall (TYD) 0130. It is
close-book, closed-notes, but you will be allowed three sheets of notes, front and back.

Disclaimer: The exam will be comprehensive, emphasizing material in the latter half of the
semester. These practice problems reflect the just material since the second midterm,
but you should expect coverage of other topics as well. They have been extracted from
old homework assignments and exams. Material changes from semester to semester. These do not
necessarily reflect the actual coverage, difficulty, or length of the midterm exam.

Problem 0. Since the exam is comprehensive, please look back over the previous homework as-
signments, the two midterm exams, and the practice problems for both midterms. You should
expect at least one problem that involves tracing through an algorithm or construction given
in class.

Problem 1. Short answer questions. Except where noted, explanations are not required but may
be given for partial credit.

(a) Let T be extended binary search tree (that is, one having internal and external nodes).
You visit the nodes of T according to one of the standard traversals (preorder, postorder,
or inorder). Which of the following statements is necessarily true? (Select all that apply.)

(i) In a postorder traversal, all the external nodes appear in the order before any of the
internal nodes

(ii) In a preorder traversal, all the internal nodes appear in the order after any of the
external nodes

(iii) In an inorder traversal, internal and external node alternate with each other

(iv) None of the above is true

(b) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(c) Repeat (b) in the case of deletion. (Give your answer as an asymptotic function of n.)

(d) Splay trees are known to support efficient finger search queries. What is a “finger search
query”?

(e) In class, we mentioned that when using double hashing, it is important that the second
hash function g(x) should not share any common divisors with the table size m. What
might go wrong if this were not the case?

(f) Consider the following dictionary structures: (1) Unbalanced binary search trees, (2)
AVL trees, (3) AA-trees, (4) quake-heaps, (5) treaps, (6) splay trees, (7) scapegoat trees.
Suppose we insert one key into such a data structure that contains n keys. For which
of these data structures can we assert that the worst-case number of structural changes
to the tree is O(log n)? (A structure change is any local alteration of the structure:
creating/modifying node contents, rotation, node split, etc.)
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(g) A scapegoat tree containing n keys has height O(log n) ... (select one):

(i) Always—the height is guaranteed

(ii) In expectation, over the algorithm’s random choices

(iii) In expectation, assuming that keys are inserted in random order

(iv) In the amortized sense—the average height will be O(log n) over a long sequence of
operations

(v) Maybe yes, maybe no—there is just no way of knowing

(h) Between the classical dynamic storage allocation algorithm (with arbitrary-sized blocks)
or the buddy system (with blocks of size power of 2) which is more susceptible to internal

fragmentation? Explain briefly.

(i) (Check out Problem 1(g) from the Practice Problems for Midterm 2 on hashing.)

Problem 2. This problem involves an input which is a binary search tree having n nodes of height
O(log n). You may assume that each node p has a field p.size that stores the number of
nodes in its subtree (including p itself). Here is the node structure:

class Node {

int key;

Node left;

Node right;

int size; // number of nodes in this subtree

}

(a) Present pseudocode for a function printMaxK(int k), which is given 0 ≤ k ≤ n, and
prints the values of the k largest keys in the binary search tree. (See, for example,
Fig. 1.)

8

5

11

6

4

14

7

3

1

10

15

25

26

21

19

18 printMaxK(8) = 〈11, 14, 15, 18, 19, 21, 25, 26〉

printMaxK(2) = 〈25, 26〉

printOdd() = 〈1, 4, 6, 8, 11, 15, 19, 25〉

16

5

3

11

4

10

5

4

1 1

2

4

1

1

p.key
p.size

3

Figure 1: The functions printMaxK and printOdd.

You should do this by traversing the tree. You are not allowed to “cheat” but storing
an auxiliary list of sorted nodes.

For fullest credit, the keys should be printed in ascending order, and your algorithm
should run in time O(k + log n) (see part (4.2) below). (Partial credit will be given
otherwise, but an O(n) time algorithm is not worth anything.)
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You may assume that 0 ≤ k ≤ n, where n is the total number of nodes in the tree.
Briefly explain your algorithm.

Hint: I would suggest using the helper function printMaxK(Node p, int k)), where
k is the number of keys to print from the subtree rooted at p.

(b) Derive the running time of your algorithm in (a).

(c) Give pseudocode for a function printOdd(), which does the following. Let 〈x1, x2, . . . , xn〉
denote the keys of the tree in ascending order, this function prints every other key, namely
〈x1, x3, x5, . . . , xn〉, if n is odd, and 〈x1, x3, x5, . . . , xn−1〉, if n is even.

Beware: We are not printing the “odd-valued” keys, rather we are printing the odd
numbered positions in the sorted order (see Fig. 1.)

Again, you should do this by traversing the tree. You are not allowed to “cheat” by
storing auxiliary lists or using global variables. Your program should run in time O(n).
Briefly explain your algorithm.

Problem 3. Throughout this problem, assume that you are given a standard kd-tree storing a set
P of n points in R

2 (see Fig. 2(a)). Assume that the cutting dimension alternates between
x and y. You may also assume that the tree stores a bounding box bbox, which is a 2-
dimensional rectangle containing all the points of P . You may also assume that that any
geometric computations on primitive objects (distances, disjointness, containment, etc.) can
be computed in constant time, without explanation.
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(b)

q

r

p4

p2

p3

p1

p9

p6p7

p8

Ans: p3

(c)

q

r

Ans: null

p5

3.6

5

7
4

−2

2.5
3

9

−1
5

rhi

rlo Ans = 4 + 7 + 5− 2 = 14

Figure 2: Queries on kd-trees.

(a) In a standard range-counting query, we want to count the number of points in the range.
Suppose that each point pi ∈ P has an associated real-valued weight wi. In a weighted

orthogonal range query, we are given a query rectangle R, given by its lower-left corner
rlo and upper-right corner rhi, and the answer is the sum of the weights of the points
that lie within R (see Fig. 2(b)). If there are no points in the range, the answer is 0.

Explain how to modify the kd-tree (by adding additional fields to the nodes, if you
like) so that weighted orthogonal range queries can be answered efficiently. Based on
your modified data structure, present an efficient algorithm in pseudo-code for answering
these queries and explain. (For full credit, your algorithm should run in O(

√
n) time).

You may handle the edge cases (e.g., points lying on the boundary of R) however you
like. Hint: You may use whatever helper function(s) you like, but I would suggest using:
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double weightedRange(Rectangle R, KDNode p, Rectangle cell)

where p is the current node in the kd-tree, cell is the associated cell.

(b) Briefly analyze the running time of your algorithm, assuming that the tree is balanced.
(You may apply/modify results proved in class.)

(c) In a fixed-radius nearest neighbor query, we are given a point q ∈ R
d and a radius r > 0.

Let C denote the circular disk centered at q whose radius is r. If no points of P lie within
this disk, the answer to the query is null. Otherwise, it returns the point of P within
the disk that is closest to q. Present (in pseudo-code) an efficient kd-tree algorithm that
answers such a query.

You may handle the edge cases (e.g., multiple points at the same distance or points
lying on the boundary of C) however you like. Hint: You may use whatever helper
function(s) you like, but I would suggest using:

Point frnn(Point q, double r, KDNode p, Rectangle cell, Point best)

where p is the current node in the kd-tree, cell is the associated cell, and best is the
best point seen so far.

Briefly explain your algorithm, but you do not need to derive its running time.

Problem 4. In this problem we will build a suffix tree for the string S = baabaabababaa✩.

(a) List the substring identifiers for the 14 suffixes of S. For the sake of uniformity, list them
in order (either back to front or front to back). For example, you could start with “✩”
and end with the substring identifier for the entire string.

(b) List the substring identifiers again together with their indices (0 through 13), but this
time in alphabetical order (where "a" < "b" < "✩").

(c) Draw a picture of the suffix tree for S. For the sake of uniformity, when drawing your
tree, use the convention of Fig. 7 in the Lecture 17 LaTeX lecture notes. In particular,
label edges of the final tree with substrings, index the suffixes from 0 to 13, and order
subtrees in ascending lexicographical order.

Problem 5. In this problem, we will consider how to use/modify range trees to answer two related
queries. While the answer should be based on range trees, you may need to make modifications
including possibly transforming the points and even adding additional coordinates. In each
case, describe the points that are stored in the range tree and how the search process works.
An English explanation (as opposed to pseudocode) is sufficient. Justify your algorithm’s
correctness and derive its running time.

(a) Assume you are given an n-element point set P in R
2 (see Fig. 3(a)). In addition to

its coordinates (px, py), each point p ∈ P is associated with a numeric rating, pz. In an
orthogonal top-k query, you are given an axis-aligned query rectangle R (given, say, by
its lower-left and upper-right corners) and a positive integer k. The query returns a list
of the (up to) k points of P that lie within R having the highest ratings (see Fig. 3(b)).
(As an application, imagine you are searching for the k highest rated restaurants in a
rectangular region of some city.)
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(a) (b) (c)

OrthTopK(3) = {8, 9, 12}
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AnnTopK(3) = {3, 5, 9}

Figure 3: Orthogonal top-k queries and annulus top-k queries.

Describe how to preprocess the point set P into a data structure that can efficiently
answer any orthogonal top-k query (R, k). Your data structure should use O(n log2 n)
storage and answer queries in at most O(k log2 n) time. (I don’t care how you handle
edge cases, such as points lying on the boundary of the rectangle or points having the
same rating.) If there are k points or fewer in the query region, the list will contain
them all.

(b) In an annulus top-k query a query is given by a query point q ∈ R
2 and two positive

radii r1 < r2. Let S1 = S(q, r1) be the square centered at q whose half side length is r1
and define S2 similarly for q and r2. The square annulus A(q, r1, r2) is defined to be the
region between these two squares. The query returns a list of the (up to) k points of P
that lie within the annulus A(q, r1, r2) that have the highest ratings (see Fig. 3(c)).

Problem 6. Suppose you have a large span of memory, which starts at some address start and
ends at address end-1 (see Fig. 4). (The variables start and end are generic pointers of type
void*.) As the dynamic memory allocation method of Lecture 15, this span is subdivided
into blocks. The block starting at address p is associated with the following information:

❼ p.inUse is 1 if this block is in-use (allocated) and 0 otherwise (available)

❼ p.prevInUse is 1 if the block immediately preceeding this block in memory is in-use.
(It should be 1 for the first block.)

❼ p.size is the number of words in this block (including all header fields)

❼ p.size2 each available block has a copy of the size stored in its last word, which is
located at address p + p.size - 1.

(For this problem, we will ignore the available-list pointers p.prev and p.next.)

In class, we said that in real memory-allocation systems, blocks cannot be moved, because they
may contain pointers. Suppose, however, that the blocks are movable. Present pseudo-code
for a function that compacts memory by copying all the allocated blocks to a single contiguous
span of blocks at the start of the memory span (see Fig. 4). Your function compress(void*

start, void* end) should return a pointer to the head of the available block at the end.
Following these blocks is a single available block that covers the rest of the memory’s span.
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Figure 4: Memory compactor.

To help copy blocks of memory around, you may assume that you have access to a function
void* memcpy(void* dest, void* source, int num), which copies num words of memory
from the address source to the address dest.

Problem 7. Recall the buddy system of allocating blocks of memory (see Fig. 5). Throughout
this problem you may use the following standard bit-wise operators:

& bit-wise “and” | bit-wise “or”
^ bit-wise “exclusive-or” ~ bit-wise “complement”
<< left shift (filling with zeros) >> right shift (filling with zeros)

You may also assume that you have access to a function bitMask(k), which returns a binary
number whose k lowest-order bits are all 1’s. For example bitMask(3) = 1112 = 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

Level

0 2 4 6 8 10 12 14

0 4 8 12

0 8

0

Figure 5: Buddy relatives.

Present a short (one-line) expression for each of the following functions in terms of the above
bit-wise functions:

(a) boolean isValid(int k, int x): True if and only if x ≥ 0 a valid starting address
for a buddy block at level k ≥ 0.
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(b) int sibling(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its sibling (that is, its “buddy”).

(c) int parent(int k, int x): Given a valid buddy block of level k ≥ 0 starting at
address x, returns the starting address of its parent at level k + 1.

(d) int left(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its left child at level k − 1.

(e) int right(int k, int x): Given a valid buddy block of level k ≥ 1 starting at address
x, returns the starting address of its right child at level k − 1.

For example, given the tree shown in the figure, we have

isValid(2, 12) = isValid(2, 01100) = True

isValid(2, 10) = isValid(2, 01010) = False

sibling(2, 12) = sibling(2, 01100) = 8 = 01000

parent(2, 12) = parent(2, 01100) = 8 = 01000

left(2, 12) = left(2, 01100) = 12 = 01100

right(2, 12) = right(2, 01100) = 14 = 01110

Problem 8. This problem involves a data structure called an erasable stack. This data structure is
just a stack with an additional operation that allows us to “erase” any element that is currently
in the stack. Whenever we pop the stack, we skip over the erased elements, returning the
topmost “unerased” element. The pseudocode below provides more details be implemented.

class EStack { // erasable stack of Objects

int top // index of stack top

Object A[HUGE] // array is so big, we will never overflow

Object ERASED // special object which indicates an element is erased

EStack() { top = -1 } // initialize

void push(Object x) { // push

A[++top] = x

}

void erase(int i) { // erase (assume 0 <= i <= top)

A[i] = ERASED

}

Object pop() { // pop (skipping erased items)

while (top >= 0 && A[top] == ERASED) top--

if (top >= 0) return A[top--]

else return null

}

}

Let n = top + 1 denote the current number of entries in the stack (including the ERASED

entries). Define the actual cost of operations as follows: push and erase both run in 1 unit
of time and pop takes k + 1 units of time where k is the number of ERASED elements that
were skipped over.

7



(a) As a function of n, what is the worst-case running time of the pop operation? (For
fullest credit, make your bound as tight as possible.) Justify your answer.

(b) Starting with an empty stack, we perform a sequence of m push, erase, and pop oper-
ations. Give an upper bound on the amortized running time of such as sequence. You
may assume that all the operations are valid and the array never overflows. (For fullest
credit, make your bound as tight as possible.) Justify your answer.

(c) Given two (large) integers k and m, where k ≤ m/2, we start from an empty stack,
push m elements, and then erase k elements at random, finally we perform a single pop
operation. What is the expected running time of the final pop operation. You may
express your answer asymptotically as a function of k and m.

In each case, state your answer first, and then provide your justification.

Problem 9. (Check out Problem 11 from the Practice Problems for Midterm 2 on deletion in
open-addressing hashing.)
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CMSC 420: Spring 2022

CMSC 420 (0101) - Final Exam

This exam is closed-book and closed-notes. You may use three sheets of notes (front and back).
Write all answers on the exam paper. You may use any algorithms or results given in class. If
you have a question, either raise your hand or come to the front of class. Total point value is 120
points. Good luck!

Problem 1. (30 points) Short answer questions. Unless requested, explanations are not required,
but may be given to help with partial credit.

(a) (4 points) Early in the semester we saw that a 2-dimensional matrix could be represented
using amultilist structure. What are the main advantages of the multilist over a standard
array-based representation? (Select all that apply.)

(1) Matrix entries can be modified faster with the multilist

(2) Matrix operations (e.g., multiplication) are generally faster with the multilist

(3) If the matrix is sparse (few non-zero elements), the multilist saves space

(b) (6 points) When we delete an entry from a simple (unbalanced) binary search tree, we
sometimes need to find a replacement key. Suppose that p is the node containing the
deleted key. Which of the following statements are true? (Select all that apply.)

(1) A replacement is needed whenever p is the root

(2) A replacement is needed whenever p is a leaf

(3) A replacement is needed whenever p has two non-null children

(4) It is best to take the replacement exclusively from p’s right subtree

(5) At most one replacement is needed for each deletion operation

(c) (2 points) The AA-tree data structure has the following constraint: “Each red node can

arise only as the right child of a black node.” Which of the two restructuring operations
(skew and split) enforces this condition?

(d) (4 points) Suppose that a subtree of height h in a Quake Heap has been constructed by
applying some number of link operations (but no cut’s). As a function of h, how many
leaves does this subtree have? (Select one.)

(1) Exactly 2h

(2) At most 2h, but possibly fewer

(3) At least 2h, but possibly more

(4) We cannot put an exact upper or lower bound, but it will be O(2h)

(5) None of the above

(e) (3 points) A node in a B-tree has too many children. Suppose that it is possible to
resolve this either by splitting or key-rotation (adoption). Which is preferred and why?

(f) (4 points) Hashing is widely regarded as the fastest of all data structures for basic
dictionary operations (insert, delete, find). Give an example of an operation that a tree-
based search structure can perform more efficiently than a hashing-based data structure,
and explain briefly.
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(g) (3 points) In the (unstructured) memory management system discussed in class, each
available block of memory stored the size of the block both at the beginning of the block
(which we called size) and at the end of the block (which we called size2). Why did
we store the block size at both ends?

(h) (4 points) In our implementation of Prim’s EMST algorithm, which of the following is
true throughout the execution of the algorithm? (Select all that apply)

(1) The number of entries in the spatial index (kd-tree) is at least as large as the number
of points in the current spanning tree

(2) The number of entries in the spatial index (kd-tree) is at least as large as the number
of points that are not in the current spanning tree

(3) The number of entries in the priority queue (heap) is at least as large as the number
of points in the current spanning tree

(4) The number of entries in the priority queue (heap) is at least as large as the number
of points that are not in the current spanning tree

Problem 2. (10 points) Show the result of executing the operation splay(5) on the tree in Fig. 1.
(Intermediate results may be given for partial credit.)

3

5

4

2

1

6

7

8

9

10

11

splay(5)

Figure 1: Splaying.

Problem 3. (15 points) Perform the following operations on a hash table. In each case, the
operations are performed as a sequence and list the number of probes.

(a) Show the results of inserting the keys “X” then “Y” then “Z” into the hash table shown
in Fig. 2(a) assuming double hashing, where g() is the jump size.

(b) Show the result of insertions and deletions in Fig. 2(b), assuming linear probing. (When
deleting, indicate what your placeholding symbol is.)

Problem 4. (15 points) In this problem we will build a suffix tree for the text S = "babaaba✩".

(a) (4 points) List the substring identifiers for the 8 suffixes of S. For the sake of uniformity,
list them in order (either back to front or front to back).
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insert("Z") h("Z") = 1; g("Z") = 5

insert("Y") h("Y") = 7; g("Y") = 2

insert("X") h("X") = 1; g("X") = 4

(a) Double hashing
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insert("Z") h("Z") = 3

delete("B")

insert("X") h("X") = 4

(b) Linear probing/Deletion

W F B J

h("B") = 2

V

Figure 2: Hashing.

(b) (8 points) Draw S’s suffix tree. List children alphabetically ("a" < "b" < "✩"). Label
each leaf with its suffix index (from 0 to 7). Also, label each internal node with its
number of descendent leaves.

(c) (3 points) We want to know how many occurrences of the substring "ba" occur in S.
Which node(s) of the suffix tree provide the answer to this query?

Problem 5. (20 points: 2–6 points for each part) In this problem, we are given a set L of n
horizontal line segments siti in the plane, where si = (x−i , yi) and ti = (x+i , yi) (Fig. 3(a–b)).
We want to preprocess them to answer the following queries efficiently:

Segment stabbing queries: Consider a vertical query line segment with x-coordinate qx,
whose lower endpoint has the y-coordinate q−y , and whose upper endpoint has y-coordinate
q+y . How many of the segments of L does this segment intersect? (For example, the ver-
tical segment in Fig. 3(c) intersects 5 segments of L.)

x

y

x

y

Answer: 5

qx

q−y

q+y

si ti

(b) (c)

x

y

si ti

(a)
x+
ix−

i

yi

Figure 3: Segment stabbing queries.

Answer the following for the query vertical query (qx, q
−

y , q
+
y ) and horizontal segment siti.

(Hint: To simplify your answer, you may assume that all the coordinates are distinct, so the
endpoint of one segment will never lie in the interior of another.)

(a) What conditions must a horizontal segment’s y-coordinate (yi) satisfy to intersect the
query segment?

(b) What conditions must a horizontal segment’s left endpoint (x−i ) satisfy to intersect the
query segment?

3



(c) What conditions must a horizontal segment’s right endpoint (x+i ) satisfy to intersect the
query segment?

(d) Based on parts (a)–(c), briefly explain the structure of range tree to answer segment
stabbing queries. (Query processing comes later.)

(e) Briefly explain how to apply your structure from (d) to answer segment stabbing queries.

(f) Given that there are n segments, what is the space and query time of your data structure?

Problem 6. (15 points) You are designing an expandable hash table using open addressing. Let
m denote the current table size. Initially m = 4. Let us make the ideal assumption that each
hash operation takes exactly 1 time unit. After each insertion, if the number of entries in the
table is greater than or equal to 3m/4, we expand the table as follows. We allocate a new
table of size 4m, create a new hash function, and rehash all of the elements from the current
table into the new table. The time to do this expansion is 3m/4.

(a) (10 points) Derive the amortized time to perform an insertion in this hash table (as-
suming that m is very large). State your amortized running time and explain how you
derived it. (For fullest credit, your running time should as tight as possible.)

Hint: The amortized time need not be an integer.

(b) (5 points) One approach to decrease the amortized time is to modify the table expansion
factor, which in this case is 4. In order to reduce the amortized time, should we increase
or decrease this factor? If you make this adjustment, what negative side effect (if any)
might you observe regarding the space and time performance of the data structure?
Explain briefly. (Don’t give a formal analysis)

Problem 7. (15 points) In this problem you will write a program to check the validity of an AVL
tree. The node structure is given below. All members are public.

class AVLNode {

public int key // key

public int height // height of this subtree

public AVLNode left, right // left and right children

}

In order to be valid, every node p of the tree must satisfy the following conditions:

❼ p.height is correct given the heights of its children. (Recall: height(null) == -1.)

❼ The absolute height difference between p’s left and right subtrees is at most 1

❼ An inorder traversal of the tree encounters keys in strictly ascending order

Present pseudocode for a function boolean validAVL(AVLNode root), which returns true
if the tree structure at the given root node is a valid AVL tree and false otherwise. Explain
how your function works. For full credit, your function should run in time O(n), where n
is the number of nodes in the tree. You may not assume the existence of complex utility
functions (e.g., for sorting, performing tree traversals, or computing tree heights).

Hint: Use recursion. You may write additional helper functions.
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Figure 4: Valid and invalid AVL trees.
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